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ABSTRACT
Distributed systems based on cooperative multi-agents have
been used in a wide range of application domains. How-
ever, the need for real-time processing in large and dynamic
search spaces has led to new challenges. In addition to the
constraints in time and computational resources, the agents
have to operate under highly dynamic conditions in complex
environments. Finding optimal solutions within time con-
straints may not be always possible. Anytime algorithms
have shown great promise in providing approximate solu-
tions. The quality of these intermediate/partial solutions
depends on the amount of computational resources avail-
able for processing. The key insight that we describe in
this paper is that anytime algorithms can be leveraged in a
partial processing paradigm where the partial solutions can
be used to quickly identify potential solutions and thereby
efficiently utilize resources, even under dynamic conditions.
The partial solutions can also be used for a coarse grained
categorization of large search spaces that can support a mix
of explorative and exploitative agent behaviors. We will de-
scribe how explicit modeling of the dynamism using a simple
but unique search space model can help agents adapt to the
changing information space. We describe a generic multi-
agent framework that leverages our search space model while
modeling various aspects of agent behavior such as candidate
selection, agent interactions, etc. This framework can be
used to design agents to work with partial processing in var-
ious application domains. We will develop suitable testbeds,
simulation experiments, algorithms and performance met-
rics to validate the framework.

Categories and Subject Descriptors
I.6.5 [Simulation And Modeling]: Model Development—
Modeling methodologies; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Multiagent systems
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1. INTRODUCTION
Cooperative multi-agent systems are a powerful paradigm

to design distributed systems to solve large scale information
search and processing problems. A set of agents are said to
be cooperative when they are designed to maximize their
group utility function[2]. Cooperative multi-agent systems
have been used in various domains such as distributed opti-
mization[5] and information retrieval[8]. However, the next
generation of problems in many of these domains have new
challenges that need to be addressed. One of the biggest
challenges is brought on by the need to process dynamically
changing information while providing real-time results. This
places constraints on time, processing resources and com-
munication costs that need to be addressed by multi-agent
frameworks that deal with real world problems.

It is becoming more apparent that with such resource and
time constraints, it may not be possible to provide optimal
solutions in real-time applications. This has led to increased
interest in anytime algorithms[12, 8] for its ability to pro-
vide approximate solutions. The quality of these solutions is
proportional to the computational resources applied. There-
fore, a candidate (for example, a document in a web search
application) does not have to be fully processed for it to
be evaluated and some form of judgment to be made on
its viability or importance. By observing the quality of the
partial solutions, the resources can be quickly allocated (or
re-allocated) to a better candidate. This paradigm of pro-
cessing information using anytime algorithms, called partial
processing, can be leveraged to efficiently utilize computa-
tional resources. However, there is a need for a generic multi-
agent framework that models the unique characteristics of
the partial processing paradigm while being applicable to
different domains.

The large size and dynamism of modern search spaces cre-
ate a “complex environment” for the agents. Due to compu-
tational and time constraints, agents can have only a limited
view of the search space and it is not possible to evaluate
all options. Complex environments are also continuously
changing due to the entry of new data or updates to exist-
ing data. Due to the partial-observability and dynamism,
the outcome of agent actions can only be approximately
modeled. The framework that we develop should support
methodologies that help mitigate the effects of complex en-
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vironment on resource allocation.
We propose a novel multi-agent framework for designing

real-time cooperative agents to work with the partial pro-
cessing paradigm and leverage its unique advantages. The
key insight behind the framework is to leverage the strengths
of partial processing and to group candidates based on their
partial-values (i.e. approximation of their final value). Group-
ing candidates into regions in the search space can miti-
gate the effects of partial-observability as large and complex
search space can now be compactly represented. Addition-
ally, changes in the overall search space can be represented
as a function of changes in these regions and shared between
agents in the form of compact measures. Agents can utilize
local (information of its local region) and global informa-
tion to move around in the search space to better allocate
resources. By the property of the partial-values generated
by anytime algorithms, some groups (e.g. candidates that
have large partial-values despite only a small portion be-
ing processed) show more promise for containing optimal or
relevant solutions. Our search space model labels groups
as explorative and exploitative, based on their potential to
yield relevant results.Therefore, agents can follow a mix of
strategies by moving between these regions. As a candidate
is incrementally processed, it is moved to different regions
based on its new partial-values. This generates a type of dy-
namism in the search space called internal dynamism. On
the other hand, external dynamism is the traditional form
caused by the entry of new candidates or update of exist-
ing ones. By capturing both these forms of dynamisms, the
framework provides mechanisms for agents to react better
to changes in the search space.

The main contribution of the paper is the generic multi-
agent framework that leverages the unique aspects of par-
tial processing and anytime algorithms while mitigating the
effects of large and dynamic search spaces and facilitating
real-time results. The framework is modular with each com-
ponent dealing with different aspects such as agent interac-
tion, decision making, etc. The components are designed to
support plug-n-play so that different algorithms, metrics and
analyses can be easily incorporated. In the following section,
we provide a brief background on some relevant work. This
is followed by a detailed description of the framework. We
then provide details of the implementation that we use to
validate the framework. The simulation setup is then de-
scribed, followed by a discussion of the results.

2. BACKGROUND
In this section, we will focus on frameworks and method-

ologies that seek to mitigate key challenges in complex net-
works such as partial-observability and non-determinism.
We will also describe some of the work in real-time multi-
agent systems and discuss anytime algorithms. We begin
by reviewing some of the related research in the field of
multi-agent planning, that deals with decision making in
complex environments. Markov Decision Process (MDP)[13]
based frameworks are used to deal with non-deterministic
environments by modeling contingencies. The possible out-
comes of executing action a at state s are called contin-
gencies and the MDP models use probability distributions
for these transitions. This set of actions, outcomes and re-
wards is called a policy. The aim of the MDP models is to
generate optimal policies. Partially Observable Markov De-
cision Process (POMDP)[4], a variation of the MDP models,

works even with partial-observability. For real-time applica-
tions, POMDP based methods[6] have been developed that
produce policies within time constraints. However MDP/
POMDP methods can be applied efficiently only to a do-
main with small and stationary state space. In a stationary
state space the probability distribution of various parame-
ters such as the transition function, observation function and
state variables do not change over time. Another drawback
is the assumption that all the states, actions and events can
be anticipated in the beginning and explicitly represented.
In many real world problems, the state space is initially un-
known and the agent has to explore the environment along
with the decision making process. Such agents do not per-
form long term planning and use local information and in-
teractions with the environment in order to select the imme-
diate action. Real-time heuristic algorithms used by agents
in real-time path planning[3] are examples of this work.

A number of agent architectures have been proposed for
real-time applications. ARTS[14] is based on the BDI (Be-
liefs Goals and Intention) cognitive agent architecture. The
agents select predefined plans based on the goals they seek
to achieve. These goals can alter depending on the changes
in the environment. The innovation in ARTS is the inclu-
sion of specific deadlines and priorities for the goals which
are taken into account when scheduling the actions for the
agent. SIMBA[1] is another real-time agent framework that
can be used to incorporate both deliberative process and re-
active process within a real-time system. Its novelty is in
the use of a case based reasoning process to develop plans
that is based on past experience. The frameworks, described
above, focus on integrating agent planning with hard and
soft real-time constraints. However, their main drawback
is that they do not include mechanisms to deal with the
partial-observability issues of a complex environment.

Anytime algorithms have been applied in multiple do-
mains as they have the following properties[15]: 1. Inter-
ruptibility: The algorithm may be interrupted at any point
and an approximation of the final result can be calculated,
2. Preemptability: The property of anytime algorithm by
which it may be restarted with minimal overhead, 3. Result
Quality: The quality of the result in anytime algorithms
can be defined. The quality increases with the applica-
tion of more computational resources, and 4. Predictabil-
ity: It is possible to come up with a prediction scheme
for the result quality, given the amount of resources ap-
plied. As part of the Information Foraging, Gathering and
Matching(I-FGM)[7, 10, 9, 8] framework, anytime algorithms
were developed for text and image documents, that used
the partial processing paradigm to generate partial-values
for the document similarity. The partial-values were used
by the multi-agents to select suitable documents for further
processing. This process of allocating resources to docu-
ments based on partial processing was shown to produce the
final results faster than the traditional methods. Although
anytime algorithms and partial processing have been used
in multi-agent systems, a generic framework that leverage
partial results to mitigate the challenges of large and dy-
namic search spaces (partial-observability, non-determinism
and dynamism) do not exist. Formulating this generic frame-
work is the main contribution of our work.

3. MULTI-AGENT FRAMEWORK
Our objective is to design a generic framework to design
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real-time agents that can utilize partial processing and any-
time algorithms to process large and dynamic search spaces.
To reiterate, the basic idea behind partial processing is that
an agent quickly processes a candidate to get an approxi-
mation or partial-value of its evaluation metric. If the eval-
uation looks promising, the candidate is processed further
by the agent. It is evident that the partial-values can be
used as a way to quickly and efficiently rank the candidates
and help the agents to select promising ones. In the con-
text of our work, resource allocation occurs in the form of
agents selecting a candidate and processing it for a certain
amount of time. In our experimental section, we assume
that the number of computational resources is equivalent to
the number of agents. However, our framework can extend
to the generic case where the resources are separate from the
agents. By the property of anytime algorithms, the quality
of the partial-values increases as more computational time
is alloted to it. Therefore, by incrementally processing the
candidates we can efficiently determine if a candidate be-
comes less promising and should be given less priority. This
results in less wastage of resources on candidates that will
ultimately turn out to be non-optimal.

Current frameworks are not designed to leverage the ben-
efits from partial processing. Partial-values provide a unique
structure to the search space that can be used to concisely
represent the changes in large and dynamic search spaces.
Developing a search space model is key to harnessing the
advantages of partial processing. As can be seen from the
framework architecture(Fig. 1), the search space model is
the crucial lynch pin that holds together the different compo-
nents in the framework. Each component in the framework,
dealing with a certain aspect of agent function, interacts
with the search space model. For example, the interaction
module, that deals with agent communications, relays infor-
mation about local conditions of the search space to other
agents. This is used to update their search space models.
The framework architecture has been designed to support
plug-n-play. This allows for new algorithms and metrics to
be implemented in the framework quickly. We will now de-
scribe each component in detail.

3.1 Search Space Model
The search space model mitigates the effects of partial-

observability by providing a detailed view of its immediate
environment and a coarse grained view of the entire search
space. It divides the search space into a grid of dimension
(m,n), using the two important parameters for a candidate
d: 1) portion of the candidate processed or process-ratio
rd ∈ [0, 1], and 2) current partial-value vd ∈ [0, 1]. Each grid-
block is denoted by B(i, j) where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
A candidate d is placed in B(i, j) where ( i−1

m
) ≤ rd < ( i

m
)

and ( j−1
n

) ≤ vd < ( j
n

). An agent a is assigned to one grid-
block Bi,j at a time. This is termed the agent’s home-block
Ha(i, j). The agent can only process candidates in its home-
block. Resources are said to be reallocated when the agent
re-assigns itself to another grid-block. The initial home-
block of an agent is not specified as part of the framework
but is decided by the agent designer. The framework sup-
ports dynamic partitions where the number of grid-blocks
change according to the number of candidates in the search
space. Dynamic partitioning can also help in moving from
fine grained grouping of candidates to a more coarse grained
grouping and vice versa. However, for the implementation

presented in the paper, we consider only static partitioning
where the search space has m× n grid-blocks.

For each B(x, y), we define two sets of grid-blocks, FB =
B(i, n) where x ≤ i ≤ m, and TB = B(m, j) where y ≤
j ≤ n, are specified. Grid-blocks of TB are important as
“relevant” candidates will ultimately end up here. A can-
didate d is said to be relevant if its vd ≥ α where α is a
high value (∼0.9). Since partial-values give us an inkling of
the final relevancy values, candidates in certain grid-blocks
have a higher probability of ending up in TB . Exploita-
tion region contains candidates that have high likelihood of
reaching TB , whereas exploration region contains candidates
with low likelihood of reaching TB . The search space model
uses this heuristic to group candidates into regions of explo-
ration and exploitation, which can then be used by agents
to make selections. In order to do this, we quantify the like-
lihood of candidates in a grid-block B(x, y) using a measure
called the risk parameter Rrisk(x, y). We define Rrisk(x, y)
as follows:

Rrisk(x, y) = 1− |TB(x, y)|
|FB(x, y)|+ |TB(x, y)|

(
1− x− 1

m

)
(1)

As a candidate d is processed, its rd and/or vd values change.
To conform to the search space model, the candidate is
moved to a different grid-block. Similarly, the agents move
to new home-blocks. This change in the search space caused
by the movement of agents and candidates between grid-
blocks is termed internal dynamism. This is in contrast
to the other dynamism, called external dynamism, which
is caused by the entry of new candidates or departure of
candidates after they are completely processed. Internal
dynamism is modeled in the search space model using a
network dynamism graph Gt(V,E), to represent the flow
of agents and candidates between the grid-blocks at time
t. The set of vertices in Gt(V,E) V = VI ∪ V0,0. V0,0

represents the external environment from which new can-
didates are entering the search space and into which com-
pletely processed candidates are sent. Vertex set VI = {vi,j}
where vi,j represents the grid-block B(i, j). The edge set

E = EI ∪ EE . EI = {ek,li,j} where ek,li,j is an edge from vi,j
to vk,l such that m ≥ k ≥ i, n ≥ l ≥ j, i 6= 0, j 6= 0. The
edges in EI represent internal dynamism as they contain
the flow of agents and candidates between the grid-blocks.
EE = {e1,1

0,0} ∪ {e0,0
m,n} represents the flow due to external

dynamism. Since, the dynamism can be represented as flow
in Gt(V,E), we can use a graph based metric such as load to
quantify internal and external dynamism. The load L(i, j, t)
in a grid-block B(i, j) at time t may be defined as:

L(i, j, t) =
NC(i, j, t)

NA(i, j, t)
(2)

NC(i, j, t) and NA(i, j, t) are the number of candidates and
agents, respectively, in grid-block B(i, j) at time t. NC(i, j)
and NA(i, j) represent the current values of candidates and
agents in B(i, j). It may be noted that this definition of
load is not part of the framework specifications and may be
changed according to application domain requirements.

3.2 Interaction Module
The interaction module deals with communication aspects

of agent functionality. Agents can communicate with each
other using various forms of communication including point
to point and broadcast. An agent sends out information
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about its home-block to other agents, helping them to up-
date their search space models. In order to keep information
of the search space current, the frequency of these messages
will increase with dynamism. The module supports a wide
range of communication schedules including targeted and
broadcast communications.

3.3 Prediction Module
The network dynamism graph Gt provides a snapshot of

the search space at time t. Therefore, dynamism can be for-
mally represented as a set of functions f∆t : Gt → Gt+∆t.
These functional mappings can be implemented as predic-
tion algorithms that approximate future states of the search
space. Forecasting algorithms, using flow rates of agents
and candidates, can be used with Gt to estimate the graph
Gt+∆t at time t + ∆t. By having a formalized representa-
tion of dynamism, the framework can support a wide range
of candidate selection algorithms that uses both global fac-
tors such as future search space states and local factors such
as future values of individual candidates. The decompos-
able architecture of the framework is highlighted by the fact
that a combination of search space model and interaction
module provides a static snapshot of the search space. On
the other hand, a combination of search space model, inter-
action module and prediction module provides a dynamic
snapshot.

3.4 Internal Model
The decision making processes in the agent are imple-

mented in the internal model component using following
sub-components:

a) Agent Migration sub-component: contains algorithms used
by the agent to decide whether to move to a different
home-block. It uses the information of the search space
gathered from other agents about current results and load
conditions. The decision making for agent mobility is
modeled using the following components:
Search space model + Interaction module + Pre-
diction module + Agent migration sub-component
⇒ Agent mobility

b) Agent Communication sub-component: Communications
are expensive in parallel/distributed systems and efficient
communication schedules can lead to better performance.
The agent communication sub-component works with the
interaction module to send and receive messages. This
sub-component decides on what data to send, its recip-
ients, frequency of messages, etc. The decision making
about agent communication is modeled by the following
components:
Search space model + Interaction module + Agent
Communication sub-component⇒Agent commu-
nication

c) Candidate Selection sub-component: The algorithms used
by the agent to select candidates are implemented in this
sub-component.

4. FRAMEWORK IMPLEMENTATION
The previous section provided a detailed description of

the framework. We will now implement the framework by
developing a set of algorithms and metrics for the various

Figure 1: Resource Allocation Framework

components. They will be used to develop control systems
for the simulation experiments that will be conducted to
validate the framework. The implementation described in
this section is only one of the many configurations supported
by the framework.

4.1 Search Space Model
In our implementation, we use MySQL1 database for agents

to communicate with each other and store search space infor-
mation that is used in the decision making process. MySQL
simplifies the implementation while enabling various types of
agent communication such as broadcast and point to point.
Each grid-block is associated with a MySQL table that stores
details about candidates (e.g. current values of vd, rd) and
agents (e.g. agent ID) residing in it. Agents have access to
the MySQL table of their home-block and use the informa-
tion to select a suitable candidate for processing. After pro-
cessing, the candidates are placed in a grid-block appropriate
to their new process-ratio and partial-value. The partial-
values of the candidates are monotonically non-decreasing.
Therefore, the candidates in a grid-block B(i, j) will only
move to a grid-block B(k, l) where i ≤ k ≤ m and j ≤ l ≤ n.
This means that the edges in the network dynamism graph
Gt(V,E) are unidirectional. For each edge ek,li,j ∈ E, the

flow rate fk,l
i,j , which is the the number of candidates pass-

ing through the edge per second, is maintained. Each node
vi,j ∈ Gt has Ein(i, j) and Eout(i, j) as the set of incoming
and outgoing edges. For each node vi,j , we store the follow-
ing metrics: 1. gin(i, j): current in-flow rate of the agents
into the grid-block B(i, j), 2. gout(i, j): current out-flow rate
of the agents out of the grid-block B(i, j), 3. NA(i, j), and
4. NC(i, j)

4.2 Interaction Module
Agent communication is implemented as reading/writing

of messages from/into MySQL tables in the grid-blocks. We
measure the cost of communication using a distance metric
DG. The distance DG(a, b) between two agents a and b, in
home-blocks Ha(i, j) and Hb(k, l), respectively, is given by
DG(a, b) = max(|i − k|, |j − l|). Using the distance metric,
we can also define a neighborhood for the agent. The neigh-
borhood of radius 1 of an agent with home-block B(x, y) are
all the grid-blocks {B(i, j)} where max(|i− k|, |j − l|) = 1.
Based on the information content, the messages are of two
types:

1http://www.mysql.com
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4.2.1 Result Messages
The agents will adjust their processing strategy, alternat-

ing between being more explorative or more exploitative,
based on the number and quality of relevant candidates in
TB . The relevant set of candidates in the system at time
t is denoted by Rt. For the simulations in the paper, it is
assumed that Rt is known beforehand. In real world sce-
narios, where Rt is not known, an approximation of Rt may
be used. Result messages carry information about Rt and is
implemented in the form of agents periodically querying the
MySQL tables of the grid-blocks in TB . Using the values of
R(t), the agent calculates the following metrics: a) Result-
Age (Rage(t)): is the time period for which the current result
set has remained unchanged, b) Discovery-Time (Tdisc(d)):
of a candidate d is the time instant it was found to be rele-
vant or in other words, its vd was found to be greater than
α, and c) Recall-Ratio (Rrecall(t)): is defined as the ratio
between the number of candidates in the relevant set Rt and
the total number of relevant candidates.

4.2.2 Dynamism Messages
Dynamism messages contain information about changes

in the search space and are used by agents to update their
individual network dynamism graph Gt. In our implemen-
tation, dynamism messages are generated by an agent when
it moves to a new home-block or selects a candidate for pro-
cessing or has finished processing a candidate.

4.3 Prediction Module
One of the novelties of the framework is its explicit mod-

eling of internal and external dynamism. By modeling dy-
namism, predictions or estimations can be made about the
future states of the search space. This allows the agents to
pro-actively respond to changes in the search space, poten-
tially leading to more efficient resource allocation. In this
implementation, we have designed the following prediction
algorithms:

4.3.1 Candidate Prediction
Prediction algorithm for estimating the future partial-

values of the candidate is dependent on the domain. Since
we use synthetic candidates (with randomly generated partial-
values) in our testbed, we use a generic prediction algorithm
based on linear regression. The algorithm uses historical val-
ues of vd and their corresponding rd values, stored as part of
the candidate information in the grid-block table, to predict
the future partial-value for a given processing time.

4.3.2 Load Prediction
In order to predict loads in the grid-blocks, the number

of agents and candidates at some future time t + ∆t are
calculated using the following formulae.

NA(i, j,∆t) = NA(i, j) + (gin(i, j)− gout(i, j)) ∗∆t
(3)

NC(i, j,∆t) = NC(i, j)+ ∑
e
i,j
x,y∈Ein(i,j)

f i,j
x,y −

∑
e
x,y
i,j ∈Eout(i,j)

fx,y
i,j

 ∗∆t

(4)
NA(i, j,∆t): predicted no. of agents in grid-block B(i, j)
after ∆t time interval

NC(i, j,∆t): predicted no. of candidates in grid-blockB(i, j)
after ∆t time interval

The in-flow (gin) and out-flow (gout) rates are calculated
using the dynamism messages send by agents when it moves
between grid-blocks or when it transfers candidates after a
process cycle. Load is then calculated using Eqn. 2.

4.4 Internal Model
We implemented the following sub-components in the in-

ternal model:

4.4.1 Candidate Selection sub-component
For each candidate, a priority value is calculated after

each process cycle. Priority value reflects the potential of
a candidate to be relevant and is based on its current and
predicted partial-values. The priority of a candidate d that
has an allocation of processing time tk at its kth step is given
by

Pd,k = β1(δPd,k−1 + (1− δ)vd(k)) + β2q2 (5)

q2 =

{
∆t ∆t > 0
−∆0

tk
t0

Otherwise

∆k = v
′
d(k + 1)− vd(k)

In Eqn. 5, β1, β2 and δ are constant scaling factors. t0 is the
maximum processing time that can be assigned to a candi-
date and ∆0 is the average increase in partial-value when
t0 processing time is applied. ∆0 is calculated using the
increases in partial values of the candidate during previous
iterations. When a candidate is being processed for the first
time, a default value for ∆0 is used. More details on the
priority function are provided in [10]. Based on the priority
values, an agent identifies the top 10 candidates in its home-
block and a document is selected at random for processing.

4.4.2 Agent Communication sub-component
This module decides when an agent sends and receives

messages. As mentioned before, agents utilize the routines in
the interaction module to read and write information in the
database. Some of the messages are triggered by events such
as agents moving to a different home-block or a candidate
being moved to a new grid-block. Other messages, such as
reading the list of relevant candidates, are sent periodically.

4.4.3 Agent Migration sub-component
An agent has to decide when and where to move as part of

its resource allocation policy. In order to deal with the inher-
ent uncertainty, we use Bayesian Knowledge Bases(BKBs)[11]
to model the migration behavior of the agents. BKBs are
probabilistic networks that encode if-then rules using ran-
dom variables (rvs). We use information about the dy-
namism, in the form of the metrics Rage(t) and Rrecall(t),
along with the decision making mechanism to decide whether
to be more/less explorative/exploitative. We use a selection
function that combines the output of the BKB with the fu-
ture load values in the neighborhood to select an appropriate
grid-block to move to. The algorithms to predict future load
values are implemented in the prediction module.

5. VALIDATION
Through simulation experiments, we seek to validate our

framework and show that agents can do more efficient re-
source allocation through explicit modeling of internal and
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external dynamism. For the set of experiments in this pa-
per, we will use a synthetic testbed of candidates based
on the real world data sets generated as part of our pre-
vious work in I-FGM[7, 10, 9, 8]. Each candidate is rep-
resented by a randomly generated 2-tuple: {(rd(t1), vd(t1)),
. . . (rd(tn), vd(tn))} such that rd(ti) < rd(tj) and vd(ti) <
vd(tj) where ti < tj . rd(t) and vd(t) are the process-ratio
and partial-value respectively, of the candidate d after t
amount of processing time has been applied. During the sim-
ulation, the instant each candidate enters the search space
is its entry time. By manipulating their entry-times, vari-
ous rates of external dynamism can be simulated. By using
a synthetic testbed, we can manipulate properties such as
candidate length (short, long), rate of change in the partial-
values, proportion of candidates based on size, etc. to create
various conditions in the search space. Real world scenario
may involve candidates of a particular type and will not en-
able us to test the framework in a robust manner. In our
experiments, we will generate different testbeds to obtain
a more rounded assessment of our framework. Such exten-
sive simulations are also required to perform the statistical
analysis of system performance, described in the following
sections.

The validation consists of two experiments. In Experiment-
1, the objective is to validate the fundamental design char-
acteristics of the search space model. We show that group-
ing the candidates based on their process-ratio and partial-
values, and labeling regions as explorative and exploitative
in the search space can lead to efficient and dynamic resource
allocation. In order to validate the search space model, we
compare the performance of three control systems that were
implemented using the algorithms and metrics described in
Section 4. The control systems are Baseline, Static-Agent
and Mobile-Agent systems. They differ in the way they
model the search space. In Baseline, the search space is con-
sidered to be monolithic - candidates are not grouped. All
the agents have access to all the candidates at all times and
follow a simple candidate selection policy - select the can-
didate with the highest priority values for processing. The
Static-Agent system on the other hand, uses the grid-block
division of candidates in the search space based on their
partial-values and process-ratio. However, the agents cannot
move between grid-blocks and make their selection among
the candidates in their fixed home-block. This control sys-
tem represents the classic parallel/distributed method of
task division. Since agents in Baseline and Static-Agent sys-
tems do not communicate with each other, the interaction
module is not implemented. Also, both systems do not take
dynamism of the search space into account. Therefore, only
the candidate selection sub-component of the internal model
and candidate prediction algorithm of the prediction mod-
ule are implemented. Mobile-Agent system is implemented
according to the description in Section 4. The agents move
in a search space that is partitioned into grid-blocks. The
agents communicate with each other to relay information
on dynamism and results. Although the system models the
dynamism in the search space using the network dynamism
graph, it does not predict future states of grid-blocks using
metrics such as load. We adopt the following restrictions in
order to simplify the implementation. Agents can only mi-
grate to and/or communicate with agents in its immediate
neighborhood. Its immediate neighborhood consists of all
the grid-blocks that are at a distance of 1 unit as defined by

the distance metric, DG.
In Experiment-2, we design a control system, called the

Dynamic-Agent system, that uses the idea of internal and
external dynamism, to allocate resources and analyze its per-
formance by comparing it to the Mobile-Agent control sys-
tem. Mobile-Agent system uses only the current load con-
ditions in the neighborhood to decide on the grid-block to
move to. On the other hand, Dynamic-Agent system uses
both current and future load values in the neighborhood,
and the predictions of future load conditions are used as an
input to the agent migration sub-component, along with the
result quality and current load information.

5.1 Experiment-1
For Experiment-1, the performance metric used to com-

pare system performance is the total-recall time. Total-
recall time is the time taken for the system to retrieve all
the relevant candidates. Since real-time search systems deal
with getting the results quickly, total-recall time is an im-
portant performance measure. The testbed contains 1000
candidates. Each control system is run on the testbed with
agents ranging from 8 to 64 and the grid sizes (2, 2) and
(4, 4). The experiments are conducted using the random-
ized block paradigm where a block run consists of running
the three systems in a randomized sequence. We perform 3
block runs for each combination of agent number and grid
size. The results are collected for each run and analyzed.
Analysis of Variance (ANOVA) is performed on the results
to ascertain whether the difference in performance of the
control systems is statistically significant.

Results and Analysis
On analyzing the bar charts in Fig. 2 & Fig. 3, we see that
Mobile-Agent system performs better than the Static-Agent
and Baseline systems in all the experimental runs. Base-
line performs worse than the other control systems in all the
runs. In fact, the total-recall time in the Baseline increases
with increase in the number of agents. This is due to the con-
tention between the agents as all agents in the Baseline try to
access the candidate with the highest priority. In the Static-
Agent system, although the total-recall time decreases with
the increase in the number of agents, it decreases at a slower
rate than the Mobile-Agent system. The primary reason
for the better performance of the Mobile-Agent versus the
Static-Agent systems is that the former is able to minimize
agent idleness by moving between the grid-blocks. Although
the agents in Static-Agent systems do not perform expensive
communication operations to interact with each other, the
cost savings are not enough to offset the cost due to idle-
ness. For lack of space, only the graphical ANOVA figures
for grid size (2,2)(Fig. 4) is shown. ANOVA provides anal-
ysis on how significant the performance variations between
the systems are. The graphical ANOVA compares the block
deviations and residuals with the deviations between the
system performances and shows that the block deviations
and residual values are much smaller. Therefore, it is clear
that the superior performance of the Mobile-Agent system
is statistically significant. We have shown that a grid based
search space model that categorizes the candidates using
their process-ratio and partial-values is indeed viable. Since
resource allocation in Mobile-Agent system uses Rrisk, the
experimental results also validates the notion of leveraging
exploration and exploitation regions for better performance.
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Figure 2: Total-recall time for Experiment-1 with
grid size=(2,2)

Figure 3: Total-recall time for Experiment-1 with
grid size=(4,4)

Figure 4: Graphical ANOVA for Experiment-1 with
no. of agents = 64 and grid size = 4,4

5.2 Experiment-2
We run the Mobile-Agent and Dynamic-Agent control sys-

tems on a large testbed of 2000 candidates. The testbeds are
also made more dynamic by introducing groups of 100 can-
didates at regular intervals of time. The Dynamic-Agent
system uses the history of the flow rate values of candidates
and agents to predict future values. We introduce a set of 10
relevant candidates at regular intervals in the search space.
For each of these sets of relevant candidates, we calculate
the proportion of these candidates that are discovered first
by the control systems. We call this performance metric the
Discovery-Rate of the system. Both the Mobile-Agent and
Dynamic-Agent systems are made to run on each testbed 3

times and the Discovery-Rate values are tabulated. Since
a document is either discovered by Dynamic-Agent or Mo-
bile Agent systems, if x is the portion of the documents
discovered (by definition its discovery-rate) by the Mobile-
Agent system, then (1− x) is the portion discovered by the
Dynamic-Agent system. We use multiple testbeds which
differ in the proportion of small and large candidates con-
tained in it. This is represented by the parameter β which is
defined as the ratio of small documents to large documents.
Large candidates have an average processing time of 50s and
small candidates have average processing time of 10s. Since
the small candidates get processed quickly, the internal dy-
namism (due to flow of candidates) within the search space
will be high when β is large. By using testbeds with dif-
ferent β values, we will be able to test the control systems
under different rates of internal dynamism.

Results and Analysis
For brevity, we discuss the Discovery-Rates of the Dynamic-
Agent system for two β values: 0.1 (low dynamism) and 0.3
(high dynamism) in Fig. 5 and Fig. 6, respectively. In these
graphs, the relevant sets of candidates are labeled 1, 2 and so
on. Since the Discovery-Rates of the Mobile-Agent system
can be easily ascertained from those of the Dynamic-Agent
system, they are not displayed. The Dynamic-Agent system
is said to have better performance if its Discovery-Rates are
greater than 0.5. From the plot for β = 0.1 values (Fig. 5),
we see that Dynamic-Agent system performs much better
than Mobile-Agent in 4 out 5 relevant sets of candidates.
However for the higher dynamism (Fig. 6), Dynamic-Agent
performs only as good as Mobile-Agent by winning for rel-
evant set no. 2 & no. 5 and tying for set no. 4. The
main reason for the relatively poor performance for high dy-
namism is that the load prediction algorithm uses averaging
algorithms to calculate future flow rates of candidates and
agents in the network dynamism graph. Developing more
sophisticated prediction algorithms based on the dynamism
models is part of the future work. However, in the limited
case of low dynamism rates, we are able to demonstrate that
resource allocation based on predicting future states, using
our dynamism model, performs better.

6. CONCLUSION
In this paper, we introduce a novel design framework for

cooperative multi-agent systems for anytime processing that
seeks to mitigate the effects of complex environments. It
uses a simple idea of partitioning the search space into grid-
blocks based on the intermediate values generated by the
anytime algorithms. Our methodology hinges on the fact
that these partial-values can be used as a criteria for al-
locating resources. We also explicitly model internal and
external dynamism as a way to represent, measure and com-
municate changes in the search space. This also helps the
agents to develop both reactive and pro-active resource al-
location policies. The framework has a flexible, component
based architecture that models important aspects of agent
behavior such as agent interaction, agent decision making,
etc. We implemented the framework and simulation experi-
ments were conducted to validate the feasibility of using the
grid-based search space model for efficient resource alloca-
tions. The results were analyzed and interesting trends and
observations were discussed.

For future work, we will look at using the framework
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Figure 5: Discovery-Rate for Dynamic-Agent sys-
tem with = 0.1 in Experiment-2

Figure 6: Discovery-Rate for Dynamic-Agent sys-
tem with = 0.3 in Experiment-2

to develop and analyze more sophisticated agent strategies.
We will also look into developing communication schedules
that utilize the dynamism in the search space, to optimize
communication costs. The framework has functional map-
pings that can be used to form rigorous mathematical re-
lations, such as between communications and search space
dynamism. In the experimental section, we provided a rigor-
ous statistical analysis of the framework under various con-
ditions, that required a synthetic testbed. As part of future
work, we will look at applying the framework to concrete
scenarios.
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