Submission: You will demo the code to the TAs or instructor and upload the code on blackboard under the extra credit assignments folder.

You have up till **Thursday Feb 10th** to demo your code to the TA or instructor and upload the assignment on blackboard. However, it is highly recommended that you try to finish and demo the work during the class on Feb 9th.

Using abstract methods and polymorphism/Method Overriding.

- Write the code for a class A.
 - This class has instance variables:
 - `public` `int` a
 - `private` `double` aa
 - Write the constructors/accessor/mutator methods and the toString method. The non default constructor takes two arguments (used to initialize the two instance variables). Include a `System.out.println` statement to indicate that the particular constructor of the class A is executing now.
 - It has a method m2 implemented twice, each time with different arguments.
    ```java
    public int m2(char a)
    {
        int x=(int)a;
        System.out.println("m2 of A is executing now");
        return x;
    }
    public int m2(int x1)
    {
        int y=10+x1; //get the returned value from the first version and add x1
        System.out.println("second version of m2 in A is executing now");
        return y;
    }
    ```
 - It has a method m3

1 Prepared by George Koutsogiannakis
public void m3()
{
 System.out.println("m3 of A is executing now");
}

- This class has an abstract method:
 public abstract int m1();

- Write the code for a class B which inherits A
 - B has the instance variable
 public String s
 - Write the constructors/accessor/mutator methods. The constructors utilize the superclass’s constructors and then initialize the specialized variable of this class. For the default constructor, initialize the string s to “test”. Include a System.out.println statement to indicate that the particular constructor of this class is executing now. Make sure that the correct number of arguments appear in the non default constructor.
 - Write the toString method which includes the toString of the super class.
 - It implements the abstract method m1 as follows (you may need to modify):
 public int m1()
 {
 int i1 = 5*a+(int)aa;
 System.out.println("m1 implementation of B is executing now");
 return i1;
 }

- Write the code for a class C which inherits A
 - C has the instance variable
 public double c
 - Write the constructors/accessor/mutator methods. The constructors utilize the super constructors then they initialize the specialized variable. Include a System.out.println statement to indicate that the particular constructor of class C is executing now. Make sure that the correct number of arguments appear in the non default constructor.
 - Write the toString method which includes the toString of the superclass.
 - It implements the abstract method m1 as follows:
 public int m1()
 {
 }
int i2 = a+(int)(c/2);
System.out.println("m1 implementation of C is executing now");

return i2;
}

• Write the code for a class **D which inherits C.**
D has the instance variable: public String str.
 o Write the constructors/accessor/mutator methods. The constructors utilize the super constructors then they initialize the specialized variable. Include a System.out.println statement to indicate that the particular constructor of class D is executing now. Make sure that the correct number of arguments appear in the non default constructor.
 o It has a method m3 which is an overridden version of m3 from class A.
 public void m3()
 {
 //place the code here to execute the code from method m3 of class A first
 System.out.println("I am executing m3 as implemented in class D");
 }
 o It also overrides the first version of method m2 of A
 public int m2(char c)
 {
 If the argument c is the character ‘e’ the method invokes the method m2 of the super class and passes the character ‘e’ as argument and then displays: "The m2(char c) version of D is executing now with returned value= "+x
 Otherwise the method invokes the method m2 of the super class and passes the argument 100 and then displays : "The m2(int x) version of D is executing now with returned value= "+x
 Finally the method returns the value returned by the proper m2 version of the super class A.
 }

• Write the code for a class Client.
 o FIRST OUTPUT
 Create objects of B and C using the default constructors and then use polymorphism to invoke the two versions of method m1. In doing so you would need a reference of A and you will be using the A reference to invoke m1 twice.
Invoke first the version from class B and then the version from class C. Output the returned value each time.

- SECOND OUTPUT
 Create an object of D. Next invoke (again using polymorphism) the overridden method m3 from class D

- THIRD OUTPUT
 In the next two invocations use the object of D directly to make the invocations (do not use polymorphism)
 1. Invoking the overridden method m2 of D, by passing it the character e as argument
 2. Invoke the second version of m2 from A, by passing an appropriate character as argument.

SAMPLE OUTPUT
>java client
First Output

 Default constructor of Class A
 Default constructor of Class B
 Default constructor of Class A
 Default constructor of Class C
 m1 implementation of B is executing now
 m1 implementation of C is executing now

Second Output

 Default constructor of Class A
 Default constructor of Class C
 Default constructor of Class D
 m1 implementation of C is executing now

Third Output

 m2 of A is executing now
 The m2(char c) version of D is executing now with returned value= 101
 second version of m2 in A is executing now
 The m2(int x1) version of D is executing now with returned value= 110