Query Optimization

- Relational algebra level
- Detailed query plan level

Relational algebra optimization

- Transformation rules (preserve equivalence)
- What are good transformations?
 - Heuristic application of transformations

Query Equivalence

- Two queries q and q’ are equivalent:
 - If for every database instance I
 - Contents of all the tables
 - Both queries have the same result

\(q \equiv q' \iff \forall I: q(I) = q'(I) \)
Rules: Natural joins & cross products & union

\[R \bowtie S = S \bowtie R \]
\[(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \]

Note:

- Carry attribute names in results, so order is not important
- Can also write as trees, e.g.:

```
  \( T \)  
 / \   
R   S
```

Rules: Natural joins & cross products & union

\[R \bowtie S = S \bowtie R \]
\[(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \]
\[R \times S = S \times R \]
\[(R \times S) \times T = R \times (S \times T) \]

\[R \cup S = S \cup R \]
\[R \cup (S \cup T) = (R \cup S) \cup T \]

Rules: Selects

\[\sigma_{p1 \land p2}(R) = \]
\[\sigma_{p1}(\sigma_{p2}(R)) \]

\[\sigma_{p1 \lor p2}(R) = \]
\[\sigma_{p1}(R) \cup \sigma_{p2}(R) \]

Rules: Selects

\[\sigma_{p1 \land p2}(R) = \]
\[\sigma_{p1}(R) \land \sigma_{p2}(R) \]

\[\sigma_{p1 \lor p2}(R) = \]
\[\sigma_{p1}(R) \lor \sigma_{p2}(R) \]

 Bags vs. Sets

\[R = \{a,a,b,b,b,c\} \]
\[S = \{b,b,c,c,d\} \]
\[R \cup S = ? \]
Bags vs. Sets

R = {a,a,b,b,b,c}
S = {b,b,c,c,d}
RUS = ?

- Option 1 SUM
 RUS = {a,a,b,b,b,b,c,c,c,d}
- Option 2 MAX
 RUS = {a,a,b,b,b,c,c,d}

Option 2 (MAX) makes this rule work:

σ_{p_1 v p_2}(R) = σ_{p_1}(R) U σ_{p_2}(R)

Example: R={a,a,b,b,b,c}
P1 satisfied by a,b; P2 satisfied by b,c

σ_{p_1}(R) = {a,a,b,b,b}
σ_{p_2}(R) = {b,b,b,c}
σ_{p_1}(R) U σ_{p_2}(R) = {a,a,b,b,b,c}

Option 2 (MAX) makes this rule work:

σ_{p_1 v p_2}(R) = σ_{p_1}(R) U σ_{p_2}(R)

Example: R={a,a,b,b,b,c}
P1 satisfied by a,b; P2 satisfied by b,c

σ_{p_1}(R) = {a,a,b,b,b,c}

“Sum” option makes more sense:

Senators (……)
Rep (……)
T1 = \pi_{yr,state} Senators; T2 = \pi_{yr,state} Reps

<table>
<thead>
<tr>
<th>Yr</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>CA</td>
</tr>
<tr>
<td>99</td>
<td>CA</td>
</tr>
<tr>
<td>98</td>
<td>AZ</td>
</tr>
</tbody>
</table>

Union?

Executive Decision

-> Use “SUM” option for bag unions
-> Some rules cannot be used for bags

Rules: Project

Let: X = set of attributes
Y = set of attributes
XY = X U Y

\pi_{xy}(R) =
Rules: Project

Let: X = set of attributes
 Y = set of attributes
 $XY = X \cup Y$

$$\pi_{xy}(R) = \pi_x [\pi_y (R)]$$

Rules: Project

Let: X = set of attributes
 Y = set of attributes
 $XY = X \cup Y$

$$\pi_{xy}(R) = \pi_x [\pi_y (R)]$$

Rules: $\sigma + \bowtie$ combined

Let p = predicate with only R attribs
 q = predicate with only S attribs
 m = predicate with only R,S attribs

$$\sigma_p (R \bowtie S) =$$
$$\sigma_q (R \bowtie S) =$$

Rules: $\sigma + \bowtie$ combined

Let p = predicate with only R attribs
 q = predicate with only S attribs
 m = predicate with only R,S attribs

$$\sigma_p (R \bowtie S) = [\sigma_p (R)] \bowtie S$$
$$\sigma_q (R \bowtie S) = R \bowtie [\sigma_q (S)]$$

Rules: $\sigma + \bowtie$ combined (continued)

Some Rules can be Derived:

$$\sigma_{paq} (R \bowtie S) =$$
$$\sigma_{paqam} (R \bowtie S) =$$
$$\sigma_{pavq} (R \bowtie S) =$$

Rules: $\sigma + \bowtie$ combined (continued)

Do one:

$$\sigma_{paq} (R \bowtie S) = [\sigma_p (R)] \bowtie [\sigma_q (S)]$$
$$\sigma_{paqam} (R \bowtie S) =$$
 $$\omega_m [(\sigma_p R) \bowtie (\sigma_q S)]$$
$$\sigma_{pavq} (R \bowtie S) =$$
 $$[(\sigma_p R) \bowtie S] \cup [R \bowtie (\sigma_q S)]$$
Derivation for first one:

$$\sigma_{p \land q} (R \bowtie S) =$$
$$\sigma_p [\sigma_q (R \bowtie S)] =$$
$$\sigma_p [R \bowtie \sigma_q (S)] =$$
$$[\sigma_p (R)] \bowtie [\sigma_q (S)]$$

Rules: \(\pi, \sigma\) combined

Let \(x\) = subset of \(R\) attributes
\(z\) = attributes in predicate \(P\)
(subset of \(R\) attributes)

$$\pi_x [\sigma_p (R)] = \{\sigma_p [\pi_x (R)]\}$$

Rules: \(\pi, \bowtie\) combined

Let \(x\) = subset of \(R\) attributes
\(y\) = subset of \(S\) attributes
\(z\) = intersection of \(R, S\) attributes

$$\pi_{xy} (R \bowtie S) =$$
$$\pi_{xy} [\pi_{xz} (R)] \bowtie [\pi_{yz} (S)]$$
\[\pi_{xy} \{ \sigma_p (R \bowtie S) \} = \pi_{xy} \{ \sigma_p (R \bowtie S) \} = \pi_{xy} \{ \sigma_p [\pi_{xz'} (R) \bowtie \pi_{yz'} (S)] \} \]

\[z' = z \cup \{ \text{attributes used in } P \} \]

Rules for \(\sigma, \pi \) combined with \(X \)

similar...

e.g., \(\sigma_p (R \times S) = ? \)

Rules \(\sigma, U \) combined:

\[\sigma_p (R \cup S) = \sigma_p (R) \cup \sigma_p (S) \]
\[\sigma_p (R - S) = \sigma_p (R) - S = \sigma_p (R) - \sigma_p (S) \]

Which are “good” transformations?

- \(\sigma_{p1 \bowtie p2} (R) \rightarrow \sigma_{p1} [\sigma_{p2} (R)] \)
- \(\sigma_p (R \bowtie S) \rightarrow [\sigma_p (R)] \bowtie S \)
- \(R \bowtie S \rightarrow S \bowtie R \)
- \(\pi_x [\sigma_p (R)] \rightarrow \pi_x \{ \sigma_p [\pi_{xz} (R)] \} \)

Conventional wisdom:
do projects early

Example: \(R(A,B,C,D,E) \)
\(x=\{E\} \)
\(P: \{A=3\} \wedge \{B=\text{"cat"}\} \)

\[\pi_x \{ \sigma_p (R) \} \text{ vs. } \pi_x \{ \sigma_p [\pi_{ABE} (R)] \} \]
But What if we have A, B indexes?

B = “cat”
A = 3

Intersect pointers to get pointers to matching tuples
e.g., using bitmaps

Bottom line:

- No transformation is always good
- Usually good: early selections
 - Exception: expensive selection conditions
 - E.g., UDFs

More transformations

- Eliminate common sub-expressions
- Detect constant expressions
- Other operations: duplicate elimination

Pushing Selections

- Idea:
 - Join conditions equate attributes
 - For parts of algebra tree (scope) store which attributes have to be the same
 - Called Equivalence classes
- Example: R(a,b), S(c,d)

\[
\sigma_{b=3}(R \bowtie_{b=c} S) = \sigma_{b=3}(R) \bowtie_{b=c} \sigma_{b=3}(S)
\]

Outer-Joins

- Not commutative
 - R × S ≠ S × R
- p – condition over attributes in A
- A list of attributes from R
 \[\alpha_p (R \bowtie_{A=B} S) \equiv \sigma_p (R) \bowtie_{A=B} S \]

 Not \[\alpha_p (R \bowtie_{A=B} S) \equiv R \bowtie_{A=B} \sigma_p (S) \]

Summary Equivalences

- Associativity:
 \[(R \bowtie S) \bowtie T \equiv R \bowtie (S \bowtie T)\]
- Commutativity:
 \[R \bowtie S \equiv S \bowtie R\]
- Distributivity:
 \[(R \bowtie S) \bowtie T \equiv (R \bowtie T) \bowtie (S \bowtie T)\]
- Difference between Set and Bag Equivalences
 - Only some equivalence are useful
Outline - Query Processing

• Relational algebra level
 – transformations
 – good transformations
• Detailed query plan level
 – estimate costs
 – generate and compare plans

Estimating result size

• Keep statistics for relation R
 – \(T(R) \) : # tuples in R
 – \(S(R) \) : # of bytes in each R tuple
 – \(B(R) \) : # of blocks to hold all R tuples
 – \(V(R, A) \) : # distinct values in R
 for attribute A

Example

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
</tr>
</tbody>
</table>

\(A \): 20 byte string
\(B \): 4 byte integer
\(C \): 8 byte date
\(D \): 5 byte string

Size estimates for \(W = R_1 \times R_2 \)

\[
T(W) = T(R_1) \times T(R_2) + S(R_1) + S(R_2)
\]

\[
S(W) = S(R_1) + S(R_2)
\]

\(T(R) = 5 \quad S(R) = 37 \)

\[
V(R,A) = 3 \quad V(R,C) = 5
\]

\[
V(R,B) = 1 \quad V(R,D) = 4
\]
Size estimates for $W = R_1 \times R_2$

$T(W) = T(R_1) \times T(R_2)$

$S(W) = S(R_1) + S(R_2)$

Size estimate for $W = \sigma_{A=a}(R)$

$S(W) = S(R)$

$T(W) = ?$

Example

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

$V(R,A)=3$

$V(R,B)=1$

$V(R,C)=5$

$V(R,D)=4$

$W = \sigma_{Z=val}(R)$ \quad T(W) = \frac{T(R)}{V(R,Z)}$

Example

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

$V(R,A)=3$

$V(R,B)=1$

$V(R,C)=5$

$V(R,D)=4$

Assumption:

Values in select expression $Z = val$ are uniformly distributed over possible $V(R,Z)$ values.

Alternate Assumption:

Values in select expression $Z = val$ are uniformly distributed over domain with $DOM(R,Z)$ values.
Example

\begin{tabular}{|c|c|c|c|}
\hline
R & A & B & C & D \\
\hline
cat & 1 & 10 & a & \\
cat & 1 & 20 & b & \\
dog & 1 & 30 & a & \\
dog & 1 & 40 & c & \\
bat & 1 & 50 & d & \\
\hline
\end{tabular}

Alternate assumption

\begin{align*}
V(R,A) &= 3 & \text{DOM}(R,A) &= 10 \\
V(R,B) &= 1 & \text{DOM}(R,B) &= 10 \\
V(R,C) &= 5 & \text{DOM}(R,C) &= 10 \\
V(R,D) &= 4 & \text{DOM}(R,D) &= 10 \\
\end{align*}

Example

\begin{tabular}{|c|c|c|c|}
\hline
R & A & B & C & D \\
\hline
cat & 1 & 10 & a & \\
cat & 1 & 20 & b & \\
dog & 1 & 30 & a & \\
dog & 1 & 40 & c & \\
bat & 1 & 50 & d & \\
\hline
\end{tabular}

Alternate assumption

\begin{align*}
V(R,A) &= 3 & \text{DOM}(R,A) &= 10 \\
V(R,B) &= 1 & \text{DOM}(R,B) &= 10 \\
V(R,C) &= 5 & \text{DOM}(R,C) &= 10 \\
V(R,D) &= 4 & \text{DOM}(R,D) &= 10 \\
\end{align*}

\[W = \sigma_{z=val}(R) \quad T(W) = ? \]

\[C=val \Rightarrow T(W) = (1/10)1 + (1/10)1 + ... = (5/10) = 0.5 \]

\[B=val \Rightarrow T(W) = (1/10)5 + 0 + 0 = 0.5 \]

\[A=val \Rightarrow T(W) = (1/10)2 + (1/10)2 + (1/10)1 = 0.5 \]

Selection cardinality

\[SC(R,A) = \text{average} \# \text{ records that satisfy equality condition on } R.A \]

\[SC(R,A) = \frac{T(R)}{V(R,A)} \]

What about \(W = \sigma_{z \geq \text{val}}(R) \) ?

\[T(W) = ? \]

What about \(W = \sigma_{z \leq \text{val}}(R) \) ?

\[T(W) = ? \]

• Solution # 1:

\[T(W) = T(R)/2 \]
What about \(W = \sigma_{z \geq \text{val}}(R) \) ?

\[T(W) = ? \]

- **Solution # 1:**
 \[T(W) = T(R)/2 \]

- **Solution # 2:**
 \[T(W) = T(R)/3 \]

- **Solution # 3:** Estimate values in range

Example

- **Table:**

<table>
<thead>
<tr>
<th>R</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>1</td>
</tr>
<tr>
<td>V(R,Z)</td>
<td>10</td>
</tr>
<tr>
<td>Max</td>
<td>20</td>
</tr>
</tbody>
</table>

\[W = \sigma_{z \geq 15}(R) \]

\[f = \frac{20-15+1}{20-1+1} = \frac{6}{20} \]

\[T(W) = f \times T(R) \]

Equivalent:

\[f \times V(R,Z) = \text{fraction of distinct values} \]

\[T(W) = [f \times V(Z,R)] \times T(R) = f \times T(R) \]

\[V(Z,R) \]

Size estimate for \(W = R_1 \bowtie R_2 \)

Let \(x \) = attributes of \(R_1 \)
Let \(y \) = attributes of \(R_2 \)

Case 1

\[X \cap Y = \emptyset \]

Same as \(R_1 \times R_2 \)
Case 2 \[W = R_1 \bowtie R_2 \quad X \cap Y = A \]

- **R1** | A | B | C
- **R2** | A | D

Assumption:
- \(V(R_1, A) \leq V(R_2, A) \Rightarrow \) Every A value in R1 is in R2
- \(V(R_2, A) \leq V(R_1, A) \Rightarrow \) Every A value in R2 is in R1

Computing \(T(W) \) when \(V(R_1, A) \leq V(R_2, A) \)

- Take 1 tuple
- Match

1 tuple matches with \(\frac{T(R_2)}{V(R_2, A)} \) tuples...

So

\[
T(W) = \frac{T(R_2) \times T(R_1)}{V(R_2, A)}
\]

In general

- \(W = R_1 \bowtie R_2 \)

\[
T(W) = \frac{T(R_2) T(R_1)}{\max\{ V(R_1, A), V(R_2, A) \}}
\]

[A is common attribute]
Case 2 with alternate assumption

Values uniformly distributed over domain

\[
\begin{align*}
R1 & \begin{array}{ccc}
A & B & C \\
\end{array} \\
R2 & \begin{array}{ccc}
A & D \\
\end{array}
\end{align*}
\]

This tuple matches \(T(R2)/\text{DOM}(R2,A) \) so

\[
T(W) = \frac{T(R2) T(R1)}{\text{DOM}(R2, A)} = \frac{T(R2) T(R1)}{\text{DOM}(R1, A)}
\]

In all cases:

\[
S(W) = S(R1) + S(R2) - S(\text{size of attribute } A)
\]

Using similar ideas, we can estimate sizes of:

- \(\Pi_{AB}(R) \)
- \(\sigma_{A=a \land B=b}(R) \)
- Union, intersection, diff,

Note: for complex expressions, need intermediate \(T, S, V \) results.

E.g. \(W = [\sigma_{A=a}(R1)] \Join R2 \)

Treat as relation \(U \)

\[
T(U) = \frac{T(R1)}{V(R1,A)}
\]

\[
S(U) = S(R1)
\]

Also need \(V(U, *) \)!!

Example

\[
\begin{array}{cccc}
R1 & A & B & C & D \\
\hline
\text{cat} & 1 & 10 & 10 & \text{V(R1,A)=3} \\
\text{cat} & 1 & 20 & 20 & \text{V(R1,B)=1} \\
\text{dog} & 1 & 30 & 10 & \text{V(R1,C)=5} \\
\text{dog} & 1 & 40 & 30 & \text{V(R1,D)=3} \\
\text{bat} & 1 & 50 & 10 & \text{U = } \sigma_{A=a}(R1)
\end{array}
\]

To estimate \(V_s \)

E.g., \(U = \sigma_{A=a}(R1) \)

Say \(R1 \) has attribs \(A, B, C, D \)

\[
\begin{align*}
V(U, A) &= \\
V(U, B) &= \\
V(U, C) &= \\
V(U, D) &=
\end{align*}
\]
Example:

\[\begin{array}{c|cccc}
 & A & B & C & D \\
R1 & cat & 1 & 10 & 10 \\
 & cat & 1 & 20 & 20 \\
 & dog & 1 & 30 & 10 \\
 & dog & 1 & 40 & 30 \\
 & bat & 1 & 50 & 10 \\
\end{array}\]

\[\begin{array}{c}
V(R1,A)=3 \\
V(R1,B)=1 \\
V(R1,C)=5 \\
V(R1,D)=3 \\
\end{array}\]

Possible Guess:

\[U = \sigma_{A=a}(R1)\]

\[\begin{array}{c}
V(U,A) = 1 \\
V(U,B) = V(R,B) \\
\end{array}\]

\[V(D,U) \text{... somewhere in between}\]

For Joins:

\[U = R1(A,B) \bowtie R2(A,C)\]

\[\begin{array}{c}
V(U,A) = \min\{V(R1,A), V(R2,A)\} \\
V(U,B) = V(R1,B) \\
V(U,C) = V(R2,C) \\
\end{array}\]

Example:

\[Z = R1(A,B) \bowtie R2(B,C) \bowtie R3(C,D)\]

\[\begin{array}{c}
R1 & T(R1) = 1000 & V(R1,A)=50 & V(R1,B)=100 \\
R2 & T(R2) = 2000 & V(R2,B)=200 & V(R2,C)=300 \\
R3 & T(R3) = 3000 & V(R3,C)=90 & V(R3,D)=500 \\
\end{array}\]

Partial Result:

\[U = R1 \bowtie R2\]

\[\begin{array}{c}
T(U) = \frac{1000 \times 2000}{200} & V(U,A) = 50 \\
 & V(U,B) = 100 \\
 & V(U,C) = 300 \\
\end{array}\]

\[Z = U \bowtie R3\]

\[\begin{array}{c}
T(Z) = \frac{1000 \times 2000 \times 3000}{200 \times 300} & V(Z,A) = 50 \\
 & V(Z,B) = 100 \\
 & V(Z,C) = 90 \\
 & V(Z,D) = 500 \\
\end{array}\]
Approximating Distributions

- Summarize the distribution
 - Used to better estimate result sizes
 - Without the need to look at all the data

- Concerns
 - Error metric: How to measure preciseness
 - Memory consumption
 - Computational Complexity

Parameterized distribution
- E.g., gauss distribution
- Adapt parameters to fit data

Histograms
- Divide domain into ranges (buckets)
- Store the number of tuples per bucket
- Both need to be maintained

Maintaining Statistics

- Use separate command that triggers statistics collection
 - Postgres: ANALYZE
- During query processing
 - Overhead for queries
- Use Sampling?

Estimating Result Size using Histograms

\[\sigma_{A=val}(R) = ? \]

\[\frac{\#B}{|B|} \]
Join Size using Histograms

- $R \bowtie S$
- Use
 \[
 T(W) = \frac{T(R2) T(R1)}{\max\{V(R1,A), V(R2,A)\}}
 \]
- Apply for each bucket

Equi-width vs. Equi-depth

- Equi-width
 - All buckets contain the same number of values
 - Easy, but inaccurate
- Equi-depth (used by most DBMS)
 - All buckets contain the same number of tuples
 - Better accuracy, need to sort data to compute

Construct Equi-depth Histograms

- Sort input
- Determine size of buckets
 - #bucket / #tuples
- Example 3 buckets
 1, 5, 44, 6, 10, 12, 3, 6, 7
 1, 3, 5, 6, 6, 7, 10, 12, 44
 [1–5] [6–8] [9–44]

Advanced Techniques

- Wavelets
- Approximate Histograms
- Sampling Techniques
- Compressed Histograms
Summary

- Estimating size of results is an “art”

- Don’t forget: Statistics must be kept up to date... (cost?)

Outline

- Estimating cost of query plan
 - Estimating size of results — done!
 - Estimating # of IOs — next...
 - Operator Implementations

- Generate and compare plans