Hi, I am Boris Glavic, Assistant Professor in CS

Hi, I am Boris Glavic, Assistant Professor in CS

Hi, I am Boris Glavic, Assistant Professor in CS

Hi, I am Boris Glavic, Assistant Professor in CS

Hi, I am Boris Glavic, Assistant Professor in CS

Hi, I am Boris Glavic, Assistant Professor in CS

CS425 – Fall 2017
Boris Glavic
Course Information

Modified from:
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on reuse.

Hi, I am Boris Glavic,
Assistant Professor in CS

I am a database guy!

I will teach you:
database stuff!

Why are Databases Important?

- What do Databases do?
 1. Provide persistent storage
 2. Efficient declarative access to data → Querying
 3. Protection from hardware/software failures
 4. Safe concurrent access to data

What happens if you do not pay attention?

Why are Databases Important?

- What do Databases do?
 1. Provide persistent storage
 2. Efficient declarative access to data → Querying
 3. Protection from hardware/software failures
 4. Safe concurrent access to data

What happens if you do not pay attention?
Who uses Databases?

- Most big software systems involve DBs!
 - Business Intelligence ⇒ e.g., IBM Cognos
 - Web-based systems
- You! (desktop software)
 - Your music player ⇒ e.g., Amarok
 - Your Web Content Management System
 - Your email client
 - Half of the apps on your phone
- Every big company
 - Banks
 - Insurance
 - Government
 - Google, ...

Who Produces Databases?

- Traditional relational database systems is big business
 - IBM ⇒ DB2
 - Oracle ⇒ Oracle
 - Microsoft ⇒ SQLServer
 - Open Source ⇒ MySQL, Postgres, SQLite, ...
- Emerging distributed systems with DB characteristics and Big Data
 - Cloud storage and Key-value stores ⇒ Amazon S3, Google Big Table, ...
 - Big Data Analytics ⇒ Hadoop, Google Map & Reduce, ...
 - SQL on Distributed Platforms ⇒ Hive, Tenzing, ...

Why are Database Interesting (for Students)?

- The pragmatic perspective
 - Background in databases makes you competitive in the job market
- Systems and theoretical research
 - Database research has a strong systems aspect
 - Hacking complex and large systems
 - Low-level optimization
 - Exploit modern hardware
 - Databases have a strong theoretical foundation
 - Complexity of query answering
 - Expressiveness of query languages
 - Concurrency theory
- Connection to many CS fields
 - Distributed systems
 - Getting more and more important
 - Compilers
 - Modeling
 - AI and machine learning
 - Data mining
 - Operating and file systems
 - Hardware
 - Hardware-software co-design

Why are Database Interesting (for Students)?

- Course Info
 - Course Webpage: http://cs.iit.edu/~cs425
 - Used for announcements
 - Use it to discuss with me, TA, and fellow students
 - Git Repos: https://github.com/IITDBGroup/cs425
- Faculty
 - Boris Glavic (http://cs.iit.edu/~glavic)
 - Email: bglavic@iit.edu
 - Phone: 312.567.5205
 - Office: Stuart Building, room 226C
 - Office Hours: Mondays, 12pm-1pm (and by appointment)
Workload and Grading

- **Exams**
 - Midterm (25%)
 - Final (35%)
- **Homework Assignments** (preparation for exams! – 20%
 - HW1 (Relational algebra)
 - HW2 (SQL)
 - HW3 (Database modeling)
- **Course Project** (20%)
 - In groups of 3 students
 - Given an example application (e.g., ticketing system)
 - Develop a database model
 - Derive a database schema from the model
 - Implement the application accessing the database

Course Objectives

- Understand the underlying ideas of database systems
- Understand the relational data model
- Be able to write and understand SQL queries and data definition statements
- Understand relational algebra and its connection to SQL
- Understand how to write programs that access a database server
- Understand the ER model used in database design
- Understand normalization of database schemata
- Be able to create a database design from a requirement analysis for a specific domain
- Know basic index structures and understand their importance
- Have a basic understanding of relational database concepts such as concurrency control, recovery, query processing, and access control

PostgreSQL

- In this course we will use PostgreSQL, a powerful open source database management system
 - https://www.postgresql.org/

Course Project

- Forming groups
 - Your responsibility!
 - Inform me + TA
 - Deadline: TBA
- Git repositories
 - Create an account on Bitbucket.org (https://bitbucket.org/) using your IIT email
 - We will create a repository for each student
 - Use it to exchange code with your fellow group members
 - The project has to be submitted via the group repository
- Timeline:
 - Brainstorming on application (by Sep 11th)
 - Design database model (by Nov 12th)
 - Derive relational model (by Nov 25th)
 - Implement application (by end of the semester)

Fraud and Late Assignments

- All work has to be original!
 - Cheating = 0 points for assignment/exam
 - Possibly F in course and further administrative sanctions
 - Every dishonesty will be reported to office of academic honesty
- Late policy:
 - -20% per day
 - No exceptions!
- Course projects:
 - Every student has to contribute in every phase of the project!
 - Don’t let others freeload on your hard work!
 - Inform me or TA immediately

Reading and Prerequisites

- **Textbook**: Silberschatz, Korth and Sudarshan
 - Database System Concepts, 6th edition
 - McGraw Hill
 - publication date: 2006,
- Prerequisites:
 - CS 331 or CS401 or CS403
I expect you to learn by yourself how to effectively use the following technologies:

- **Git** – a version control system
 - You have to submit your project through git and should also use git to collaborate with your project group members.
 - We provide some useful examples/scripts through git.
- **Docker** – a virtualization platform (think VMs, but more lightweight)
 - The easiest way to get postgreSQL running is by using the docker image we provide.
- **PostgreSQL**
 - I expect you to learn how to start/stop/configure a postgres server and how to connect to a running postgres server.

Help is on the way!

- https://github.com/IITDBGroup/cs425

PostgreSQL Overview

- **Client/Server Architecture**
 - Postgres Cluster
 - A directory on the machine running the server that stores data and configuration files.
 - Postgres Server
 - A postgres server handles the data of a single cluster.
 - Clients connect to the server via network (TCP/IP).
 - Send commands and receive results.
 - Clients
 - GUI clients: e.g., PGAdmin (https://www.pgadmin.org/)
 - CLI clients: e.g., the built-in `psql` tool.
 - Programming Language Libraries
 - Java: JDBC (https://jdbc.postgresql.org/)
 - Python: `psycopg` (http://initd.org/psycopg/)
 - ...

Get Your Hands Dirty

- **Get a working version of the PostgreSQL server**
 - Your options
 - **Install locally**
 - Installer packages for windows exist.
 - Most Linux distributions have a `postgres` package.
 - Installation from source is not that hard.
 - **Get our docker image (docker pull iitdbgroup/cs425)**
 - It’s an extension of the official postgreSQL image which loads our running example university database.

- **Validate your installation**
 - Create a database cluster (the directory PostgreSQL uses to store data).
 - Check that you can start/stop the server.
 - Check that you can connect to the running server using `psql` or any other client.

- https://github.com/IITDBGroup/cs425

Jupyter notebook

- **Jupyter notebooks**
 - Notebooks mix documentation and code.
 - Over the course of the class I will put SQL examples we discuss in class into a notebook that is shared through the class repository:

- **Find the classnotebook**
 - https://github.com/IITDBGroup/cs425

Outline

- Introduction
- Relational Data Model
- Formal Relational Languages (relational algebra)
- SQL
- Database Design
- Transaction Processing, Recovery, and Concurrency Control
- Storage and File Structures
- Indexing and Hashing
- Query Processing and Optimization