Test Questions

Nov 26th

CS425 - Database Organization
Part 1.1 Normalization and Functional Dependencies (Total: 0 Points)

Consider the following relation \(R(A, B, C, D) \) and functional dependencies \(F \) that hold over this relation.

\[
F = \begin{align*}
A & \rightarrow B, D \\
C, D & \rightarrow B \\
C & \rightarrow D \\
B & \rightarrow D
\end{align*}
\]

Question 1.1.1 (0 Points)
Determine all candidate keys of \(R \).

Question 1.1.2 (0 Points)
Compute the attribute cover of \(X = \{C, B\} \) according to \(F \).
Question 1.1.3 (0 Points)

Compute the canonical cover of F. Show each step of the generation according to the algorithm shown in class.

Question 1.1.4 (0 Points)

In which normal form is relation R (recall that a relation can be in multiple normal forms).

- [] 2NF
- [] 3NF
- [] BCNF
Question 1.1.5 (0 Points)

If R is not in 3NF then decompose it.

Question 1.1.6 (0 Points)

If you have composed R in the previous step then determine the candidate keys for each relation created during the decomposition.
Part 1.2 Concurrency Control (Total: 0 Points)

Question 1.2.1 (1 Point)

For each of the following schedules determine which properties this schedule has. E.g., a schedule may be recoverable and cascade-less (strict) or conflict-serializable. Consider the following notation for operations of transactions:

- $w_1(A)$ transaction 1 wrote item A
- $r_1(A)$ transaction 1 read item A
- c_1 transaction 1 commits
- a_1 transaction 1 aborts

\[
S_1 = r_1(A), w_2(A), r_1(B), c_1, w_3(B), r_3(B), w_3(A), c_3, r_2(C), c_2
\]
\[
S_2 = r_1(A), w_2(B), r_1(B), c_1, c_2
\]
\[
S_3 = r_1(A), w_2(B), c_2, r_1(B), w_1(B), c_1
\]
\[
S_4 = w_1(A), w_2(A), c_2, w_1(A), c_1
\]

- S_1 is recoverable
- S_1 is cascade-less
- S_1 is conflict-serializable
- S_2 is recoverable
- S_2 is cascade-less
- S_2 is conflict-serializable
- S_3 is recoverable
- S_3 is cascade-less
- S_3 is conflict-serializable
- S_4 is recoverable
- S_4 is cascade-less
- S_4 is conflict-serializable
Question 1.2.2 Create a Strict Schedule (8 Points)

Consider the following set of transactions:

\[T_1 = r_1(A), w_1(A), c_1 \]
\[T_2 = r_2(B), r_2(A), w_2(B), w_2(A), c_2 \]
\[T_3 = r_3(B), w_3(B) \]

1. Write a cascade-less history involving these three transactions.

Question 1.2.3 (1 Point)

Check all correct statements below

- In a cascade-less schedule if a transaction \(T_j \) read a data item written by transaction \(T_i \) then the commit of \(T_i \) has to be before this read operation of \(T_j \)
- A recoverable schedule is also cascade-less
- Not all conflict-serializable schedules are also 2PL
- Under 2PL a transaction is split into three phases, a first growing phase, a shrinking phase, and a second growing phase
- Every SS2PL schedule is also 2PL