Instructor: Boris Glavic, Stuart Building 226 C, Phone: 312 567 5205, Email: bglavic@iit.edu

Office Hours: Thursday, 1:00 pm - 2:00 pm

Instructor Webpage: www.cs.iit.edu/~glavic/

Course Webpage: www.cs.iit.edu/~cs425/

Course Description:
Databases management systems are a crucial part of most large-scale industry and open-source systems. This course familiarizes students with important concepts of database systems and design. We will learn how to design a database using the Entity-Relationship model, how query and modify a database using the declarative SQL language, and study APIs for write application programs that use a database system to persist data. Furthermore, the course given an overview of important database systems techniques such as indexing, query optimization and execution, concurrency control, and recovery.

Students will develop a database application as a course project. Starting from assessing the application requirements, over designing the database schema, and implementing the application.

Course Material:
The following text book is required reading material for the course.

Other good introductory books on databases are:

The slides will be made available on the course webpage.

Prerequisites:

- *Courses:* One of CS 331, CS 401, or CS 403
Students with Disabilities
Reasonable accommodations will be made for students with documented disabilities. In order to receive accommodations, students must obtain a letter of accommodation from the Center for Disability Resources. The Center for Disability Resources (CDR) is located in 3424 S. State St., room 1C3-2 (on the first floor), telephone 312 567.5744 or disabilities@iit.edu.

Course Details:
The following topics will be covered in the course:

- The relational data model
- Database modelling and design
 - The Entity-Relationship (ER) model
 - Database design and normalization
- SQL
 - Data-definition language (DDL)
 - Data-manipulation language (DML)
- Formal relational languages
 - Relational algebra
 - Tuple and domain calculus
- Database Architecture
- Database System Concepts
 - Transactions processing and concurrency control
 - Recovery
 - Indexing
 - Query processing and optimization
 - Security and access control
Workload and Grading Policies:

Course Project:
There will be a semester long practical project. This will be an implementation of an application on top of a database. The application will use the database to persist and query its data. Students will develop the project in groups of up to three students.

Midterm and Final Exam:
There will be a midterm and final exam covering the topics of the course.

Homework:
There will be several homework assignments during the course. The main objective of these assignments is for you and the instructor to evaluate how well you internalized the topics covered in the course.

Grading Policies:

See the course webpage for policies regarding late assignments and plagiarism.

- Course Project: 20%
- Midterm Exam: 25%
- Final Exam: 35%
- Homework Assignments: 20%
Course Objectives:
After attending the course students should:

- Understand the underlying ideas of database systems
- Understand the relational data model
- Be able to write and understand SQL queries and data definition statements
- Understand relational algebra and its connection to SQL
- Understand how to write programs that access a database server
- Understand the ER model used in database design
- Understand normalization of database schemata
- Be able to create a database design from a requirement analysis for a specific domain
- Know basic index structures and understand their importance
- Have a basic understanding of relational database concepts such as concurrency control, recovery, query optimization, and access control