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Summary

Conflict-free channel assignment is a classic and fundamental problem in wireless ad hoc networks. It seeks an

assignment of the fewest channels to a given set of radio nodes with specified transmission ranges without causing

either primary collision or secondary collision. It is NP-hard even when all nodes are located in a plane and have

the same transmission radii. We observe that a prior analysis of the approximation ratio of a classic greedy

heuristic, FIRST-FIT in smallest-last ordering, is erroneous. In this paper, we provide a rigorous and tighter

analysis of this heuristic and other greedy FIRST-FIT heuristics. We obtain an upper bound of 13 on the

approximation ratios of both FIRST-FIT in smallest-last ordering and FIRST-FIT in radius-decreasing ordering.

Such upper bound can be reduced to 12 if all nodes have quasi-uniform transmission radii. When all nodes have

equal transmission radii, we obtain an upper bound of 7 on the approximation ratios of FIRST-FIT in smallest-last

ordering, FIRST-FIT in distance-increasing ordering, and FIRST-FIT in lexicographic ordering. In addition, for

nodes with equal transmission radii, we present a spatial divide-and-conquer heuristic with approximation ratios of

12. All these heuristics, except FIRST-FIT in smallest-last ordering, are modified to heuristics for maximum

independent set with the same approximation ratios. Copyright # 2006 John Wiley & Sons, Ltd.
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1. Introduction

A wireless ad hoc network is a collection of radio

nodes (transceivers) located in a geographic region.

Each node is equipped with an omnidirectional an-

tenna and has limited transmission power. A commu-

nication session is established either through a

single-hop radio transmission if the communication

parties are close enough, or through relaying by

intermediate nodes otherwise. A channel assignment

to the nodes in a wireless ad hoc network should avoid

two collisions. The primary collision occurs when a
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node simultaneously transmits and receives signals

over the same channel. The secondary collision occurs

when a node simultaneously receives more than one-

signals over the same channel. Thus, to prevent the

primary collision, two nodes can be assigned the same

channel if and only if neither of them is within the

transmission range of the other. Similarly, to prevent

the secondary collision, two nodes can be assigned the

same channel if and only if no other node is located in

the intersection of their transmission ranges.

The conflict-free channel assignment problem seeks

an assignment of the fewest channels to a given set of

radio nodes with specified transmission ranges with-

out any primary collision or secondary collision. It is a

classic and fundamental problem in wireless ad hoc

networks [1–7]. It is NP-hard even when all nodes are

located in a plane and have the same transmission

radii [8]. Therefore, only polynomial-time approxi-

mation algorithms can be expected. The performance

of a polynomial-time approximation algorithm is

measured by its approximation ratio, which is the

supreme, over all instances, of the ratio of the number

of channels output by this algorithm to the minimum

number of channels.

The conflict-free channel assignment problem is

equivalent to the minimum vertex coloring of a

special class of geometric graphs. Let V be the set

of given radio nodes, and rv be the specified transmis-

sion radius of node v for each v 2 V . For any pair of

nodes u and v, we use juvj to denote their Euclidean

distance. Then a geometric graph over V can be

obtained by creating an edge between each pair of

nodes ðu; vÞ satisfying that either juvj � maxfru; rvg
or there is a node w 2 V n fu; vg such that juwj � ru
and jvwj � rv. The resulting graph is referred to as the

interference graph. Then any proper vertex coloring

of the interference graph gives rise to a valid channel

assignment for the node scheduling of V , and vice

versa. When all nodes in V have the same transmis-

sion radii, then the interference graph is the square
z
of

the unit-disk graph [9] over V in which there is an

edge between a pair of nodes if and only if they are in

the transmission of each other. In this case, the

conflict-free channel assignment problem happens to

be the same as the minimum distance-2 vertex color-

ing§ [10] of unit-disk graphs. However, when the

nodes in V have disparate transmission radii, the

interference graph may be not the square of any graph.

Indeed, for the instance V shown in Figure 1, its

interference graph is a chain, which is not a square

of any graph. Therefore, the conflict-free channel

assignment problem is in general different from the

distance-2 vertex coloring.

First-fit coloring is a well-known greedy method for

vertex coloring: Given a vertex ordering, assign the

least possible color to the vertices sequentially.

The number of colors can be bound in terms of the

inductivity of the vertex ordering, which is the least

integer q such that each vertex is adjacent to at most q

prior vertices. Obviously, the vertex coloring induced

by a vertex ordering of inductivity q uses at most

qþ 1 colors. This suggests the use of a vertex order-

ing of small inductivity to induce a vertex coloring.

The following vertex orderings of the interference

graph will be used in this paper:

1. Smallest-last ordering: This vertex ordering has the

least inductivity and can be found in polynomial

time using a greedy algorithm given by Matula and

Beck [11].

2. Radius-decreasing ordering: The vertices are

sorted in the decreasing order of their transmission

radii.

3. Distance-increasing ordering: The vertices are

sorted in the increasing order of their Euclidean

distances from an arbitrary fixed reference point.

4. Lexicographic ordering: The vertices are sorted in

the lexicographic order of their coordinates.

Corresponding to the above four vertex orderings,

there are four FIRST-FIT heuristics: FIRST-FIT in

smallest-last ordering, FIRST-FIT in radius-decreasing

ordering, FIRST-FIT in distance-increasing ordering,

and FIRST-FIT in lexicographic ordering. Sen and

Malesinska [6] made the first and also the only attempt

to prove an upper bound of 14 on the approximation

ratio of FIRST-FIT in smallest-last ordering in the

z
The square of a graph H is the graph H2 obtained by
creating an edge between each pair of vertices of H whose
graph distance in H is at most two.
§A distance-2 vertex coloring of a graph H is a proper vertex
coloring of H2, the square graph of H.

Fig. 1. The interference graph may be not the square of
any graph.
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interference graph of a set of radio nodes lying in a

plane. Unfortunately, their proof is quite erroneous and

does not allow simple fix. In this paper, we assume that

all radio nodes lie in a plane as in all prior works. We

provide rigorous analyses of the approximation ratios of

the four FIRST-FIT heuristics:

� The approximation ratios of both FIRST-FIT in

smallest-last ordering and FIRST-FIT in radius-

decreasing ordering are at most 13.

� If the ratio of the largest transmission radius to the

least transmission radius is no more than

1=2sinð360�
13

Þ � 1:076, a better upper bound of 12

is derived on the approximation ratios of FIRST-

FIT in smallest-last ordering and FIRST-FIT in

radius-decreasing ordering. This result is useful

when all nodes have the same nominal transmission

radii but may allow small drift.

� When all nodes have equal transmission radii, we

obtain an upper bound of 7 on the approximation

ratios of FIRST-FIT in smallest-last ordering,

FIRST-FIT in distance-increasing ordering, and

FIRST-FIT in lexicographic ordering.

For nodes with equal transmission radii, we propose

an additional spatial divide-and-conquer heuristic

called TILE coloring. TILE coloring has an approx-

imation ratio of 12, but is extremely simple in im-

plementation and especially suitable for distributed

implementation and dynamic implementation in a

mobile environment.

A problem closely related to the conflict-free chan-

nel assignment problem is the maximum-independent

set problem in the interference graphs. An indepen-

dent set of nodes in the interference graph can share

one common channel without causing any primary

collision or secondary collision. We modify all the

heuristics, except FIRST-FIT in smallest-last order-

ing, for the conflict-free channel assignment problem

to heuristics for the maximum-independent set pro-

blem with the same approximation ratios.

We introduce some symbols and notations that will

be used throughout this paper. The nodes in V are said

to have quasi-uniform transmission radii if the ratio of

maxv2V rv to minv2V rv is at most 1=2sinð360�
13

Þ, and
have uniform transmission radii is all rv’s are equal.

The interference graph of V is denoted by G. We use

�ðGÞ; !ðGÞ; �ðGÞ;�ðGÞ to denote its chromatic num-

ber, clique number, independence number, and max-

imum degree respectively of G. The inductivity of the

smallest-last ordering is also called the inductivity of

G and is denoted by ��ðGÞ.

The remaining of this paper is arranged as follows.

In Section 2, we prove two geometrical properties of

two intersecting circles, which are invariant to the

distance between their centers. These two properties

will be used in the analysis in the next section. In

Section 3, we explore topological properties of the

neighborhood of the node with the smallest transmis-

sion radius in the interference graph. Based on these

topological properties, in Section 4 we derive upper

bounds on the approximation ratios of all FIRST-FIT

greedy algorithms. In Section 5, we present the algo-

rithms TILE coloring for nodes with uniform trans-

mission radii and analyze its approximation ratios. In

Section 6, we modify all the heuristics, except FIRST-

FIT in smallest-last ordering, for the conflict-free

channel assignment problem to heuristics for the

maximum independent set problem with the same

approximation ratios. Finally, we conclude the paper

in Section 7.

2. Two Invariant Geometric Properties

In this section, we present two elementary geometrical

properties of two intersecting circles, which are in-

variant to the distance between their centers. We first

present the ‘equilateral triangle property.’

Lemma 1 [Equilateral Triangle Property]. Con-

sider two unit circles C1 and C2 centered at u1 and

u2, respectively with 1 � ju1u2j � 2 (see Figure 2).

Let v1 and v2 be their two intersection points. Let w1

and w2 be the two intersection points of C2 and the

line through u1 that has a 30
�-slope from the line u1u2

and hits the segment u2v1. Then both 4u2v2w1 and

4u2v1w2 are equilateral.

Proof. Consider the two isosceles triangles4u2v1v2
and 4u2w1w2. Their sides are one and their heights

are ju1u2j=2, and as such they are identical. Thus,

dv2u2w1v2u2w1 ¼ du1u2v2u1u2v2 þ du1u2w1u1u2w1 ¼ du1u2v2u1u2v2 þ du2w1w2u2w1w2 � 30�

¼ du1u2v2u1u2v2 þ du2v2v1u2v2v1 � 30� ¼ 90� � 30� ¼ 60�

Since dv1u2v2v1u2v2 ¼ dw1u2w2w1u2w2, we have dv2u2w1v2u2w1 ¼ dv1u2w2v1u2w2.

Therefore, both 4u2v2w1 and 4u2v1w2 are

equilateral. &
Now we present the second invariant property.

Lemma 2. Let C1 be a circle of radius 1 centered at

u1, and C2 be a circle of radius r � 1 centered at u2
with r � ju1u2j � r þ 1 (see Figure 3). Let v be an

intersection point of C1 and C2, and w be any point in
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C2 that lies inside the disk bounded by C1. Then

jvwj � 1 if du2u1wu2u1w � arcsinð1=2rÞ.

Proof. Since jvwj increases as wmoves away from v

along C2, we only need to consider the point w that

lies in the opposite side of u1u2 from v withdu2u1wu2u1w ¼ arcsinð1=2rÞ. Then in 4u1u2w, du1u2wu1u2w �du2u1wu2u1w � 30�. So du1wu2u1wu2 is obtuse. Let d denote

ju1u2j. By applying the law of sines to 4u1u2w,du1wu2u1wu2 ¼ 180� � arcsinðd=2r2Þ. Thus,

du1u2wu1u2w ¼ arcsin
d

2r2
� arcsin

1

2r

By applying the law of cosines to 4u1u2v,

du1u2vu1u2v ¼ arccos
d2 þ r2 � 1

2rd

Therefore,

du1u2wu1u2w ¼ arccos
d2 þ r2 � 1

2rd
þ arcsin

d

2r2
� arcsin

1

2r

We claim that du1u2wu1u2w is a decreasing function of d for

d � r. Indeed, the derivative of du1u2wu1u2w with respect to

d is

1=2r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

2r2

� �2q � ð1=2rÞ � ðr2 � 1Þ=2rd2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

2r
þ r2�1

2r
1
d

� �2q
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r4 � d2
p � 1� ðr2 � 1Þ=d2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 � d þ r2�1
d

� �2q
Since d � r,

4r2 � d þ r2 � 1

d

� �2
" #

� 4r4 � d2
� �

1� r2 � 1

d2

� �2

¼ 4r2 þ 4r4 1� r2 � 1

d2

� �2

�4 r2 � 1
� �

¼ 4� 4r4 1� r2 � 1

d2

� �2

� 4� 4r4 1� r2 � 1

r2

� �2

¼ 0

Thus, the derivative of du1u2wu1u2w with respect to d is

non-positive for d � r, and as such our claim is true.

Therefore, du1u2wu1u2w achieves its maximum at d ¼ r, so is

jvwj. However, when d ¼ r the point w coincides with

u1 and thus the maximum of jvwj is 1. &

3. Neighborhood of The Node with
The Smallest Transmission Radius

Two nodes are said to be adjacent if they are neighbors

in the interference graph. We distinguish two types of

neighbors. Let u be any node. A neighbor v of u is said

to be a primary neighbor of u if juvj � maxfru; rvg, and
a secondary neighbor of u otherwise. For simplicity, we

Fig. 2. Equilateral triangle property.

Fig. 3. jvwj � 1 if du2u1wu2u1w � arcsin 1
2r
.
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use Bv to denote the disk centered at v with radius rv,

and Cv to denote the boundary circle of Bv.

In the remaining of this section, we fix u to be the

node with minimum transmission radius. By proper

scaling, we assume that ru ¼ 1. We study the suffi-

cient conditions for two neighbors of u to be adjacent.

The next lemma shows that any two primary

neighbors of u are adjacent.

Lemma 3. Suppose that v and w are two primary

neighbors of u. Then v and w are adjacent. In addi-

tion, if dvuwvuw � 60� and juvj � maxfjuwj; 1g, then

v 2 Bw.

Proof. If v and w are not primary neighbors to each

other, then they must be secondary neighbors to each

other as u 2 Bv \ Bw. If dvuwvuw � 60� and juvj �
maxfjuwj; 1g, then in 4uvw,

vwj j � max uvj j; uwj jf g � max uwj j; 1f g � rw

Thus, v 2 Bw. &

The lemma below gives a sufficient condition for

two secondary neighbors of u to be adjacent.

Lemma 4. Suppose that v and w are two secondary

neighbors of u. Then v and w are adjacent ifdvuwvuw � 2 arcsin (¼) � 28:955�.

Proof. Let x and y be the points where Cu meets uv

and uw, respectively. We consider two complementary

cases. In the first case, either x 2 Bw or y 2 Bv. In the

second case, both y =2Bv and x =2Bw.

Case 1. Either x 2 Bw or y 2 Bv. We prove a

stronger result that v and w are adjacent ifdvuwvuw � 30�. Assume dvuwvuw � 30�. By symmetry we

assume y 2 Bv. Note that the lemma follows if

w 2 Bv, so we also assume that w =2 Bv. We further

consider two complementary subcases. In the first

subcase, jvyj � 1 (see Figure 4(a)). In the second

subcase, jvyj < 1 (see Figure 4(b)).

Subcase 1.1. jvyj � 1. We claim that v 2 Bw.

Indeed in 4uvy, cuvyuvy � cvuyvuy � 30�. Thus, dvywvyw ¼cvuyvuyþ cuvyuvy � 60�. In 4vwy, since jvyj � rv < jvwj,dvwyvwy < dvywvyw < 60� and as such dwvywvy > 60� > dvywvyw. So

jwyj > jwvj. As y 2 Bv, our claim follows.

Subcase 1.2. jvyj < 1. We claim that either v 2 Bw

or Bu \ Bw � Bv. Let z be the intersection point of the

two circles Cu and Cv that lies in the same side of uv as

w. We show that jwzj > jwvj. Since jwzj decreases and
jwvj increases while rotating uw away from uv, we can

restrict dvuwvuw to 30�. Since jwzj decreases and jwvj
remains unchanged while shrinking the disk Bv, we

can further restrict rv to 1 (see Figure 4(b)). Let w0 be
the intersection point of wy and Cv. Then jw0zj ¼ jw0vj
by Lemma 1. Consider 4uw0z and 4uw0v. As

juzj < juvj, duw0zuw0z < duw0vuw0v. Now consider 4ww0z and

4ww0v. As dww0zww0z > dww0vww0v , jwzj > jvvj. So if rw � jwzj,
then v 2 Bw; if rw < jwzj, then Bu \ Bw � Bv. There-

fore, our claim is true.

Case 2. Both y =2 Bv and x =2 Bw. By symmetry

we assume that juvj � juwj. We claim that v 2 Bw. Let

v0 be the point in the ray uv satisfying that jv0yj ¼ 1,

and v00 be the point in the ray uv satisfying that

juv00j ¼ juwj (see Figure 5). Then juv0j < juv00j, and v

lies on v0v00. So it is sufficient to show that both v0 2 Bw

and v00 2 Bw. The former follows if jv0wj � 1 and

follows from the same argument as in Subcase 1.1.

if jv0wj > 1. The latter is true as

v00wj j ¼ 2 uwj jsin dvuwvuw

2

¼ 2 1þ wyj jð Þsin dvuwvuw

2
� 1þ wyj j

2

� max 1; wyj jf g � rw

So our claim is true. &

Fig. 4. Case 1 in the proof of Lemma 4. (a) jvyj � 1; (b) jvyj < 1.
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The next lemma gives two sufficient conditions for

a primary neighbor of u and a secondary neighbors of

u to be adjacent.

Lemma 5. Suppose that v is a secondary neighbor of

u, and w is a primary neighbor of u. Then v and w are

adjacent if either dvuwvuw � 30� and juwj � 1 ordvuwvuw � arcsinð1=2rvÞ.
Proof. The lemma follows if w 2 Bv, so we assume

that w =2 Bv. Let y be the intersection point of Cu and

the ray uw. We consider two complementary cases. In

the first case, y =2 Bv. In the second case, y 2 Bv.

Case 1: y =2Bv (see Figure 6). We claim that

Bu \ Bv � Bw if dvuwvuw � 30�. Assume dvuwvuw � 30�. Let
v0 be any point in Bu \ Bv. Then dwuv0wuv0 � dvuwvuwþ

dvuv0vuv0 � 2dvuwvuw � 60�. As juv0j � 1, v0 2 BwbyLemma 3.

Thus, Bu \ Bv � Bw.

Case 2. y 2 Bv. Let u
0 be the intersection point of Cv

and uy. We further consider two subcases depending

on whether w lies either on uu0 or not. In the first

subcase, juwj � 1 (see Figure 7(a)). In the second

subcase, juwj < 1 (see Figure 7(b)).

Subcase 2.1. juwj � 1. Then w does not lie on uu0.
We claim that v 2 Bw if dvuwvuw � 30�. Assumedvuwvuw � 30�. Then in 4u0uv, since the edge uu0 is the
shortest one, duvu0uvu0 � duvu0uvu0 � 30�. Thus, dvu0wvu0w ¼ duvu0uvu0þdu0uvu0uv � 60�. In 4u0vw, as ju0vj ¼ rv < jvwj, du0wvu0wv <dvu0wvu0w � 60�. So in 4uvw, duvwuvw is obtuse. This implies

that juwj > jvwj. As rw � juwj, v 2 Bw.

Subcase 2.2. juwj < 1. Then w lies on uu0. We claim

that Bu \ Bv � Bw if dvuwvuw � arcsinð1=2rvÞ. Assumedvuwvuw � arcsinð1=2rvÞ. We will prove a stronger result

that every point in Bu \ Bv is at a distance of at most 1

from w. Since w lies on uu0, it is sufficient to show that

every point in Bu \ Bv is at a distance of at most 1

from u0. Let v0 be the point in Bu \ Bv such that ju0v0j is
the largest. Obviously, v0 is in the boundary of

Bu \ Bv. By applying the law of cosines to 4u0uv0

and 4u0vv0, we further observe that v0 must be the

intersection point of Cu and Cv that lies in the different

side of uv from u0. Since dvuwvuw � arcsinð1=2rvÞ,
ju0v0j � 1 by Lemma 2. Thus, every point in Bu \ Bv

is at a distance of at most 1 from u0. &
Now we partition the plane into 14 regions as

shown in Figure 8(a). One region is a unit disk

centered at u. Each of the other 13 infinite regions is

surrounded by the boundary of this unit disk and two

rays emanated from u and separated by

ð360�=13Þ � 27:7�. The next lemma shows that all

neighbors of u in each region form a clique.

Lemma 6. All neighbors of u lying in each of the 14

regions in the partition shown in Figure 8(a) form a

clique. Consequently, u has at most 13 independent

(i.e., pairwise nonadjacent) neighbors.

Fig. 5. Case 2 in the proof of Lemma 4.

Fig. 6. Case 1 in the proof of Lemma 5.

Fig. 7. Case 2 in the proof of Lemma 5. (a) juwj � 1; (b) juwj < 1.
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Proof. It is sufficient to show that any two neighbors,

v and w, of u lying in the same region are adjacent. If v

and w lie in the unit disk, then both of them are primary

neighbors of u and hence are adjacent by Lemma 3. So

we assume that they lie in one of 13 infinite regions. If

they are both primary neighbors of u, then they are

adjacent by Lemma 3. If they are both secondary

neighbors of u, then they are also adjacent by Lemma

4 since dvuwvuw � ð360�=13Þ < 2 arcsinð1=4Þ. If one of

them is a primary neighbor of u and the other is a

secondary neighbor of u, then they are adjacent by

Lemma 5 since dvuwvuw � ð360�=13Þ < 30�, juvj � 1, and

juwj � 1. &
If the transmission radii of all neighbors of u are at

most 1=2sinð360�=13Þ � 1:076, we adopt the parti-

tion shown in Figure 8(b). Each of the 13 regions is

surrounded by two rays emanated from u and sepa-

rated by ð360�=13Þ � 27:7�.

Lemma 7. Suppose that the transmission radii of all

neighbors of u are at most 1=2sinð360�=13Þ. Then all
neighbors of u lying in each of the 13 regions in the

partition shown in Figure 8(b) form a clique. Conse-

quently, u has at most 12 independent neighbors.

Proof. It is sufficient to show that any two

neighbors, v and w, of u lying in the same region

are adjacent. If v and w are both primary neighbors of

u or are both secondary neighbors of u, then they are

also adjacent following the same argument as in the

proof of Lemma 6. If one of them is a primary

neighbor of u and the other is a secondary neighbor

of u, then they are adjacent by Lemma 5 since dvuwvuw �
ð360�=13Þ � arcsin 1=2rv and similarly dvuwvuw �
arcsinð1=2rwÞ. &
Finally, if all neighbors of u lie in a half-plane and

have transmission radii of at most 1=2sinð180�=7Þ �
1:152, we adopt the partition shown in Figure 8(c) of

the half-plane containing all neighbors of u. Each of

the seven regions is surrounded by two rays emanated

from u and separated by ð180�=7Þ � 25:7�. Following
the similar argument in the proof of Lemma 7, we can

prove the following lemma.

Lemma 8. Suppose that all neighbors of u lie in a

half-plane and have transmission radii of at most

ð1=2sinð180�=7Þ. Then all neighbors of u lying in

each of the seven regions in the partition shown in

Figure 8(c) of the half-plane containing all neighbors

of u form a clique. Consequently, u has at most seven

independent neighbors.

4. FIRST-FIT Coloring

Since FIRST-FIT in a vertex ordering of inductivity q

uses at most qþ 1 colors, our analyses of the FIRST-

FIT colorings will be based on the upper bounds on

the inductivities of the corresponding vertex order-

ings. Since the smallest-last ordering has the smallest

inductivity, an upper bound on the inductivity of any

other vertex ordering applies to the smallest-last

ordering as well.

We begin with upper-bounding the inductivity of

the radius-decreasing ordering.

Lemma 9. The inductivity of any radius-decreasing

ordering is at most minf14!ðGÞ � 2; 13�ðGÞ � 13g.
If all nodes have quasi-uniform transmission radii,

then the inductivity of any radius-decreasing ordering

is at most minf13!ðGÞ � 14; 12�ðGÞ � 12g.
Proof. Consider an arbitrary radius-decreasing or-

dering and let q be its inductivity. Let u be a node with

q prior neighbors in this ordering. Note that the

transmission radii of these q prior neighbors of u are

no less than that of u. By proper scaling, we can

assume that the transmission radii of u is one. Then

the transmission radii of these q prior neighbors of

u are at least one.

Fig. 8. Three partitions of the neighborhood of u.
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We first show that q � 14!ðGÞ � 2. If all these q

prior neighbors of u lie in the unit disk centered at u,

then they together with u form a clique by Lemma 6

and thus q � !ðGÞ � 1 < 14!ðGÞ � 2. So we assume

that some of these q prior neighbors of u lie outside

the unit disk centered at u. We partition the plane as

shown in Figure 8(a) such that at least one of these

q prior neighbors lie in the boundary of one of those

13 infinite regions. Thus, at most 13!ðGÞ � 1 prior

neighbors of u lie outside the unit disk centered at

u. Also at most !ðGÞ � 1 prior neighbors of u lie

in the unit disk centered at u. Therefore, q �
ð13!ðGÞ � 1Þ þ ð!ðGÞ � 1Þ ¼ 14!ðGÞ � 2.

Now we show that q � 13�ðGÞ � 13. By Lemma 6,

at most 13 prior neighbors of u are independent can

get the same color in any proper coloring. Therefore,

the prior neighbors of u requires at least d q
13
e colors.

Since umust be colored differently than its neighbors,

u and all its q prior neighbors requires at least 1þ d q
13
e

colors. This implies that �ðGÞ � 1þ d q
13
e. Therefore,

q � 13�ðGÞ � 13.

If all nodes have quasi-uniform transmission

radii, then following from a similar argument and

Lemma 7, we can show that q � minf13!ðGÞ�
14; 12�ðGÞ � 12g. The detail is omitted. &

From the above lemma, we have ��ðGÞ � minf14!
ðGÞ � 2; 13�ðGÞ � 13g. If all nodes have quasi-uni-

form transmission radii, then ��ðGÞ � minf13!
ðGÞ � 14; 12�ðGÞ � 12g. Thus, we have the follow-

ing theorem.

Theorem 10. Both FIRST-FIT in smallest-last order-

ing and FIRST-FIT in radius-decreasing ordering use

at most minf14!ðGÞ � 1; 13�ðGÞ � 12g colors, and

hence have approximation ratios of at most 13. If

all nodes have quasi-uniform transmission radii,

then both of them use at most minf13!ðGÞ�
13; 12�ðGÞ � 11g colors, and hence have approxima-
tion ratios of at most 12.

As a corollary of the above theorem, !ðGÞ �
�ðGÞ � 14!ðGÞ � 1. If all nodes have quasi-uniform

transmission radii, !ðGÞ � �ðGÞ � 13!ðGÞ � 13. We

also remark that when all nodes have the uniform

transmission radii, then every vertex ordering is a

radius-decreasing ordering. In this case, FIRST-FIT in

an arbitrary vertex ordering still has an approximation

ratio of at most 12. This also follows from the fact

if all nodes have the uniform transmission radii,

then �ðGÞ � minf13!ðGÞ � 14; 12�ðGÞ � 12g. The
proof of this fact is similar to that of Lemma 9 and is

omitted here.

Next, we upper bound the inductivities of distance-

decreasing ordering and lexicographic ordering when

all nodes have uniform transmission radii.

Lemma 11. Suppose that all nodes have uniform

transmission radii. Then the inductivity of any dis-

tance-increasing ordering or any lexicographic order-

ing is at most 7!ðGÞ � 7.

Proof. A key property of both distance-increasing

ordering and any lexicographic ordering is that for

each node u, all its prior neighbors all lie in a half-

plane with u at the boundary. Because of this property,

Lemma 8 can be applied. The theorem can then be

proven by following the similar but simpler argument

to the proof of Lemma 9. The detail is omitted. &
From the above lemma, if all nodes have uniform

transmission radii, then ��ðGÞ � 7!ðGÞ � 7. Thus, we

have the following theorem.

Theorem 12. Suppose that all nodes have uniform

transmission radii. Then FIRST-FIT in smallest-last

ordering, FIRST-FIT in distance-increasing ordering,

and FIRST-FIT in lexicographic ordering all use at

most 7!ðGÞ � 6 colors, and hence have approxima-

tion ratios of at most 7.

As a corollary of the above theorem, if all nodes

have uniform transmission radii, then !ðGÞ �
�ðGÞ � 7!ðGÞ � 6.

5. TILE Coloring

Throughout of this section, we assume that all nodes

have uniform transmission radii equal to one. Under

this assumption, the interference graph is the square of

the unit-disk graph over all the nodes. We propose a

spatial divide-and-conquer heuristic referred to as

TILE coloring.

In this heuristic, we tile the plane into regular

hexagons of side equal to 1=2 (see Figure 9). Each

hexagon, or cell, is considered to be left-closed and

right open, with the top-most point included and the

bottom-most point excluded (see Figure 10). Cells are

further grouped into clusters of size 12 according to

the pattern as shown in Figure 9. We then label the 12

hexagons in a cluster with the numbers 1 through 12 in

an arbitrary pattern, and repeat the same labeling for

all clusters. For simplicity, each color is represented

by a duple ðc1; c2Þ where 1 � c1 � 12 and c2 is a

positive integer. For each nonempty hexagon labeled

with i, all nodes inside it are colored as follows. We

first sort the nodes in this hexagon in an arbitrary order
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(e.g., in the increasing order of the node ID). Then the

jth node in this order receive the color ði; jÞ.
Clearly, TILE coloring produces a valid coloring,

since the distance between any two (half-closed and

half-open) hexagons with the same label is greater

than 2. As all nodes within a hexagon form a clique

(more precisely, a clique of the unit-disk graph), the

total number of colors is at most 12!ðGÞ. So we have
the following performance result on TILE coloring.

Theorem 13. TILE coloring uses at most 12!ðGÞ
colors, and hence has an approximation ratio of at

most 12.

6. Heuristics for Maximum
Independent Set

In this section, we modify all the heuristics, except

FIRST-FIT in smallest-last ordering, for the conflict-

free channel assignment problem to heuristics for the

maximum independent set problem with the same

approximation ratios. In general, the first-fit heuristic

in a specified vertex ordering starts with an empty

independent set, and sequentially adds a vertex which

is not adjacent to any vertex in the current indepen-

dent set. The following vertex orderings of the inter-

ference graph will be adopted to produce the

independent sets:

1. Radius-increasing ordering: the vertices are sorted

in the increasing order of their transmission radii.

2. Distance-decreasing ordering: the vertices are

sorted in the decreasing order of their Euclidean

distances from an arbitrary fixed reference point.

3. Lexicographic ordering.

Theorem 14. FIRST-FIT in radius-increasing order-

ing has an approximation ratio of at most 13 in

general, and an approximation ratio of at most 12 if

all nodes have quasi-uniform transmission radii. If all

nodes have uniform transmission radii, both FIRST-

FIT in distance-decreasing ordering and FIRST-FIT in

lexicographic ordering have approximation ratios of

at most 7.

Proof. Let u1; u2; . . . ; um denote the sequence of

nodes added to the independent set produced by a

FIRST-FIT heuristic in a given vertex ordering. Ob-

viously, they form a maximal independent set. For

1 � i � m, let Ui denote the set of its rear-neighbors

in the given ordering plus ui itself. Then,

V ¼ U1 [ U2 [ 	 	 	 [ Um

Assume the given vertex ordering is the radius

increasing ordering. Then ui is the node in Ui with

the smallest transmission radius. By Lemma 6, each

Ui contains at most 13 independent nodes, and thus

the independence number is at most 13m. This implies

the approximation ratio of FIRST-FIT in radius-

increasing ordering is at most 13. If all nodes have

quasi-uniform transmission radii, then by Lemma 7

each Ui contains at most 12 independent nodes, and

thus the independence number is at most 12m. In this

case, the approximation ratio of FIRST-FIT in radius-

increasing ordering is at most 12.

Now assume the given vertex ordering is either the

distance-decreasing ordering or the lexicographic or-

dering, and all nodes have uniform transmission radii.

Then all nodes in Ui lie in a half-plane with u at the

boundary. By Lemma 8, each Ui contains at most

seven independent nodes, and thus the independence

Fig. 9. Tiling of the plane into hexagons with 12 hexagons
per cluster.

Fig. 10. Half-closed half-open hexagon.
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number is at most 7m. This implies the approximation

ratio of either FIRST-FIT in distance-decreasing or-

dering or FIRST-FIT in lexicographic ordering is at

most 7. &
Next, we describe how to modify TILE coloring to a

heuristic, referred to as TILE IS, for maximum inde-

pendent set. We tile the plane into hexagons and label

the hexagons as in TILE coloring. Let i be the label

such that the number of non-empty hexagons with

label i is the largest one. We choose an arbitrary node

from each non-empty hexagons with label i. These

chosen nodes form an independent set, which is the

output of TILE IS. Note that the size of this indepen-

dent set is at least one-twelfth of the number of

non-empty hexagons. On the other hand, any inde-

pendent set contains at most one node from each

non-empty hexagon. Thus, the independence number

is no more than the number of non-empty hexagons.

This implies that the approximation ratio of TILE IS is

at least 12. So we have the following theorem.

Theorem 15. TILE IS has an approximation ratio of at

most 12.

7. Conclusion

Conflict-free channels assignment is a classic and

fundamental problem in wireless ad hoc networks. It

is NP-hard even when all nodes are located in a plane

and have equal transmission radii. We observe that a

prior analysis by Sen and Malesinska [6] of the

approximation ratio of FIRST-FIT in smallest-last

ordering is erroneous. In this paper, we provide a

rigorous and tighter analysis of this algorithm and

other greedy FIRST-FIT algorithms, FIRST-FIT in

radius-decreasing ordering, FIRST-FIT in distance

increasing ordering, and FIRST-FIT in lexicographic

ordering. In addition, for nodes with equal transmis-

sion radii, we present two spatial divide-and-conquer

algorithms, TILE coloring and STRIP coloring and

analyze their approximation ratios. We also obtain

relations among the three parameters of the interfer-

ence graph: inductivity, clique number, and the chro-

matic number. In addition, we modify all the

heuristics, except FIRST-FIT in smallest-last order-

ing, for the conflict-free channel assignment problem

to heuristics for the maximum independent set pro-

blem with the same approximation ratios.
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