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Summary

We consider a large-scale of wireless ad hoc networks whose nodes are distributed randomly in a two-dimensional

region � (more specifically, a unit square). Given n wireless nodes V, each with transmission range rn, the wireless

networks are often modeled by graph GðV; rnÞ in which two nodes are connected if and only if their Euclidean

distance is no more than rn. We first consider how to relate the transmission range with the number of nodes in a

fixed area such that the resulted network can sustain k fault nodes in its neighborhood with high probability when

all nodes have the same transmission range. We show that, for a unit-area square region �, the probability that

the network GðV; rnÞ is k-connected is at least e�e�a
when the transmission radius rn satisfies npr2

n � ln nþ
ð2k � 3Þln ln n� 2 lnðk � 1Þ!þ 2a for k > 1 and n sufficiently large. This result also applies to mobile networks

when the moving of wireless nodes always generates randomly distributed positions. We also conduct exten-

sive simulations to study the practical transmission range to achieve certain probability the network being

k-connectivity, when the number of nodes n is not large enough. The relation between the minimum node degree

and the connectivity of graph GðV; rÞ is also studied. Setting the transmission range of all nodes to rn guarantees

the k-connectivity with high probability, but some nodes may have excessive number of neighbors in the graph

GðV ; rnÞ. We then present a localized method to construct a subgraph of the network topology GðV ; rnÞ such that

the resulting subgraph is still k-connected but with much fewer communication links maintained. We show that the

constructed topology has only Oðk � nÞ links and is a length spanner. Here a graph H � G is spanner for graph G, if

for any two nodes, the length of the shortest path connecting them in H is no more than a small constant factor of

the length of the shortest path connecting them in G. Finally, we conduct some simulations to study the practical

transmission range to achieve certain probability of k-connected when n is not large enough. Copyright # 2004

John Wiley & Sons, Ltd.
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1. Introduction

There are no wired infrastructures or cellular networks

in ad hoc wireless network. Each mobile nodez has an

adjustable transmission range. Node v can receive the

signal from node u if node v is within the transmission

range of the sender u. Otherwise, two nodes commu-

nicate through multi-hop ad hoc wireless links by

*Correspondence to: Xiang-Yang Li, Department of Computer Science, Illinois Institute of Technology, 10 W. 31st Street,
Chicago, IL 60616, U.S.A.
yE-mail: xli@cs.iit.edu
zIn this paper the term node often represents a network device, vertex is a graph term and point is a geometry term. We often
interchange them if no confusion is caused.
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using intermediate nodes to relay the message. Con-

sequently, each node in the wireless network also acts

as a router, forwarding data packets for other nodes.

We consider that each wireless node has an omni-

directional antenna. This is attractive because a single

signal transmission of a node can be received by all

nodes within its vicinity which, we assume, is a disk

centered at the node.

Wireless ad hoc networks are also called packet

radio networks in the early 1970s. While many funda-

mental ideas existed about 20–30 years ago, in recent

years we see tremendous research activity in wireless

ad hoc networks due to its applications in various

situations such as battlefield, emergency relief and so

on. Mobile wireless networking enjoys a great advan-

tage over the wired networking counterpart because it

can be formed in a spontaneous way for various

applications.

Hundreds of protocols [1–13] that take the unique

characteristics of wireless ad hoc networks have been

developed. Among them, energy efficiency, routing

and MAC layer protocols have attracted most of the

attention. One of the remaining fundamental and

critical issues is to have faulttolerant network deploy-

ment without sacrificing the spectrum reusing prop-

erty. In other words, the network should support

multiple disjoint paths connecting every pair of nodes.

Obviously, we can increase the transmission range of

all nodes to increase the fault-tolerance of the net-

work. However, increasing the transmission range will

cause more signal interference (thus reduce the

throughput) and increase the power consumption of

every node. As power is a scarce resource in wireless

networks, it is important to save the power consump-

tion without losing the network connectivity. The

universal minimum power used by all wireless nodes

such that the induced network topology is connected

is called the critical power.

Determining the critical power was studied by

several researchers [14–16] recently when the wire-

less nodes are statically distributed. Both References

[14] and [15] use the power assignment induced by the

longest incident edge of the Euclidean minimum

spanning tree over wireless nodes V. It was proved

by Penrose [17] that, given a set of points uniformly

and randomly distributed in a unit-area square, the

longest edge of the minimum spanning tree asympto-

tically equals to the longest edge of the nearest

neighbor graph. Since the nearest neighbor can be

found locally, we can determine the critical power

asymptotically using a localized method instead of

constructing the minimum spanning tree if the

wireless devices are randomly and uniformly distrib-

uted in a unit-area square.

Although determining the critical power for static

wireless ad hoc networks is well studied, it remains

to study the critical power for connectivity for

mobile wireless networks. As the wireless nodes

move around, it is impossible to have a unanimous

critical power to guarantee the connectivity for all

instances of the network configuration. Thus, we need

to find a critical power, if possible, at which each node

has to transmit to guarantee the connectivity of the

network almost surely, i.e. with high probability suffi-

ciently close to 1. For simplicity, we assume that the

wireless devices are distributed in a unit square (or

disk) according to some distribution function, e.g.

uniform distribution or Poisson process. Additionally,

we assume that the movement of wireless devices

still keeps them in the same distribution (uniform or

Poisson process). Gupta and Kumar [16] showed that

there is a critical power almost surely when the

wireless nodes are randomly and uniformly distribu-

ted in a unit-area disk. The result by Penrose [17]

implies the same conclusion. Moreover, Penrose [17]

gave the probability of the network to be connected if

the transmission radius is set as a positive real number

r and the number of nodes n goes to infinity.

Let GðV ; rÞ be the graph defined on V with edges

uv 2 E if and only if kuvk � r. Here kuvk is the

Euclidean distance between nodes u and v. Let

G�ðwn; rnÞ be the set of graphs GðV ; rnÞ for n nodes

V that are uniformly and independently distributed in

a two-dimensional region �, which could be a unit-

area disk D or a unit square C with center at the origin.

The problem considered by Gupta and Kumar [16] is

then to determine the value of rn such that a random

graph in GDðwn; rnÞ is asymptotically connected with

probability 1 as n goes to infinity. Let P�;kðwn; rnÞ
be the probability that a graph in G�ðwn; rnÞ is

k-connected. Then Gupta and Kumar [16] showed

that if np � r2
n ¼ ln nþ cðnÞ, then P�;1ðn; rnÞ ! 1 iff

cðnÞ ! þ1 as n goes to infinity. The result by

Penrose [17] implies a stronger result: if np � r2
n ¼

ln nþ a, then P1ðn; rnÞ ¼ e�e�a
as n goes to infinity.

Fault tolerance is one of the central challenges in

designing the wireless ad hoc networks. To make fault

tolerance possible, first of all, the underlying network

topology must have multiple disjoint paths to connect

any two given wireless devices. Here the path could be

vertex disjoint or edge disjoint. We use the vertex

disjoint multiple paths in this paper considering the

communication nature of the wireless networks. In

this paper, we are interested in what is the condition of
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rn such that the underlying network topology GðV ; rnÞ
is k-connected almost surely when V is uniformly and

randomly distributed over a two-dimensional domain

�. For simplicity, we assume that the geometry

domain � is a unit square C. Gupta and Kumar [16]

basically studied the connectivity problem for k¼ 1

and � being a unit-area disk.

We show that given n points randomly distributed

in a unit square C, if the transmission range rn satisfies

np � r2
n � ln nþ ð2k � 1Þ ln ln n� 2 ln k!þ aþ 2 ln

8k=2k
ffiffiffi
p

p
, then GðV ; rnÞ is (kþ 1)-connected with

probability at least e�e�a
as n goes to infinity. Notice

that, this result is analogous to the corresponding

result for Bernoulli graphs Gðn; pÞ (See Reference)

[18]. A similar result was presented by Penrose

[17,19] for the toroidal model instead of the Euclidean

model. He showed that the hitting radius rn such that

the graph GðV; rnÞ is (kþ 1)-connected satisfies

lim
n!1

PrðnpR2
n � ln nþ k ln ln n� ln k!þ aÞ ¼ e�e�a

The toroidal metric is used to eliminate boundary

effects.

Our theoretical value gives us insight on how to set

the transmission radius to achieve the k-connectivity

with certain probability for a network of n devices; or

how many devices are needed to achieve the k-con-

nectivity with certain probability when the transmis-

sion range of each device is a fixed value. This result

also applies to mobile networks, when the moving of

wireless nodes always generate randomly (or Poisson

process) distributed node positions. Our result has

applications in system design of large-scale wireless

networks. For example, for setting up a sensor net-

work monitoring a certain region, we should deploy

how many sensors to have a multiple connected net-

work, knowing each sensor can transmit to the farthest

range r0. Notice that our result holds only when the

number of wireless devices n goes to infinity, which is

difficult to deploy practically. We then conduct ex-

tensive simulations to study the transmission radius

achieving k-connectivity with certain probability for

practical settings. The relation between the minimum

node degree and the connectivity of graph GðV; rÞ is

also studied here.

The remaining of the paper is organized as follows.

In Section 2, we review some previous results study-

ing the transition phenomena for wireless networks.

Section 3 studies the critical transmission range for

k-connectivity of the wireless ad hoc networks

when the wireless nodes are randomly and uniformly

distributed in a unit-area square C. In Section 4, we

present a localized method to control the network

topology. The resulting topology cannot only sustain k

node faults, but also approximates the original unit-

disk graph well in terms of the energy consumption.

Our experimental results presented in Section 5 will

verify our theoretical results. We conclude our paper

and discuss possible future research directions in

Section 6.

2. Literature Review

Given an event Y, let Pr ðYÞ be the probability of Y.

We denote the expected value of a random variable X

by E[X], i.e. E½X� ¼
P

x x � Pr ðX ¼ xÞ for a discrete

variable. As standard, we write log for base-2 loga-

rithm and ln for natural logarithm. We say a function

f ðnÞ ! a if lim n!1 f ðnÞ ¼ a.

2.1. Point Process

A point set process is said to be a uniform random

point process, denoted by wn, in a region � if it

consists of n independent points each of which is

uniformly and randomly distributed over �.

The standard probabilistic model of homogeneous

Poisson process is characterized by the property that

the number of nodes in a region is a random variable

depending only on the area (or volume in higher

dimensions) of the region. In other words,

� The probability that there are exactly k nodes ap-

pearing in any region � of area A is ðlAÞk=k! � e�lA.

� For any region �, the conditional distribution of

nodes in � given that exactly k nodes in the region

is joint uniform.

Hereafter, we let Pn be a homogeneous Poisson

process of intensity n on the unit square

C ¼ ½�0:5; 0:5� � ½�0:5; 0:5�.

2.2. Connectivity and Minimum Degree

A graph is called k-vertex connected (k-connected for

simplicity) if, for each pair of vertices, there are k

mutually vertex disjoint paths (except end-vertices)

connecting them. Equivalently, a graph is k-connected

if there is no a set of k � 1 nodes whose removal will

partition the network into at least two components.

Thus, a k-connected wireless network can sustain the

failure of k � 1 nodes. A graph is called k-edge
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connected if, for each pair of vertices, there are k

mutually edge disjoint paths connecting them. The

vertex connectivity, denoted by kðGÞ, of a graph G

is the maximum k such that G is k vertex connected.

The edge connectivity, denoted by xðGÞ, of a graph

G is the maximum k such that G is k edge connected.

The minimum degree of a graph G is denoted by dðGÞ
and the maximum degree of a graph G is denoted

by �ðGÞ. Clearly, for any graph G, kðGÞ � xðGÞ �
dðGÞ � �ðGÞ. We will delete the symbol G in the

above notations if it is clear from the context.

A graph property is called monotone increasing if G

has such property then all graphs on the same vertex

set containing G as a subgraph have this property. Let

Q be any monotone increasing property of graphs, for

example, the connectivity, the k-edge connectivity, the

k-vertex connectivity, the minimum node degree at

least k and so on. The hitting radius %ðV ;QÞ is the

infimum of all r such that graph GðV ; rÞ has property

Q. For example, %ðV; k � kÞ is the minimum radius r

such that GðV; rÞ is at least k vertex connected;

%ðV ; d � kÞ is the minimum radius r at which the

graph GðV ; rÞ has the minimum degree at least k. It is

obvious that, for any V,

%ðV; k � kÞ � %ðV ; d � kÞ

Penrose [19] showed that these two hitting radii are

asymptotically same for n points V randomly and

uniformly distributed in a unit square and n goes to

infinity.

2.3. Literature Review

The connectivity of random graphs, especially the

geometric graphs and its variations, has been consid-

ered in the random graph theory literature [18], in the

stochastic geometry literature [17,19–22] and in the

wireless ad hoc network literature [16,23–29].

Let us first consider the connectivity problem.

Given n nodes V randomly and independently distrib-

uted in a unit-area disk D, Gupta and Kumar [16]

showed that GðV ; rnÞ is connected almost surely if

np � r2
n � ln nþ cðnÞ for any cðnÞ with cðnÞ ! 1 as n

goes to infinity. Notice this bound is tight as they also

proved that G�ðwn; rnÞ is asymptotically disconnected

with positive probability if np � r2
n ¼ ln nþ cðnÞ and

lim supncðnÞ < þ1. In other words, the connected-

ness of the network has a transition phenomena when

the transition range increases. The wireless network

composed of randomly distributed mobile hosts will

become connected almost abruptly.

Notice that they actually derived their results for a

homogeneous Poisson process of points in D instead

of the independent and uniform point process. They

showed that the difference between them is negligible.

Additionally, a similar result by Penrose [17,22]

showed that the same result holds if the geometry

domain in which the wireless nodes are distributed is a

unit-area square C instead of the unit-area disk D.

Independently, Penrose [17] showed that the long-

est edge Mn of the Euclidean minimum spanning tree

(EMST) of n points randomly and uniformly distrib-

uted in a unit-area square C satisfies that

lim
n!1

Pr ðnpM2
n � ln n � aÞ ¼ e�e�a

for any real number a. Remember that the longest

edge of EMST is always the critical power [14,15].

Thus, the result in Reference [17] is actually stronger

than that in Reference [16], since it will give the pro-

bability that the network is connected. For example,

if we set a ¼ ln ln n, we have Pr ðnpM2
n � ln nþ

ln ln nÞ ¼ e�1=ln n. It implies that the network is con-

nected with probability at least e�1=ln n if the transmis-

sion radius of each node rn satisfies npr2
n ¼ ln nþ

ln ln n. Notice that e�1=ln n > 1 � 1=ln n from e�x

> 1 � x for x > 0. By setting a ¼ ln n, the probability

that the graph GðV ; rnÞ is connected is at least

e�1=n > 1 � 1=n, where npr2
n ¼ 2 ln n. Notice that

the above probability is only true when n goes to

infinity. When n is a finite number, the probability of

the graph being connected is smaller, i.e. we need

transmission radius much larger than rn to guarantee

that the network of n randomly distributed points are

connected almost surely. In this paper, we will present

the first experimental study of the probability of the

graph GðV; rnÞ being connected for finite number n.

Notice that Bettstetter [23] also conducted simulations

recently to study the k-connectivity, minimum degree

being k and their relations. However, they used the

toroidal model instead of the actual Euclidean model.

One closely related question to the critical trans-

mission radius is the coverage problem. Consider

disks of radius r are placed in a two-dimensional

unit-area disk D with centers from a Poisson point

process with intensity n, when these disks cover the

unit-disk. A result shown by Hall [30] implies that

if np � r2 ¼ ln nþ ln ln nþ cðnÞ and cðnÞ ! 1, then

the probability that there is a vacancy area in D is 0

as n goes to infinity; if cðnÞ ! �1, the probability

that there is a vacancy in D is at least 1=20. This

implies that the hitting radius rn such that GðV ; rnÞ is
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connected satisfiesp � r2
n � 4ðln nþ ln ln nþ cðnÞ=nÞ

for c(n)! þ1:
Another closely related problem is when will a

Bernoulli graph be connected if we increase the

probability of the links being chosen. Let Bðn; pðnÞÞ
be the set of graphs on n nodes in which each edge of

the completed graph Kn is chosen independently with

probability p(n). Then it has been shown that the

probability that a graph in Bðn; pðnÞÞ is connected

goes to 1 if p(n)¼ ln nþ cðnÞ=n for any c(n)!1.

Although their asymptotic expressions are the same

with that by Gupta and Kumar [16], but we cannot

apply this to the wireless model as in wireless net-

works, the existences of two edges are not indepen-

dent, and we do not choose edges from the completed

graph using Bernoulli model.

We then review the results concerning the k-

connectivity of a random graph.

For general graphs, Bollobás and Thomason (see

Theorem 7.5 of Reference [18]) proved that if

c(n)!1, c(n)� ln ln ln n and p(n)¼ ln nþ (k� 1)

ln ln n� c(n)=n, then graphs from B(n, p(n)) almost

surely have minimum degree k and thus almost surely

are k-connected.

It was proved by Penrose [19] that, given any metric

lp with 2� p�1 and any positive integer k,

lim
n!1

Pr ð%ðwn; k � kÞ ¼ %ðwn; d � kÞÞ ¼ 1

The result is analogous to the well-known results in

the graph theory [18] that graph becomes k vertex

connected when it achieves the minimum degree k if

we add the edges randomly and uniformly from n
2

� �
!

possibilities. The result by Penrose [19] says that a

graph of Gðwn; rÞ becomes k-connected almost surely

at the moment it has minimum degree k by letting r go

from 0 to 1. However, this result does not imply that,

to guarantee a graph over n points k-connected almost

surely, we only have to connect every node to its k

nearest neighbors. Let V be n points randomly and

uniformly distributed in a unit square (or disk). Xue

and Kumar [29] proved that, to guarantee a geometry

graph over V connected, the number of nearest neigh-

bors that every node has to connect is asymptotically

�(ln n). Dette and Henze [20] studied the maximum

length of the graph by connecting every node to its k

nearest neighbors asymptotically. We conjecture that,

given n random points V over a unit-area square, to

guarantee a geometry graph over V (kþ 1)-connected,

the number of nearest neighbors that every node has to

connect is asymptotically �(ln nþ (2k� 1) ln ln n).

We leave this as future work.

Similarly, instead of considering wn, Penrose also

considered a homogeneous Poisson point process with

intensity n on the unit-area square C. Penrose gave

loose upper and lower bound on the hitting radius

rn ¼ %ðPn; d � kÞ as ln n=2dþ1 � nrrn � d!2 ln n for

homogeneous Poisson point process on a d-dimen-

sional unit cube, This result is too loose. More

importantly, the parameter k does not appear in this

estimation at all. In this paper, we derive an exact

bound on rn for two-dimensional n points V randomly

and uniformly distributed in C such that the graph

GðV ; rnÞ is k-connected with high probability.

We also conduct experiments to study the prob-

ability that a graph has minimum degree k and has

vertex connectivity k simultaneously. Surprisingly, we

found that this probability is sufficiently close to 1,

even n is at the scale of 100. This observation implies

a simple method (by just computing the minimum

vertex degree) to approximate the connectivity of a

random geometry graph.

Penrose [17,19] also studied the k-connectivity

problem for d-dimensional points distributed in a

unit-area cube using the toroidal model instead of

the Euclidean model as one way to eliminate the

boundary effects. He [19] showed that the hitting

radius rn, such that the graph GðV; rnÞ is ðk þ 1Þ-
connected, satisfies

lim
n!1

Pr ðnpr2
n � ln nþ k ln ln n� ln k!þ aÞ ¼ e�e�a

Dette and Henze [20] studied the largest length,

denoted by rn;k here, of the kth nearest neighbor link

for n points drawn independently and uniformly

from the d-dimensional unit-length cube or the d-

dimensional unit-volume sphere. They gave asympto-

tic result of this length accordingly as k < d; k ¼ d

or k < d. For unit-volume cube, they use the norm l1
instead of the Euclidean norm l2. For the unit-

volume sphere, their result implies that, when

d ¼ 2 and k > 2,

lim
n!1

Pr ðnpr2
n;k � ln nþ ð2k � 3Þ ln ln n

�2 lnðk � 1Þ!� 2ðk � 2Þ ln 2 þ ln pþ 2aÞ¼ e�e�a

Notice that Penrose [19] had shown that when the

domain is a unit-area square, the probability that a

random geometry graph GðV ; rnÞ is k-connected and

has minimum vertex degree k goes to 1 as n goes to

infinity. Consequently, we can conjecture that the

transmission radius rn such that the graph GðV; rnÞ
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is k-connected with high probability satisfies npr2
n ’

ln nþ ð2k � 3Þ ln ln n� 2 lnðk � 1Þ!þ 2a. We will

prove this later.

3. Fault Tolerance by K-Connectivity

In this section we concentrate on the hitting radius for

the k-connectivity for n randomly and uniformly

distributed points in a unit-area square C. We build

our result based on the result by Penrose [19].

For convenience, instead of the random point pro-

cess wn, we consider a homogeneous Poisson point

process of rate n, denoted by Pn, on a unit-area square

C. Same as Reference [19], we let Eðk; n; rÞ denote

the expected number of points of Pn with degree k in a

graph of GðPn; rÞ. Let Dðx; rÞ be the disk centered at

x with radius r. Given a point x, let vrðxÞ be the area of

the intersection of Dðx; rÞ with the unit-area square C.

Additionally, let

fn; r; kðxÞ ¼ ðn � vrðxÞÞk �
e�n�vrðxÞ

k!

Here fn; r; kðxÞ is the probability that point x has

degree k. Then, it was known [19] that

Eðk; n; rÞ ¼ n

ð
c

fn; r; kðxÞdx:

Then Penrose [19] (Theorem 1.2) proved the

following.

Theorem 1. Let a be any real number. Given any

metric lp on C with 1< p� 1 and any integer k � 0,

and rn satisfying the following condition

lim
n!1

Eðk; n; rnÞ ¼ e�a

then we have

lim
n!1

Pr ð%ðPn; d � k þ 1Þ � rnÞ ¼ e�e�a

Notice that the same theorem is true when the

random point process Pn is used instead of the

homogeneous Poisson point process. The remainder

of this section is devoted to estimate the value rn.

Penrose [19] agreed that rn is not so easy to find

because of the dominance of complicated boundary

effects. The estimated radius rn also makes the graph

GðPn; rnÞ k-connected with probability e�e�a
when n

goes to infinity, since Penrose [19] proved that it is

almost surely that %ðwn; k � kÞ ¼ %ðwn; d � kÞ and

%ðPn; k � kÞ ¼ %ðPn; d � kÞ as n goes to infinity.

3.1. Lower Bound

We first study the asymptotic lower bound for the

hitting radius rn for the (kþ 1)-connectivity.

Obviously, vrðxÞ � pr2 for any point x inside the

unit-area square C. Since fn; r; kðxÞ is a monotone

increasing function of vrðxÞ, we have

fn; r; kðxÞ ¼ ðn � vrðxÞÞk
e�n�vrðxÞ

k!
< ðn � pr2Þk e�n�p r2

k!

We then bound Eðk; n; rÞ as follows.

Eðk; n; rÞ ¼ n

ð
C
fn; r; kðxÞdx < nðn � p r2Þk e�n�p r2

k!

Notice that if we use p r2 for vrðxÞ instead of the

actual area vrðxÞ, the computed radius r is less than

the actual required radius. This is because vrðxÞ <
p r2 for point x near the boundary of the square. Thus

the probability that there is at least k neighbors within

distance r of point x is increased when we use p r2 for

vrðxÞ for point x near the boundary. To remedy the

approximated area p r2, the actual value r should be

larger than the computed one.

We estimate r when vrðxÞ ¼ p r2 is used as the

area measurement. Let y ¼ p r2. From limn!1 Eðk;
n; rnÞ ¼ e�a, we have e�a ¼ limn!1 nðn � yÞk
e�n�y=k!. We will relax the condition by ignoring the

condition of n going infinity. In other words, we

consider that

e�a ¼ nðn � yÞk e�n�y

k!

It implies that, by taking ln on both sides,

�a ¼ ln nþ k ln nþ k ln y� ny� lnðk!Þ

Thus,

�k ln yþ ny ¼ ðk þ 1Þ ln n� lnðk!Þ þ a

Dividing both side by k, we have

n

k
y� ln y ¼ k þ 1

k
ln n� 1

k
lnðk!Þ þ a

k
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Let z ¼ n
k
y. Then, ln y ¼ ln zþ ln k � ln n. Then

z� ln z ¼ ln k � ln nþ k þ 1

k
ln n� 1

k
lnðk!Þ þ a

k

¼ 1

k
ln nþ ln k � 1

k
lnðk!Þ þ a

k

Notice that if z ¼ ln zþ t, then z> tþ ln t, where

t> 0. Then, we have

z >
1

k
ln nþ ln k � 1

k
lnðk!Þ þ a

k
þ ln�

1

k
ln nþ ln k � 1

k
lnðk!Þ þ a

k

�

>
1

k
ln nþ ln k � 1

k
lnðk!Þ þ a

k
þ ln

�
1

k
ln n

�

Consequently, by substituting back z ¼ n
k
p r2, we have

n

k
p r2 >

ln n

k
þ ln k � 1

k
lnðk!Þ þ a

k
� ln k þ ln ln n

which implies that

np r2 > ln nþ k ln ln n� ln k!þ a

Notice that the function ðn � yÞke�n�y=k! achieves the

maximum value, when y ¼ k=n. It is monotone de-

creasing for y > k=n and monotone increasing for

y < k=n. We always assume that k is a fixed constant

throughout this article. Then we have the following

theorem.

Theorem 2. Given n wireless nodes V randomly and

uniformly distributed in a unit-area square. If we want

the graph GðV ; rnÞ to be ðk þ 1Þ-connected with

probability at least e�e�a
, the transmission radius rn

satisfies

pr2 > ln nþ k ln ln n� ln k!þ a ð1Þ

Notice that, for the toroidal model, Penrose [19]

gave the same exact bound for rn such that the graph is

guaranteed to be ðk þ 1Þ-connected asymptotically.

Moreover, the result by Gupta and Kumar [16] and the

result by Penrose [17] is just a special case when

k¼ 0, if this bound is tight. Notice that, in our ana-

lysis, we implicitly assume that k> 0. Additionally,

the lower bound of our analysis could be improved by

considering a more tight area estimation for point x

near the boundary of the square, but the analysis will

be much more complicated.

3.2. Upper Bound

We showed that if we want the network GðV; rnÞ to be

ðk þ 1Þ-connected with probability at least e�e�a
, we

have to set the transmission radius rn satisfying in-

equality (1) for n points randomly and uniformly

distributed in a unit-area square. In this section, we

continue to study the upper bound of the transmission

radius to achieve the same ðk þ 1Þ-connectivity. The

estimated upper bound is different from the lower

bound even asymptotically. Again, we derive the upper

bound from the equation n
Ð
C fn; r; kðxÞdx ¼ e�a.

We partition the unit square to three regions: the

region I is ½�0:5 þ r; 0:5 � r� � ½�0:5 þ r; 0:5 � r�,
the region III is four corners and the remaining is the

region II (See Fig. 1). We compute the area vrðxÞ for

point x located in these three regions separately.

Obviously, for any x in region I, vrðxÞ ¼ pr2. For a

point x in region II, assume its distance to the

boundary of C is x, then the area

vrðxÞ ¼ pr2 � r2cos�1 x

r

� �
þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p

Here 0 � x � r. Assume x ¼ r cos y, where 0 � y �
p=2. Then vrðxÞ ¼ r2ðp� yþ sin y cos yÞ. It is easy

to show that

pr2

2
ð1 þ cos yÞ � r2ðp� yþ sin y cos yÞ

� pr2

2
þ 2r2cos y

By substituting x ¼ r cos y, we bound vrðxÞ as follows

pr2

2
þ pr

2
� x � vrðxÞ �

pr2

2
þ 2r � x

Let r	 be the solution of n
Ð
C fn;r;kðxÞdx ¼ e�a. Let

� be any subregion of C. Let wðxÞ be any function such

that wðxÞ � vðxÞ and is monotone increasing of r.

Let jn;r;kðxÞ ¼ ðn � wðxÞÞk � e�n�wðxÞ=k!. Thus, jn;r;k

ðxÞ � fn;r;kðxÞ. Let r0 be the solution of n
Ð
� jn;r;k

Fig. 1. The area vrðxÞ for a point x.
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ðxÞdx ¼ e�a. Then r	 � r0. This is because wðxÞ;
vrðxÞ are monotone increasing functions of r, and

ðnyÞk � e�ny=k! is monotone increasing function when

y � k=n. Thus, to bound the transmission radius r from

above so that the graph GðV ; rÞ is ðk þ 1Þ-connected,

we use the lower bound of vrðxÞ and we also only

compute the integral for region I and II. Notice,ð
C
ðnvrðxÞÞk �

e�nvrðxÞ

k!
dx

>

ð
I

ðnvrðxÞÞk �
e�nvrðxÞ

k!
dxþ

ð
II

ðnvrðxÞÞk �
e�nvrðxÞ

k!
dx

Obviously, for region I, we have

ð
I

ðnvrðxÞÞk �
e�nvrðxÞ

k!
dx ¼ ðn � pr2Þk � e�n�pr2

k!
� ð1 � 2rÞ2

The integral over region II is four times of the integral

over the rectangle region near the boundary, where

the length of the rectangle is 1 � 2r and the width is r.

Assume that the distance of a point x to the

boundary is x. Notice that vrðxÞ > pr2=2 þ pr=2x.

Let y ¼ pr2=2þ pr=2x. We haveð
II

ðn � vrðxÞÞk �
e�n�vrðxÞ

k!
dx

¼ 4ð1 � 2rÞ
ðr
x¼0

ðnvrðxÞÞk �
e�nvrðxÞ

k!
dx

>
8ð1 � 2rÞ
p � k! � r

ðpr2

y¼pr2
2

ðnyÞke�nydy

¼ 8ð1 � 2rÞ
npr

e�t=2
Xk
j¼0

tj

j!2j
� e�t

Xk
j¼0

tj

j!

 !

Here t ¼ npr2. The last equation comes fromÐ
zke�zdz ¼ �e�zk!

Pk
j¼0 z

j=j!. Then, the transmission

radius %ðPn; k � kÞÞ is bounded from above by the

solution of the following equation.

e�a ¼ n � tk e�t

k!
� ð1 � 2rÞ2 þ 8ð1 � 2rÞ

pr

e�t=2
Xk
j¼0

ðt=2Þj

j!
� e�t

Xk
j¼0

tj

j!

 !

< n � tk e�t

k!
þ 8

pr
k � e�t=2 ðt=2Þk

k!

The inequality comes from e�t=2 ðt=2Þj=j! < e�t=2

ðt=2Þjþ1=ð jþ 1Þ! for j < t=2. Here we assume that

k < t=2. Remember that here t ¼ npr2 � ln n asymp-

totically from our lower bound analysis. The rest of the

section is then devoted to approximate r using above

inequality.

Let A ¼ n � tk e�t/k! and B ¼ 8=pr k � e-t=2

ðt=2Þk=k!. Thus, B=A ¼ 8ket=2=2knpr ¼ 8k=
ffiffiffi
p

p

et=2=
ffiffiffiffi
nt

p
. Then, by taking ln on both sides of the

inequality, we have

�a < ln Aþ ln 1 þ B

A

� �

¼ ln nþ k ln t � t � ln k!þ ln 1 þ 8k

2k
ffiffiffi
p

p et=2ffiffiffiffi
nt

p
� �

Thus, we have

t < ln nþ k ln t � ln k!þ aþ ln 1 þ 8ket=2

2k
ffiffiffiffiffiffiffi
pnt

p
� �

ð2Þ

Notice that lnð1 þ xÞ < x for any 1 > x > 0 and

lnð1 þ xÞ ’ ln x for x sufficiently larger than one. We

solve inequality (2) by recursion as follows. First, let

t1 ¼ ln n� ln k!þ a as the initial solution. It is easy

to show that B=A ¼ 8k=
ffiffiffi
p

p
et1=2=

ffiffiffiffiffiffi
nt1

p 
 1. Thus,

we can estimate the solution by substituting t1 to

inequality (2)

t2 < ln nþ k ln t1 � ln k!þ aþ ln 1 þ 8k

2k
ffiffiffi
p

p et1=2ffiffiffiffiffiffi
nt1

p
� �

When n is large enough, we have t2 ’ ln nþ k ln ln

n� ln k!þ a. In this situation, however, we have

B=A ¼ ð8k=2k
ffiffiffi
p

p
Þ et2=2=

ffiffiffiffiffiffi
nt2

p ¼ 8k=2k
ffiffiffi
p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln nÞkea

q
=ffiffiffiffiffiffiffiffiffiffiffi

k! � t2
p

goes to infinity when n goes to infinity. Thus,

by substituting t2 ¼ ln nþ k ln ln n� ln k!þ a to

inequality (2), we have the third estimation of the

solution as follows

t3 < ln nþ k ln t2 � ln k!þ aþ ln 1 þ 8ket2=2

2k
ffiffiffiffiffiffiffiffiffi
pnt2

p
� �

’ ln nþ k ln t2 � ln k!þ aþ ln
8ket2=2

2k
ffiffiffiffiffiffiffiffiffi
pnt2

p

¼ ln nþ k ln t2 � ln k!þ aþ ln
8k

2k
ffiffiffi
p

p

þ 1

2
ðk ln ln nþ a� ln k!� ln t2Þ

¼ ln n� 3

2
ln k!þ 3

2
aþ 1

2
k ln ln n

þ k � 1

2

� �
ln t2 þ ln

8k

2k
ffiffiffi
p

p
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Notice that

ln t2 ¼ lnðln nþ k ln ln n� ln k!þ aÞ

¼ ln ln nþ ln 1 þ k ln ln n� ln k!þ a
ln n

� �

< ln ln nþ k ln ln n� ln k!þ a
ln n

Thus, we have the third estimation t3 as

t3 ’ ln n� 3

2
ln k!þ 3

2
aþ 1

2
k ln ln n

þ k � 1

2

� �
ln ln nþ ln

8k

2k
ffiffiffi
p

p

¼ ln nþ 1

2
ð3k � 1Þ ln ln n� 3

2
ln k!

þ 3

2
aþ ln

8k

2k
ffiffiffi
p

p

We can continue to substitute t3 to get a more accurate

solution t4 and so on. It is easy to show that the final

solution of t is bounded by solution of the following

equality, when n goes to infinity

t ¼ ln nþ k ln t � ln k!þ a

þ ln
8k

2k
ffiffiffi
p

p et=2ffiffiffiffiffiffiffiffi
n � t

p
� �

¼ ln nþ k ln t � ln k!þ a

þ ln
8k

2k
ffiffiffi
p

p þ t

2
� 1

2
ln n� 1

2
ln t

This implies that

t ¼ ln n� 2 ln k!þ 2aþ 2 ln
8kffiffiffi
p

p þ ð2k � 1Þ ln t

Thus we can bound t by the following approximation,

when n goes to infinity

t ¼ ln nþ ð2k � 1Þ ln ln n� 2 ln k!þ 2a

þ 2 ln
8k

2k
ffiffiffi
p

p

Consequently, we have the following.

Theorem 3. Given n wireless nodes V randomly and

uniformly distributed in a unit-area square. If we set

the transmission radius rn to satisfy that

npr2 > ln nþ ð2k � 1Þ ln ln n� 2 ln k!

þ 2aþ 2 ln
8k

2k
ffiffiffi
p

p

then the graph GðV ; rnÞ is ðk þ 1Þ-connected with

probability at least e�e�a
, when n goes to infinity.

Obviously, if a ! 1 then e�e�a!1. For example, if

we set a ¼ ln ln n, i.e. want the graph GðV ; rnÞ to

be ðk þ 1Þ-connected with probability at least

e�1= ln n > 1 � 1=ðln nÞ, we have to set the transmis-

sion radius rn that satisfies

n p r2 > ln nþð2k þ 1Þ ln ln n� 2 ln k!þ 2 ln
8k

2k
ffiffiffi
p

p

If we want the graph GðV; rnÞ to be ðk þ 1Þ-connected

with probability at least e�1=n > 1 � ð1=nÞ, we have

to set the transmission radius rn satisfying

npr2 > 3 ln nþ ð2k � 1Þ ln ln n� 2 ln k!þ 2 ln
8k

2k
ffiffiffi
p

p

Additionally, if a ! �1, then e�e�a!0. Then it im-

plies that the graph GðV; rnÞ will be ðk þ 1Þ-
connected with very low probability if this bound of

the hitting radius is tight.

Notice that the above analysis of the asymptotic

upper bound of the transmission radius can also be

used to derive a tighter lower bound on the transmis-

sion radius. We use the fact that p r2=2 þ p r=2�
x � vrðxÞ to derive the upper bound of the transmis-

sion radius. To analyze the lower bound, we have to

use the fact that vrðxÞ � p r2=2 þ 2r � x to estimate

the area vrðxÞ for point x near the boundary. In

addition, we have to compute the integral in all three

regions. To simplify the analysis, for point x in region

III, we also use vrðxÞ � p r2=2 þ 2r � x to estimate the

area vrðxÞ. Then similar to the above analysis of upper

bound, the lower bound on t is at least the solution of

the following equation

e�a ¼ n � tk e�t

k!
� ð1 � 2rÞ2 þ 2

r

�
e�

t
2

Xk
j¼0

tj

2jj!
� e�t

Xk
j¼0

tj

j!

�

By tedious computing, we can compute the asympto-

tic lower bound as

t > ln nþ ð2k � 1Þ ln ln n� 2 ln k!þ 2a

Remark Although we have computed the lower and

upper bounds for the transmission range rn such that

the graph GðV ; rnÞ is ðk þ 1Þ-connected with prob-

ability at least e�e�a
, these bounds hold only when n

goes to infinity and k is assumed to be a constant.

When n is a practical finite number (especially when n
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is comparable with k!), our bounds do not hold any-

more. This observation is witnessed by our experi-

mental results.

4. Topology Control For Fault Tolerance

In this section, we study how to control the network

topology given a n nodes network that is already k

fault tolerant. After selecting the hitting radius for the

k-connectivity, we can model the network topology as

a unit disk graph (UDG) by scaling the radius to one

unit. A unit-disk graph is the graph in which two

nodes are connected if their distance is not more than

one unit.

Due to the nodes’ limited resource in wireless ad

hoc networks, the scalability is crucial for network

operations. One effective approach is to maintain only

a linear number of links using a localized construction

method. However, this sparseness of the constructed

network topology should not compromise on the fault

tolerance and compromise too much on the power con-

sumptions for both unicast and broadcast/multicast

communications. We are interested in constructing a

sparse network topology efficiently for a set of static

wireless nodes such that every unicast route in the

constructed network topology is power efficient, in

addition to be k fault tolerant. Here a route is power

efficient for unicasting if its power consumption is no

more than a constant factor of the minimum power

needed to connect the source and the destination. A

network topology is said to be power efficient if there

is a power efficient route to connect any two nodes in

this topology.

In the most common power-attenuation model, the

signal power falls as 1=rb, where r is the distance from

the transmitter antenna and b is a constant between 2

and 5 dependent on the wireless transmission envir-

onment. This is called path loss. For simplicity, we

only consider the path loss of the signal. Thus, the

power needed to support a link uv is jjuvjjb, where

jjuvjj is the Euclidean distance between u and v.

Lukovszki [31,36] gave a method to construct a

spanner that can sustain k-nodes or links failures for

complete graph. Our topology control method is based

on this method and the following Yao structure [32].

The Yao graph over a (directed) graph G with an

integer parameter p� 6, denoted by YG
�!

pðGÞ, is de-

fined as follows. At each node u, any p equal-sepa-

rated rays originated at u define p equal cones. In each

cone, choose the shortest (directed) edge uv 2 G, if

there is any, and add a directed link uv�!. Ties are

broken arbitrarily. Let YGpðGÞ be the undirected

graph by ignoring the direction of each link in

YG
�!

pðGÞ. See the following Figure 2 for an illustration

of selecting edges incident on u in the Yao graph.

X.-Y. Li, P.-J. Wan and O. Frieder [34–35] had

proposed to use the Yao structure on the unit-disk

graph for topology control without sacrificing too

much on the energy conservation. Some researchers

used a similar construction named y-graph [36]. The

difference is that, in each cone, it chooses the edge

which has the shortest projection on the axis of the

cone instead of the shortest edge. Here the axis of a

cone is the angular bisector of the cone. For more

detail, please refer to Reference [36]. It is obvious

that the Yao structure does not sustain k faults in a

neighborhood of any node, since each node only has

at most p neighbors and one neighbor selected in

each cone at most. However, we can modify the Yao

structure as follows such that the structure is k-fault

tolerant.

Each node u defines any p equal-separated rays

originated at u, thus defines p equal cones, where

p> 6. In each cone, node u chooses the kþ 1 closest

nodes in that cone, if there is any, and add directed

links from u to these nodes. Ties are broken arbitrarily.

Let Yp;kþ1 be the final topology formed by all nodes.

Theorem 4. The structure Yp;kþ1 can sustain k nodes

faults if original unit-disk graph is k node faults

tolerant.

Proof. For simplicity, assume that all k fault nodes

v1; v2; . . . ; vk are neighbors of a node u. We show that

the remaining graph of Yp;kþ1 (removed of nodes

v1; v2; . . . ; vk and all links incident on them) is still

connected.

Notice that the original unit-disk graph is k node

faults tolerant. Thus, the degree of each node is at

least kþ 1. Additionally, with the k fault nodes

v1; v2; . . . ; vk removed, there is still a path in UDG

to connect any pair of remaining nodes. Assume that

the path uses node u and have a link uw. We will prove

Fig. 2. The narrow regions are defined by eight equal cones.
The closest node in each cone is a neighbor of u.
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by induction that there is a path in the remaining graph

to connect u and w.

If uw has the smallest distance among all pair of

nodes, then uw must be in Yp;kþ1, thus in the remaining

graph.

Assume the statement is true for node pair whose

distance is the rth shortest. Consider uw with the

(rþ 1)th shortest length.

If w is one of the kþ 1 closest nodes to u in some

cone, then link uw remains in the remaining graph.

Otherwise, for the cone in which node w resides, there

must have other kþ 1 nodes that are closer to u than w

and they are connected by u in Yp;kþ1. Since we only

have k failure nodes, at least one of the links of Yp;kþ1

in that cone will survive, say link ux. It is easy to show

that jjxwjj < jjuwjj < 1. Then link uw can be replaced

by link ux and a path from x to w by induction. This

finishes the proof.

Notice that for the case where the nodes removed

are not all neighbors of the same node, the induction

proof also holds. Induction is based on all pair of nodes.

Our techniques of constructing k-connected sub-

graph of UDG (assuming UDG is already k-connected

here) can be applied to a more general graph G if there

is an embedding, denoted by E(G), of G in the plane

such that there is an edge in E(G) if and only if their

distance is not more than one unit. Notice that here an

embedding of G in the plane is to assign each vertex a

two-dimensional position.

We then show that the above structure approxi-

mates the original unit-disk graph well. More speci-

fically, we will show that it is a spanner even with k

fault nodes. Let �Gðu; vÞ be the shortest path con-

necting u and v in a weighted graph G, and jj�Gðu; vÞjj
be the length of �Gðu; vÞ. Then a graph G is a t-

spanner of a graph H if VðGÞ ¼ VðHÞ and, for any

two nodes u and v of VðHÞ, jj�Gðu; vÞjj � t jj
�Hðu; vÞjj. With H understood, we also call t the

length stretch factor of the spanner G.

Let %Gðu; vÞ be the path found by a unicasting

routing method % from node u to v in a weighted graph

G, and jj%Gðu; vÞjj be the length of the path. The

spanning ratio achieved by a routing method is %
defined as maxu;v jj%Gðu; vÞjj=jjuvjj. Notice that the

spanning ratio achieved by a specific routing method

could be much larger than the spanning ratio of the

underlying structure. Nonetheless, a structure with a

small spanning ratio is necessary for some routing

method to possibly perform well.

Theorem 5. The structure Yp;kþ1 is a length spanner

even with k nodes faults.

Proof. To prove the length spanner property, it is easy

to show that we only have to prove each pair of nodes

u and w with jjuwjj � 1 is approximated by a path

with length no more than a constant factor, say b, of

jjuwjj. The proof is similar to Theorem 4: we prove it

by induction on the length of jjuwjj. Follow the proof

of Theorem 4, we only have to show that

jjuxjj þ bjjxwjj � bjjuwjj

for any node x with jjuxjj < jjuwjj and x lies in the

same cone as w does. Obviously, we need to set

b ¼ max
8x;jjuxjj<jjuwjj

jjuxjj
jjuwjj � jjxwjj

Notice that a ¼ ffwux < 2p=p. Then a simple geome-

try reveals that b ¼ max cosy=cosðyþ aÞ, where

y ¼ 1=2 ffuwx � p� a=2. The minimum value for b
is 1=1 � 2sinðp=pÞ. In other words, the spanning ratio

of the remaining structure is at most b.

Due to limited power and resource of wireless

nodes, wireless topologies always prefer to have

bounded node degree, such that every wireless nodes

only keep constant neighbors. The node degree of the

structure Yp;kþ1 is at most p(kþ 1), where p� 6.

Recently, Bahramgiri et al. [37] showed how to decide

the minimum transmission range of each node such

that the resulted directed communication graph is

k-connected. We can prove that their resulted graph

is also a length spanner even with k nodes faults (the

proof is omitted here since it is similar to ours).

However, their method does not bound the node

degree. Figure 3(a) shows an example in which node

u can have as many as neighbors even after apply-

ing their method. Then we give a careful enhan -

cement of their protocol to bound the node degree.

Fig. 3. (a) node u does not have bounded degree in graph
generated by Bahramgiri’s protocol; (b) new method to

bound node degree for Bahramgiri’s protocol.
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In Bahramgiri’s method, they increase the power step

by step until there is no gap greater than a between the

successive neighbors or the power reaches the max-

imum power. They proved that if a � 2p=3k. then the

resulted graph is k-connected. After applying their

method, we can remove some links by the following

method. For a node u, we divide its transmission range

into 4p=a equal cones (each cone have an angle a=2).

We select only one neighbor in each cone c if there is

any, delete all other links. However, if for a cone c,

one of its adjacent cones, say b, does not have any

neighbors of u, we select the boundary neighbor v
such that vu forms the smallest angle with cone b; if

both adjacent cones of c are empty, we select two

neighbors in c (close to the two boundary of cone c

respectively); if c does not have empty adjacent cones,

we can select any one of the neighbors. See Figure 3(b)

for illustration. Since the gap between any two suc-

cessive remaining neighbors is still not greater than a
(except the empty cones), it is easy to show that the

constructed graph is still k-connected if a � 2p=3k.

The node degree is bounded by 2p= a
2
¼ 4p=a. When

a ¼ 2p=3k, the node degree is bounded by 6k, which

is almost the same as ours.

5. Experiments

We had analyzed the theoretical condition for the

transmission radius rn such that the graph GðV ; rnÞ
is (kþ 1)-connected with high probability. To confirm

our theoretical analysis, we conduct simulations to see

what is the practical value of rn such that the wireless

network GðV ; rnÞ is (kþ 1)-connected with high

probability. Notice that Bettstetter [23] also conducted

simulations recently to study the k-connectivity, mini-

mum degree being k and their relations. No explicit

expression of r is given in Reference [23].

5.1. System Model

The geometry domain, in which the wireless nodes are

distributed, is a unit square C ¼ ½�0:5; 0:5��
½�0:5; 0:5�. As shown by previous results, we know

that the random point process X n and the homoge-

neous Poisson point process Pn will have the same

connectivity behavior asymptotically. For the simpli-

city of conducting simulations, we choose n points

that are randomly and uniformly distributed in C. For

each randomly generated point set V and a transmis-

sion radius r, we construct the graph GðV; rÞ in a

centralized manner. To speed up the construction of

GðV ; rÞ, we partition the points into grids of size r.

Thus, a point p can only connect with points from at

most nine grids: one grid containing p and eight

adjacent grids.

5.2. Computing the Connectivity

One of the major steps in conducting the simulations

is to compute the connectivity of an induced unit-disk

graph GðV ; rnÞ. It is easy to test whether a graph is

connected by simply checking if a spanning tree

contains all n nodes. To test whether the graph

GðV ; rnÞ is k-connected, we use the following obser-

vation: it is k-connected if and only if the minimum

cut is at least k, which is equivalent to that the flow

between any pair of nodes is at least k. So, given the

graph GðV; rnÞ, we compute the maximum flow

between any pair of nodes by assigning each edge a

weight one. A simpler method by using BFS to

compute how many disjoint paths connecting a node

v to a node u. The time complexity of this approach is

Oðn2mÞ, where m is the number of edges in GðV; rÞ
that could be as large as n2. For unit-capacity flow,

there is an Oðminðm; n3=2Þm1=2Þ time complexity

algorithm [38].

5.3. Experimental Results

5.3.1. Transition phenomena

A graph property of GðV ; rÞ is said to satisfy a

transition phenomena if there is a radius r0 such that

the graph GðV ; rÞ almost surely does not have this

property when r < r0 and the graph GðV ; rÞ almost

surely has this property when r > r0. It was already

shown that the property that GðV; rÞ has the minimum

node degree k satisfies a transition phenomena; ad-

ditionally, the graph GðV ; rÞ is k-connected satisfies a

transition phenomena.

Our simulations shown in Figures 4 and 5 confirm

the theoretical results. We found that the transition

becomes faster when the number of nodes increases.

For testing the transition phenomena of the connec-

tivity, we test n¼ 50 and n¼ 100, two cases. We test

0:1 � r � 0:9 using interval 0.02, i.e. we test total 40

different transmission radii. Given a transmission

radius r and number of nodes n, we generate 500

sets of random n points in C. We compute the

connectivity of each graph GðV; rÞ and summarize

how many is k-connected for k ¼ 1; 2; 3 and 4. For

testing the transition phenomena of the min-degree,

we test n¼ 100, 200, 300 and 400. Other settings are

same as the test for connectivity transition.
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Fig. 4. Transition phenomena of a graph being k-connected.

Fig. 5. Transition phenomena of a graph has minimum degree k.
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5.3.2. Connectivity and minimum degree

Penrose [19] showed that the hitting radius for

k-connectivity and the hitting radius for achieving

minimum degree k are asymptotically same for points

randomly and uniformly distributed in a unit-area

square as n goes to infinity. We conduct extensive

simulations on various number of points n ¼ 50; 100;
200; 300; 400 and 500. Given n, k and a, we select r

according to the bound given in Theorem 3. Here the

connectivity k ¼ 1; 2 and a 2 f0; ln ln n; ln ng. Thus,

there are total 36 cases. For each case, we generate

500 random point sets. Our simulations, illustrated by

Figure 6, show that the probability that GðV; rÞ is k-

connected when its minimum degree is k is already

sufficiently close to one when n is at the order of 50,

especially when a is set as ln n. This surprising result

implies a fast method to approximate the connectivity

of a graph by simply counting the minimum node

degree.

5.3.3. Connectivity for small point set

Theoretically, we derived an asymptotic bound of the

transmission range rn for n points randomly and

uniformly distributed in a unit-area square such that

the graph GðV; rnÞ is k-connected with certain prob-

ability. We have to admit that the result holds only

when n is large enough compared with k!. We first

conduct simulations to measure the gap between

the theoretical probability of graph GðV ; rÞ being

k-connected and the actual statistical probability of

it being k-connected for various radius r. Typically, we

set npr2 ¼ ln nþ ð2k�1Þln ln n� 2 ln k!þ 2aþ 2 ln

8k=ð2k
ffiffiffi
p

p
Þ. Then test all 54 cases of n ¼ 50; 100; 200;

300; 400 and 500; k ¼ 1; 2; 3 and 4; a ¼ 0; ln ln n and

ln. The corresponding theoretical k-connectivity prob-

abilities for them are 1=e; 1 � 1= ln n and 1 � 1=n
when a¼ 0, ln ln n and ln respectively. The prob-

ability is computed over 500 different random point

sets. Figure 7 illustrates our simulation results.

It is not surprising that the probability found by

simulations is much lower than the theoretical analy-

sis (denoted by the upper blue curves). Notice that the

theoretical range r is not always monotone increasing

of k when n is a small value. This is the reason some

curves cross each other in our figures.

Figure 8 illustrates our simulation results for the

probability that GðV; rÞ has minimum degree k com-

pared with the theoretical analysis. Notice, as ex-

pected, the probability gap for min-degree is smaller

than that for the k-connectivity.

5.3.4. Practical transmission ranges for
k-connectivity

Since the asymptotic bound of the transmission range

rn for n points randomly and uniformly distributed in a

unit-area square such that the graph GðV ; rnÞ is k-

connected with certain probability holds only when n

is large enough compared with k!, we need to study

what is the actual transmission range required to

achieve the k-connectivity with certain probability.

It is possible to analyze more accurately what is the

theoretical requirement for rn when n is not large

enough. However, the analysis is much more compli-

cated as we cannot omit some ‘constant’ terms in any

Fig. 6. The probability of a graph with minimal degree k is k-connected. Upper figure is for k¼ 1 and lower figure is for k¼ 2.
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formula anymore. We leave this tight analysis as

possible future work. Alternatively, we conduct simu-

lations to find that practical transmission ranges when

n is not large enough (see Figure 9). It is not surprising

that the actual required range is larger than the

theoretical bound. However, we found that the actual

transmission range takes a similar decreasing pattern

as the theoretical result when n goes to infinity.

Fig. 7. Probability GðV ; rÞ is k-connected if r is set theoretically.

Fig. 8. Probability GðV ; rÞ has minimum degree k if r is set theoretically.

Fig. 9. (a) Practical range that GðV ; rÞ is k-connected with probability 1/e; (b) practical range that GðV ; rÞ is k-connected with
probability 1 � n.
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6. Conclusion

We consider a large-scale of wireless ad hoc networks

whose nodes are distributed in a two-dimensional unit

square region. As fault-tolerance is imperative for

wireless networks, we showed that, to make the graph

GðV; rnÞ (kþ 1)-connected almost surely, the trans-

mission range rn should satisfy np � r2
n � ln nþ

ð2k � 1Þ ln ln n� 2 lnðk � 1Þ!þ cðnÞ for any cðnÞ
with cðnÞ ! 1 as n goes to infinity. Our result holds

also in mobile networks when the movement of nodes

are also random. We also conducted extensive simula-

tions to study the relations between the minimum

node degree and the connectivity of the induced

unit-disk graphs. Practical transmission ranges were

also studied by simulations when n is not a large

integer. We found that, although it is different from the

theoretical analysis when n is small, it has the same

decreasing pattern as our theoretical analysis. We

leave an accurate theoretical analysis of the transmis-

sion range to achieve k-connectivity, minimum degree

k when number of nodes n is small.

We also presented a localized method to control the

network topology given a k-faults tolerant deployment

of wireless nodes such that the resulting topology is

still fault tolerant but with much fewer communica-

tion links maintained. We showed that the constructed

topology has only linear number Oðk � nÞ of links and

is a length spanner.

We assumed that the wireless nodes are generated

by random point process, or Poisson point process. In

practical applications, the wireless nodes could have

some other estimated distributions such as the in-

homogeneous Poisson point process. This is much

more complicated than the cases studied by known

previous results. We leave this as possible future

work.
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