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Abstract—Wieselthier et al. (2000) proposed three greedy
heuristics for Min-Power Asymmetric Broadcast Routing: SPT
(shortest-path tree), MST (minimum spanning tree), and BIP
(broadcasting incremental power). Wan et al. (2001) proved that
SPT has an approximation ratio of at least ( 2) where is the
total number of nodes, and both MST and BIP have constant ap-
proximation ratios. Based on the approach of pruning, Wieselthier
et al. also proposed three greedy heuristics for Min-Power Asym-
metric Multicast Routing: P-SPT (pruned shortest-path tree),
P-MST (pruned minimum spanning tree), and P-BIP (pruned
broadcasting incremental power). In this paper, we first prove
that the approximation ratios of these three heuristics are at least
( 1 2) 1, and 2 (1), respectively. We then present
constant-approxiation algorithms for Min-Power Asymmetric
Multicast Routing. We show that any -approximation Steiner
tree algorithm gives rise to a -approximation heuristic for
Min-Power Asymmetric Multicast Routing, where is a constant
between 6 and 12. In particular, the Takahashi-Matsuyama
Steiner tree heuristic leads to a heuristic called SPF (shortest-path
first), which has an approximation ratio of at most 2 . We also
present another heuristic, called MIPF (minimum incremental
path first), for Min-Power Asymmetric Multicast Routing and
show that its approximation ratio is between (13 3) and 2 . Both
SPF and MIPF can be regarded as an adaptation of MST and
BIP, respectively, in a different manner than pruning. Finally, we
prove that any -approximation Steiner tree algorithm also gives
rise to a 2 -approximation algorithm for Min-Power Symmetric
Multicast Routing.

Index Terms—Approximation algorithms, multicast routing,
power control.

I. INTRODUCTION

THE RECENT advances in the development of affordable
and portable wireless communication and computation de-

vices has fostered a tremendous amount of research on ad hoc
wireless networks. Ad hoc networks can be used wherever a
fixed backbone infrastructure is not viable, e.g., in battlefield
and emergency disaster relief. Typically, omnidirectional an-
tennas are used by all nodes to transmit and receive signals.
Thus, a transmission made by a node can be received by all
nodes within its transmission range. A communication session
is achieved either through single-hop transmission if the recip-
ient is within the transmission range of the source node, or by
relaying through intermediate nodes otherwise. For this reason,
ad hoc wireless networks are also called multihop packet radio
networks.
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One of the major concerns in ad hoc wireless networks is
reducing node energy consumption. In fact, nodes are usually
powered by batteries of limited capacity. Once the nodes are
deployed, it is very difficult or even impossible to recharge or
replace their batteries in many application scenarios. Hence, re-
ducing power consumption is often the only way to extend net-
work lifetime. As demonstrated by [7], the power consumption
is dominated by communications. For the purpose of energy
conservation, each node can (possibly dynamically) adjust its
transmitting power, based on the distance to the receiving node
and the background noise. In the most common power-attenu-
ation model [10], the signal power falls as where is
the Euclidean distance from the transmitter antenna and is the
pass-loss exponent of the wireless environment—a real constant
typically between 2 and 5. Assume that all receivers have the
same power threshold for signal detection, which is typically
normalized to one. Then, the power required to cover a trans-
mission range of radius is .

Due to the nonlinear power attenuation, the total power con-
sumption required by a communication session can be poten-
tially reduced by relaying signal through intermediate nodes
[12], [16]. We assume throughout this paper that the set of
nodes in a given wireless ad hoc network are located in a two-di-
mensional plane. A communication session is specified by a pair

where is the source and is the set
of destinations. If consists of a single node, the communica-
tion session is a unicast. If consists of all nodes other than
the source , the session is a broadcast. For general , the com-
munication session is a multicast. Depending on whether the
communications is unidirectional or bidirectional, there are two
variations on routing and power consumptions.

A. Min-Power Asymmetric Routing

In the case of unidirectional communications, a routing for
a communication session is an arborescence (a directed
tree) rooted at which reaches all nodes in . An arbores-
cence determines the transmission power of every node in
as follows: the transmission power of each sink is zero, and the
transmission power of each node of other than sinks is equal
to the th power of the longest distance between and its chil-
dren in . The total power required by is then the sum of the
transmission power of all nodes in . The problem Min-Power
Asymmetric Routing then seeks, for any given communication
session , an arborescence of minimum total power which
is rooted at and reaches all nodes in .

There are two special cases of Min-Power Asymmetric
Routing. The special case in which all communication ses-
sions are restricted to unicasts is referred to as Min-Power
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Asymmetric Unicast Routing, and the special case in which all
communication sessions are restricted to broadcasts is referred
to as Min-Power Asymmetric Broadcast Routing. While the
former is easily solved in polynomial time by shortest-path
algorithms, the latter is NP-hard as shown by Clementi et al.
[5]. Wieselthier et al. [16] presented three greedy broadcasting
heuristics, namely MST (minimum spanning tree), SPT
(shortest-path tree), and BIP (broadcasting incremental power),
and evaluated them by simulations. Wan et al. [15] provided a
theoretical analysis on the approximation ratios of these three
heuristics. They showed that MST has an approximation ratio
between 6 and 12, BIP has an approximation ratio between

and 12, and SPT has an approximation ratio as large as
, where is the number of nodes.

Min-Power Asymmetric Multicast Routing is the most
general form of Min-Power Asymmetric Routing where the
communication sessions can be arbitrary multicasts. As a
generalization of Min-Power Asymmetric Broadcast Routing,
Min-Power Asymmetric Multicast Routing is also NP-hard.
Wieselthier et al. [16] adapted their three broadcasting heuris-
tics to three multicasting heuristics by a technique of pruning,
which we refer to as pruned minimum spanning tree (P-MST),
pruned shortest-path tree (P-SPT), and pruned broadcasting
incremental power (P-BIP), respectively. The idea is to first
obtain a spanning arborescence rooted at the source of a given
multicast session by applying any of the three broadcasting
heuristics, and then eliminate from the spanning arborescence
all nodes which do not have any descendant in the given
multicast session.

Wieselthier et al. [16] had evaluated their three multicasting
heuristics through simulations, but their performance in terms of
approximation ratios remained unsolved. The analysis in [15] on
the performance of SPT can be extended to P-SPT, which leads
to the same lower bound on the approximation ratio of P-SPT.
However, the analysis in [15] on the constant approximation ra-
tios of MST and BIP cannot be extended P-MST and P-BIP. One
might expect that both P-MST and P-BIP have the same approx-
imation ratios as their broadcasting counterparts. Surprisingly,
as will be demonstrated in this paper, neither P-MST nor P-BIP
has constant approximation ratio. We show that P-MST has an
approximation ratio of at least , and P-BIP has an approx-
imation ratio of at least .

Since none of the three heuristics proposed by Wieselthier
et al. [16] have constant approximation ratios, we are motivated
to address the existence of heuristics with constant approxima-
tion ratio. We first prove that any heuristic of approximation
ratio for Steiner minimum tree (SMT) [8], [9] in graphs gives
rise to a heuristic for Minimum-Energy Asymmetric Multicast
Routing of approximation ratio at most , where is a constant
between 6 and 12. In particular, the Robins–Zelikovsky Steiner
tree heuristic [11] leads to an asymmetric multicasting heuristic
of approximation ratio approaching , and the
Takahashi–Matsuyama Steiner tree heuristic [14] leads to an
asymmetric multicasting heuristic called SPF (shortest path
first), which has an approximation ratio of at most . After
that, we present another asymmetric multicasting heuristic,
called MIPF (minimum incremental path first), and show that
its approximation ratio\ is between and . Both SPF

and MIPF can be regarded as an adaptation of MST and BIP,
respectively, in a different manner than pruning.

B. Min-Power Symmetric Routing

In the case of bidirectional communications, a routing for a
communication session is a Steiner tree for . A
Steiner tree determines the transmission power of every node
in : the transmission power of each node of is equal to the

th power of the longest distance between and its neighbors
in . The total power required by is then the sum of the trans-
mission power of all nodes in . The problem Min-Power Sym-
metric Routing then seeks, for any given communication session

, a Steiner tree for of minimum total power.
Similar to their asymmetric counterparts, Min-Power Sym-

metric Unicast Routing can be solved in polynomial time by
shortest-path algorithms as shown by Calinescu et al. [3], and
Min-Power Symmetric Broadcast Routing is NP-hard as proven
by Blough et al. [2]. An earlier heuristic developed by Chen and
Huang [4] based on minimum spanning tree is a 2-approxima-
tion for the Min-Power Symmetric Broadcast Routing even with
arbitrary (i.e., not necessarily Euclidean) distance between any
pair of nodes. Calinescu et al. [3] establish the similarity be-
tween Min-Power Symmetric Broadcast Routing and the classic
Steiner tree problem in graphs, give a polynomial-time approx-
imation algorithm with approximation ratio approaching

, and present a more practical -approxima-
tion algorithm. To our best knowledge, Min-Power Symmetric
Multicast Routing has not been addressed yet. In this paper, we
prove that any heuristic of approximation ratio for Steiner
minimum tree in graphs gives rise to a heuristic of approxi-
mation ratio at most for Min-Power Symmetric Multicast
Routing.

The remaining of this paper is organized as follows. In
Section II, we prove the lower bounds on the approxi-
mation ratios of the three asymmetric multicasting heuristics,
P-SPT, P-MST, and P-BIP proposed by Wieselthier et al. [16].
In Section III, we present constant-approximation algorithms
for both asymmetric multicasting and symmetric multicasting.
Finally, in Section IV we summarize this paper.

II. PRUNING IS NOT GOOD ENOUGH

Wieselthier et al. [16] presented three heuristics for
Min-Power Asymmetric Multicast Routing. All three heuristics
obtain a multicast arborescence by pruning a spanning arbores-
cence rooted at the source of the multicast session. The spanning
arborescence is constructed by one of their three heuristics:
minimum spanning tree (MST), shortest-path tree (SPT), and
broadcasting incremental power (BIP) for Min-Power Asym-
metric Broadcast Routing. The MST heuristic first applies the
Prim’s algorithm [6] to obtain an MST, and then orient it as an
arborescence rooted at the source node. The SPT heuristic first
applies the Dijkstra’s algorithm [6] to obtain a shortest-path
tree from the source node, and then orient the shortest-path tree
as an arborescence rooted at the source node. The BIP heuristic
is the node version of Dijkstra’s algorithm for shortest-path
tree. It maintains throughout its execution a single arborescence
rooted at the source node. The arborescence starts from the
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Fig. 1. A bad instance for P-SPT.

source node, and new nodes are added to the arborescence
one at a time on a minimum incremental cost basis until
all nodes are included in the arborescence. The incremental
cost of adding a new node is the minimum additional power
increased by some node in the current arborescence so as to
reach this new node. Corresponding to MST, SPT, and BIP, the
three heuristics for Min-Power Asymmetric Multicast Routing
are referred to as pruned minimum spanning tree (P-MST),
pruned shortest-path tree (P-SPT), and pruned broadcasting
incremental power (P-BIP), respectively.

In this section, we show that the approximation ratios of these
three heuristics are all at least as large as , where is
the number of nodes in the network. We begin with the P-SPT
algorithm.

Lemma 1: The approximation ratio of P-SPT is at least
.

Proof: Let be a sufficiently small positive number. Con-
sider nodes evenly distributed on a circle of
radius 1 centered at node (see Fig. 1). For , let
be the point in the line segment with . We con-
sider a network consisting of nodes

and a multicast session from node to the nodes
. The shortest-path tree is the superposition

of the paths . Since no node can be removed from this
shortest-path tree, it is also the output by P-SPT. Its total power
is

On the other hand, if the transmission power of node is 1, then
the signal can reach all points . Thus, the min-
imum power is at most 1. So the approximation ratio of P-SPT
is at least . As , this ratio converges to

.
Next, we construct bad instances for P-MST.
Lemma 2: The approximation ratio of P-MST is at least .

Fig. 2. A bad instance for P-MST.

Proof: Fix a circle of radius 1 centered at node (see
Fig. 2), and choose a sufficiently large integer . Let
be the points on a radius of the circle with

for . Then is on the circle. Let
be the points distributed on the circle counterclockwise with

for all and the angle is between
and . Let be a sufficiently small positive number which

is less than . Let be the
points on the radius with

for and

Then

Finally, let be the node lying on the circle of radius
centered at node with

Now we consider the network consisting of these
nodes and a multicast session from

node to the two nodes and . As the angle
is greater than , we have

Similarly

Thus, the execution of Prim’s algorithm for MST outputs the
path
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Fig. 3. A bad instance for P-BIP.

as the MST. Notice that except the link
which has length of , all other links
have length of . In addition, no node can be pruned from
this path. Thus, this path is output by P-MST. Its total power
consumption is

On the other hand, a direct transmission from node at the
power of can reach the two destination nodes

and . Thus, the minimum power is at most
. Therefore, the approximation ratio of P-MST is

at least

As , this ratio converges to .
Finally, we construct bad instances for P-BIP. Its construction

is similar to that in the above proof but the analysis is more
subtle.

Lemma 3: The approximation ratio of P-BIP is at least
.

Proof: In the instance constructed in the Proof of
Lemma 3, we add a point in the line segment with

. Then . We consider the network
consisting of these nodes and a multicast
session from node to the two nodes and .

Let us first examine the execution of the BIP algorithm. Ini-
tially, the arborescence consists of only . The first node to be
added is by increasing the transmission power of node from
0 to . The incremental power to reach or from
node is

Thus, the second node to be added is by increasing of the
transmission power of node from 0 to . Sub-
sequently, the nodes are added sequentially
and the nodes all transmit at the power
level of . Notice that the incremental power to add nodes

or is always , and

thus, neither nor can be added by this time.
In the next step, node is added. However, it is reached
not from node by increasing the transmission power of node

from 0 to , but from node whose transmission
power is increased from

to

Thus, node does not relay the signal, and the incremental
power to add node is

At this moment, the arborescence consists of the path
, with having nodes and as its

children. Since both and
are obtuse, the following step adds node by increasing
the power of node from 0 to . Subsequently,
it is easy to show that the nodes are
added sequentially and the nodes
all transmit at the power level of . Following the same
argument as above, we can show that node is added in
the next by increasing the transmission power of node
from to , and after that node
is added by increasing the transmission power of node
from 0 to . Thus, node does not relay the signal
at all. Then the nodes are added
sequentially. The transmission powers of the nodes

are all , and the transmission
power of node is . Finally since the
angle is obtuse, node is added
by increasing the power of node from 0 to .

In summary, the output arborescence is the superposition of
the path

and two links and . Note that only the
two nodes and are eliminated during pruning and no
node can decrease its transmission power after the pruning. The
output P-BIP is exactly the above path, and its total power con-
sumption is calculated below. Among all nodes:

• nodes , and does not transmit at all;
• node has transmission power of ;
• nodes and have transmission power of

;
• nodes and have transmission power of

;
• all other nodes have transmission power of .
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So the total power is

On the other hand, a direct transmission from node at the
power of can reach the two destination nodes

and . Thus, the minimum power is at most
. Therefore, the approximation ratio of P-BIP is

at least

As , this ratio converges to

III. CONSTANT-APPROXIMATION ALGORITHMS

In this section, we present constant-approximation algorithms
for Min-Power Asymmetric Multicast Routing and for Min-
Power Symmetric Multicast Routing. In what follows, we use

to denote the set of networking nodes that are located in a
two-dimensional plane. We denote by the weighted complete
graph over in which the weight of each edge is given by

For any subgraph of , the weight of is defined by

A. Asymmetric Multicast Routing

For any finite point set in the two-dimensional plane, we
use to denote an arbitrary Euclidean MST of . Then
the constant is defined by the supreme of
over all finite point sets located in a disk of radius one. It is
proved in [15] that . The following lemma presents
an lower bound on the minimum power required by asymmetric
multicasting of a given communication session.

Lemma 4: Any asymmetric routing for a communication
session requires total power of at least times the
weight of the Steiner minimum tree for .

Proof: Let OPT be a min-power arborescence for
with total power opt. For any nonsink node in OPT, let be
an Euclidean MST of the point set consisting and all children
of in . Suppose that the longest Euclidean distance between

and its children is . Then the transmission power of node
is . Since all children of lie in the disk centered at with

radius , and the length of each edge in is at most , by the
definition of we have

which implies that

Let denote the tree obtained by superposing of all ’s
for nonsink nodes of OPT. Then is a Steiner tree for

. Since opt is equal to the summation of over all
nonsink nodes of OPT, we have

As is at least the weight of the Steiner minimum tree
for , the lemma follows.

Let be any polynomial-time approximation algorithm for
Steiner minimum tree in graphs. For any given communication
session , we first apply on to obtain a Steiner tree
for , and then orient it to an arborescence rooted at
the source, which is used for the asymmetric routing of .
We use to denote this heuristic for Min-Power Asymmetric
Multicast Routing.

Theorem 5: For any -approximation algorithm for
Steiner minimum tree, the approximation ratio of the algorithm

is at most .
Proof: Fix a communication session and let opt be

the minimum power required by its asymmetric routing. Let
be a Steiner minimum tree for in , and be the Steiner
tree for in output by the algorithm . Then

On the other hand, by Lemma 4

which implies that

Thus

Since the total power required by the arborescence oriented from
is at most , the theorem follows.
A number of constant-approximation algorithms for Steiner

minimum trees in graphs have been proposed in literature [8],
[9]. Robins and Zelikovsky [11] gave an approximation algo-
rithm with the best known approximation ratio approaching

. Thus, it can give rise to a heuristic for Min-
Power Asymmetric Multicast Routing with approximation ratio
approaching . How-
ever, this heuristic may be not practical for ad hoc wireless net-
works due to its implementation complexity.
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Takahashi and Matsuyama [14] gave a simple 2-approx-
imation algorithm for Steiner minimum tree in graphs. A
heuristic for Min-Power Asymmetric Multicast Routing based
on Takahashi–Matsuyama Steiner tree heuristic can be im-
plemented easily as follows. Throughout the execution, we
maintain an arborescence rooted at the source node. Initially,
the arborescence contains only the source node. At each
iterative step, the arborescence is grown by one path from
with least total power that can reach a destination not yet in .
This path can be found by collapsing the entire arborescence

into one artificial node and then applying the single-source
shortest-path algorithm. This procedure is repeated until all
required nodes are included in . This heuristic is referred to as
Shortest Path First (SPF). It can be regarded as an adaptation of
MST for Min-Power Asymmetric Broadcast Routing. Indeed,
when the communication session is a broadcast, it acts the
same way as MST. From Theorem 5, we have the following
performance of SPF.

Corollary 6: The approximation ratio of SPF is between 6
and , which is at most 24.

In the next, we present an adaptation of BIP for Min-Power
Asymmetric Broadcast Routing to a heuristic, which we refer
to as Minimum Incremental Path First (MIPF), for Min-Power
Asymmetric Multicast Routing. MIPF is implemented as fol-
lows. Throughout the execution we maintain an arborescence
rooted at the source node. Initially, the arborescence contains
only the source node. At each iterative step, we first find a path
from with the least incremental power that can reach a des-
tination not yet in , where the incremental power of a path is
defined as its total power minus the transmission power in of
its first node. To find this path, we contract into an artificial
node and construct a weighted complete graph over and the
rest nodes not in as follows. The weight of the edge between
any pair of nodes is still . The weight of an
edge between a node and the node is given by

where is the transmission power in of node . We
then apply the single-source shortest-path algorithm on this con-
structed graph to find the shortest paths from to all destina-
tion nodes not in and pick up the one which has the smallest
weight. The desired path is then obtained by replacing with the
appropriate node in . After this path is found, the entire path is
attached to . This procedure is repeated until all destinations
are included in .

Note that if the given communication session is a broadcast,
the algorithm MIPF acts in the same way as BIP. As the approx-
imation ratio of BIP for broadcasting is at least [15], so
must be the approximation ratio of MIPF for multicasting. In the
next, we will derive upper bounds on its approximation ratio.

Theorem 7: The approximation ratio of MIPF is between
and , which is at most 24.

Proof: Fix a communication session and let opt be
the minimum power required by its asymmetric routing. Let
be a Steiner minimum tree for in , and be the Steiner
tree for in output by the algorithm .

Let be the weighted complete graph over in
which the weight of each edge is equal to the weight of the
shortest-path in between the endpoints of this edge. Let

denote the minimum spanning tree of . The weight
of in is exactly the weight of the Steiner tree for

in produced by Takahashi-Matsuyama Steiner tree
heuristic [14]. Thus, the weight of in is at most

.
Now we build another weighted complete graph over

as follows. Suppose that during the execution of MIPF
the nodes in are added in the order
where . Let be the arborescence just after node
is added to . In , the weight of the edge is equal
to the incremental power of the path from to ; and the
weight of any other edge is the same as that in . Then has
the following properties.

1) The weight of any minimum spanning tree in is no
more than the weight of in . This is because
each edge has the same or less weight in than
in and every other edge has the same weight in as
in .

2) The path is a minimum spanning tree of .
Indeed, the execution of Prim’s algorithm on will em-
ulate the algorithm MIPF on in the sense that it will add
the nodes in in the same order.

3) The total power required by is exactly the weight of
the path in . This can be easily proven by
induction on for .

From these three properties, we conclude that the total power
required by is at most the weight of in , which
is in turn at most . The theorem then follows from
Lemma 4.

B. Symmetric Multicasting

In this section, we present constant-approximation algorithms
for Min-Power Symmetric Multicast Routing. Let be any
polynomial-time approximation algorithm for Steiner minimum
tree in graphs. For any given communication session , we
apply on to obtain a Steiner tree for , which is used
for the symmetric routing of . We use to denote this
heuristic for Min-Power Symmetric Multicast Routing. Before
we analyze the performance of , we introduce some nota-
tions. Consider a subgraph of . For each vertex in ,
the power of determined by is denoted by

i.e., the weight of the heaviest edge incident to in . The
power of is denoted by

Theorem 8: For any -approximation algorithm for
Steiner minimum tree, the approximation ratio of the algorithm

is at most .
Proof: Fix a communication session . We use OPT

to denote the min-power arborescence for with total
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power opt, and to denote the Steiner tree for in
output by the algorithm . Let be a Steiner minimum tree
for in .

We first claim that . To prove this, we orient
OPT to an arborescence rooted at . For each node of OPT
other than the root , let be its parent in the arborescence.
Then

This implies that

Next, we claim that . Indeed, by definition, we
have

Therefore

The theorem thus follows.
We remark that Theorem 8 holds for arbitrarily edge-

weighted graphs and its proof remains valid for arbitrary edge
weights as well.

IV. SUMMARY

In this paper, we first derive -lower bounds on the ap-
proximation ratios of the three heuristics P-MST, P-SPT, and
P-BIP proposed by Wieselthier et al. [16] for Min-Power Asym-
metric Multicast Routing. Specifically, the approximation ratio
of P-SPT is at least , the approximation ratio of
P-MST is at least , and the approximation ratio of P-SPT
is at least . We then present constant-approxima-
tion algorithms for Min-Power Asymmetric Multicast Routing.
We show that any -approximation Steiner tree algorithm gives
rise to a -approximation heuristic for Min-Power Asymmetric
Multicast Routing, where is a constant between 6 and 12. In
particular, the Takahashi–Matsuyama Steiner tree heuristic [14]
leads to SPF, which has an approximation ratio of at most .
We also present another heuristic MIPF for Min-Power Asym-
metric Multicast Routing, and show that its approximation ratio

is between and . Both SPF and MIPF can be regarded
as an adaptation of MST and BIP, respectively, in a different
manner than pruning. Finally, we prove that any -approxima-
tion Steiner tree algorithm also gives rise to a -approximation
algorithm for Min-Power Symmetric Multicast Routing.

We recognize that approximation ratio is only one of several
figures of merit that can be used in evaluating heuristics. While
it is useful from the theoretical viewpoint, it may be restrictive
from the practical viewpoint. It would be interesting to know
how well the average performance of all the heuristics proposed
in the literature and in this paper is. However, the study of the
average performance requires sophisticated random geometric
analysis, such as those conducted in [1]–[17]. We leave such
study as future works. Another challenge, and a topic of con-
tinued research, is the development of efficient distributed im-
plementation of some of the heuristics proposed in the literature
and in this paper.
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