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Abstract

This paper addresses the maximal lifetime scheduling for k to 1 sensor–target surveillance networks. Given a set of sen-
sors and targets in Euclidean plane, a sensor can watch only one target at a time and a target should be watched by k

sensors (k P 2) at anytime. Our task is to schedule sensors to watch targets, such that the lifetime of the surveillance system
is maximized, where the lifetime is the duration that all targets are watched. We propose an optimal solution to find the
target watching schedule for sensors that achieves the maximal lifetime. This is the first time in the literature that this
scheduling problem of sensor surveillance systems has been formulated and the optimal solution has been found. Our solu-
tion consists of three steps: (1) computing the maximal lifetime of the surveillance system and a workload matrix by using
linear programming techniques; (2) decomposing the workload matrix into a sequence of schedule matrices by extending
the Hall’s theory, to achieve the maximal lifetime; (3) obtaining a target watching timetable for each sensor based on the
schedule matrices. The time complexity of our optimal method is O(m2n3), where m, n are the number of targets and the
number of sensors, respectively. We illustrate our optimal method by a numeric example and experiments in the end.
� 2005 Elsevier B.V. All rights reserved.
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1. Introductions and related work

A wireless sensor network consists of many low-
cost and low-powered sensor devices (called sensor
nodes) that collaborate with each other to gather,
process, and communicate information using wire-
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less communications [4]. Applications of sensor net-
works include military sensing, traffic surveillance,
environment monitoring, building structures moni-
toring, and so on. One important characteristic of
sensor networks is the stringent power budget of
wireless sensor nodes, because those nodes are
usually powered by batteries and it may not be
possible to recharge or replace the batteries after
they are deployed in hostile or hazardous envi-
ronments [15]. The surveillance nature of sensor net-
works requires a long lifetime. Therefore, it is an
.
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important research issue to prolong the lifetime of
sensor networks in surveillance services.

In this paper, we discuss the scheduling problem
in sensor surveillance networks. Given a set of tar-
gets and sensors in an area, the sensors are used
to watch (or monitor) the targets. A sensor can
watch targets that are within its surveillance range,
and a target can be inside several sensors’ watching
range. Suppose each sensor has a given energy
reserve (in terms of the length of time it can operate
correctly) and each sensor can watch at most one
target at a time. In some applications, it needs sev-
eral sensors to watch one target at any time. For
example, it needs three sensors to precisely deter-
mine a GPS location of a target [18]. So we assume
that each target should be watched by k sensors at
anytime and k P 2. The problem is to find a sche-
dule for sensors to watch the targets, such that all
targets should be watched by k sensors at anytime
and the lifetime of the surveillance is maximized.
The lifetime is the duration up to the time when
there exists one target that cannot be watched by
k sensors due to the depletion of energy of the sen-
sor nodes. By using this schedule, a sensor can
switch off to save energy when it is not its turn to
watch a target. We assume the positions of targets
and sensors are given and are static. This informa-
tion can be obtained via a distributed monitoring
mechanism [10] or the scanning method [11]. We
further assume that a data aggregation tree has been
constructed and some energy-efficient data gather-
ing protocol [2,6] is taken to gather the data, since
discussing how to collect data to the base-station
is beyond the scope of the paper.

Extensive research has been done on extending
the lifetime of sensor networks. Authors in [12]
studied the upper bounds on the lifetime of sensor
networks used in data gathering in various scenar-
ios. Both analytical results and extensive simula-
tions showed that the derived upper bounds are
tight for some scenarios and near-tight (about
95%) for the rest. The authors further proposed a
technique to find the bounds of lifetime by parti-
tioning the problem into the sub-problems for
which the bounds are either already known or easy
to derive. A differentiated surveillance service for
various target areas in sensor networks was dis-
cussed in [15]. The proposed protocol was based
on an energy-efficient sensing coverage protocol
that makes full coverage to a certain geographic
area. It is also guaranteed to achieve a certain
degree of coverage for fault tolerance. Simulations
showed that a much longer network lifetime and a
small communication overhead could be achieved.
An energy-efficient surveillance system was designed
and implemented in [16]. It was used to detect and
track the positions of moving vehicles in a stealthy
manner. The system was separated into five phases:
system initialization, neighbor discover, sentry
selection, report status, power management and
tracking activity. Simulations showed that tradeoff
between energy-awareness and surveillance perfor-
mance is adaptable and the extension of network
lifetime is achievable.

Another important technique used to prolong the
lifetime of sensor networks is the introduction of
switch on/off modes for sensor nodes. Recent works
on energy efficiency in three aspects, namely area
coverage, request spreading and data aggregation,
were surveyed in [8]. It pointed out that the best
method for conserving energy is to turn off as many
sensors as possible, at the same time, however, the
system must maintain its functionality. A distrib-
uted scheduling algorithm for stationary continuous
monitoring sensor networks was investigated in [1].
It assumed that sensor networks are time synchro-
nized. The proposed scheme exploited the time scale
difference between network reconfiguration periods
and data forwarding periods, to enable sensors to
be awake only when necessary. Simulation results
showed the network lifetime can be significantly
increased. Another node scheduling scheme was
developed in [3]. This scheme schedules the nodes
to turn on or off without affecting the overall service
provided. A node decides to turn off when it discov-
ers that its neighbors can help it to monitor its mon-
itoring area. The scheduling scheme works in a
localized fashion where nodes make decisions based
on its local information. Similar to [3], the work in
[9] defined a criterion for sensor nodes to turn them-
selves off in surveillance systems. A node can turn
itself off if its monitoring area is the smallest among
all its neighbors and its neighbors will become
responsible for that area. This process continues
until the surveillance area of a node is smaller than
a given threshold. A deployment of a wireless sensor
network in the real world for habitat monitoring
was discussed in [13]. A network consisting of 32
nodes was deployed on a small island to monitor
the habitat environment. Several energy conserva-
tion methods were adopted, including the use of
sleep mode, energy-efficient communication pro-
tocols, and heterogeneous transmission power for
different types of nodes.
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Different from the above work, the paper dis-
cusses the maximal lifetime scheduling problem for
k to 1 sensor–target surveillance systems. To the
best knowledge of the authors, this is the first work
so far that addresses how to schedule sensors to
watch targets in surveillance systems, such that the
lifetime of the system is maximized.

The rest of the paper is organized as follows. Sec-
tion 2 is the problem definition. We first consider a
simple case k = 2 in Section 3, and present our solu-
tion that consists of three parts. Section 3.1 gives a
linear programming formulation that is used to
compute the maximal lifetime of the surveillance
system. In Section 3.2, we show that the maximal
lifetime is achievable, and detailed algorithms for
finding the schedule are presented. Section 3.3 dis-
cusses the final schedule timetable for sensors. Sec-
tion 4 extends the optimal results to the general
cases k P 2. Section 5 presents a numeric example
solved by using our method. Simulations are further
conducted. We conclude our work in Section 6.

2. System model and problem statement

We consider a set of targets and a set of sensors
that are used to watch targets and collect informa-
tion. We first introduce the following notations:

S set of sensors
T set of targets
n = jSj number of sensors
m = jTj number of targets
k number of sensors that are required to

watch a target at anytime
S(j) set of sensors that are able to watch target j,

j = 1, . . . ,m
T(i) set of targets that are within the surveil-

lance range of sensor i, i = 1, . . . ,n

Ei initial energy reserve of sensor i, i = 1, . . . ,n

Notice that S(i) may overlap with S(j) for i 5 j,
and T(i) may overlap with T(j) for i 5 j. There are
two requirements for sensors watching targets:

1. Each sensor can watch at most one target at a
time.

2. For each target, there will be k sensors to watch it
at anytime and k P 2.

The problem of our concern is, for given S, T and
k, to find a schedule that meets the above two
requirements for sensors watching targets, such that
the lifetime of surveillance is maximized. The life-
time of surveillance is defined at the length of time
until there exists a target j such that the number
of sensors that do not run out their energy in S(j)
is less than k.

We tackle the problem in three steps. First, we
compute the upper bound on the maximal lifetime
of the system and a workload matrix of sensors.
Second, to achieve the upper bound, we successfully
decompose the workload matrix into a sequence of
schedule matrices. Finally, we obtain a target
watching timetable for each sensor based on the
schedule matrices. To present our solutions, we first
consider a simple case k = 2, then we extend the
results to general cases k P 2.

3. A simple case k = 2

In this section, we consider the case that each tar-
get requires two sensors to watch at anytime during
the lifetime of surveillance systems. We present our
optimal solutions step by step.

3.1. Find maximal lifetime

We use linear programming (LP) technique to
find the maximum lifetime of the system. Let L

denote the lifetime of the surveillance system, and
xij be the variable denoting the total time sensor i

watching target j, where i 2 S, j 2 T. The problem
of finding the maximum lifetime for sensors watch-
ing targets can be formulated as the following:

Objective: Max L

s.t.
X
i2SðjÞ

xij ¼ 2L 8j 2 T ; ð1Þ

X
j2T ðiÞ

xij 6 L 8i 2 S; ð2Þ

X
j2T ðiÞ

xij 6 Ei 8i 2 S. ð3Þ

Eq. (1) specifies that for each target j in T, since it
requires two sensors to watch target j at anytime,
the total time that the target j under surveillance is
two times of lifetime of the system. That is, each tar-
get should be watched by two sensors throughout
the lifetime.

Inequality (2) implies that for each sensor i in S,
the total time that it watches targets should not
exceed the lifetime of the system. Any service of
the sensors beyond that time becomes useless.
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Inequality (3) ensures that for each sensor i in S,
its total working time (i.e., the total time it watches
targets) should not exceed its battery’s lifetime.

The above formulation is a typical LP formula-
tion, where xij, 1 6 i 6 n and 1 6 j 6 m, are real
number variables and the objective is to maximize
L. The optimal results of xij and L can be computed
in polynomial time.

However, L, obtained from computing the above
LP formation, is the upper bound on the lifetime,
and each xij specifies only the total time that sensor
i should watch target j in order to achieve this upper
bound L. Now we have two questions:

1. Is this upper bound of lifetime L achievable? If
yes, then

2. How to schedule sensors to watch targets, such
that each value of xij, 1 6 i 6 n and 1 6 j 6 m,
can be actually met?

In answering question (2), we need to find a time-
table for each sensor that specifies from what time
to what time that this sensor should watch which
target.

The values of xij, 1 6 i 6 n and 1 6 j 6 m,
obtained from the LP, can be represented as a matrix:

X n�m ¼

x11x12 . . . x1m

x21x22 . . . x2m

� � �
xn1xn2 . . . xnm

2
66664

3
77775

n�m

.

We call the matrix Xn·m workload matrix, for it
specifies the total length of time that a sensor should
watch a target. There are two important features
about the workload matrix when k = 2:

1. The sum of all elements in each column is equal
to 2L (from Eq. (1) in the LP formulation).

2. The sum of all elements in each row is less than
or equal to L (from in Eq. (2) in the LP
formulation).

In the next step, we need to show that the upper
bound of lifetime L is achievable, and find the
detailed schedule for sensors to watch targets based
on the workload matrix.

3.2. Decompose workload matrix

The lifetime of the surveillance system can be
divided into of a sequence of sessions. In each ses-
sion, a set of sensors are scheduled to watch their
corresponding targets; and in the next session,
another set of sensors are scheduled to work (some
sensors may work continuously for multiple ses-
sions). Suppose a sensor will not switch to watch
another target within a session. Thus, the schedule
of sensors during a session can be represented as a
non-negative matrix. In this matrix, there are exactly
two positive numbers in each column, representing
each target should be watched by two sensors; and
at most one positive number in each row, represent-
ing each sensor can watch at most one target and
there is no switching to watch other targets in a ses-
sion. Furthermore, all the non-zero elements in this
matrix have the same value, which is the time dura-
tion of this session. Now, our task becomes to
decompose the workload matrix into a sequence of
session schedule matrices, represented as

x11x12 . . .x1m

x21x22 . . .x2m

x31x32 . . .x3m

� � �
xn1xn2 . . .xnm

2
666664

3
777775

n�m

¼

0c10 . . .0

c100 . . .0

c100 . . .0

� � �
00c1 . . .0

2
666664

3
777775
þ

c200 . . .0

000 . . .c2

0c20 . . .0

� � �
0c20 . . .0

2
666664

3
777775
þ�� �þ

000 . . .ct

00ct . . .0

00ct . . .0

� � �
0ct0 . . .0

2
666664

3
777775
;

where ci, i = 1,2, . . . , t, is the length of time of ses-
sion i, and t the total number of sessions. We call
this sequence of session schedule matrices the sche-

dule matrices. Considering the schedule matrix of
session i, all elements in it are either 0 or ci, each col-
umn has exactly two non-zero elements, and each
row has at most one non-zero element (it could be
all 0, indicating the sensor is idle in this session).

The next, we discuss how to decompose the
workload matrix into a sequence of schedule matri-
ces. We first consider a simple special case of
n = 2m, i.e., the number of sensors is two times of
the number of targets in the system. Then, we
extend the results to the general cases of n P 2m.

3.2.1. A special case n = 2m

We consider the case n = 2m. Let Ri and Cj

denote the sum of row i and the sum of column j

in the workload matrix, respectively. According to
Eq. (1) and in Eq. (2) of the LP formation, we have

Cj ¼ 2L; j ¼ 1; 2; . . . ;m; ð4Þ
Ri 6 L; i ¼ 1; 2; . . . ; n. ð5Þ

Furthermore, since
Pn

i¼1Ri ¼
Pm

j¼1Cj ¼ m� 2L and
n = 2m, we have

Xn

i¼1

Ri ¼ n� L. ð6Þ
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Combining (5) and (6), we have

Ri ¼ L; i ¼ 1; 2; . . . ; n. ð7Þ

Eqs. (4) and (7) imply that for the workload matrix
the sum of each column is equal to 2L while the sum
of each row is equal to L.

The basic idea of decomposing the workload
matrix is to represent the workload matrix as a
bipartite graph where one side are sensors and
the other are targets. The bipartite graph consists
of two set of nodes S = (s1, s2, . . . , sn) and T =
(t1, t2, . . . , tm), n = 2m, representing sensors and tar-
gets respectively. For each non-zero element xij in
the workload matrix, there is an edge from si to tj

and the weight of the edge is xij. Thus, the schedule
problem in each session is transformed into the
problem of finding matching in the bipartite graph,
such that there are exactly two sensors matching
one target. We first introduce the definition of the
2-matching.

Definition 1. 2-matching: Let G(S [ T,E) be a
bipartite graph with bipartition {S,T}, where
jSjP 2jTj. 2-matching is defined as a subset of
edges in E, such that

1. For each vertex in S, no two edges share the
vertex.

2. For each matched vertex in T, there are exactly
two edges share the vertex.

The 2-matching means that 1 vertex in T exactly
matches 2 vertexes in S. Applying the 2-matching to
our problem, T is the targets set and S is the sensors
set. We further define the perfect 2-matching.

Definition 2. Perfect 2-matching: If jSj = 2jTj and a
2-matching contains 2jTj edges, the largest possible,
we call it the perfect 2-matching.

For a schedule matrix of size n by m, there are
exactly two non-zero elements in a column and at
most one non-zero element in a row, since n = 2m,
there is exactly one non-zero element in each row.
That is, such schedule matrix can be represented
as a perfect 2-matching in a bipartite graph. Thus,
the decomposing process is as follows. We first
transform a workload matrix which is computed
from Section 3.1 into a bipartite graph. Then we
compute a perfect 2-matching in the bipartite graph,
which has exactly n edges. Let ci be the smallest
weight of the n edges. Deduct ci from the weight
of the n edges in the perfect 2-matching and remove
the edge whose weight becomes zero. This operation
is repeated until there is no perfect 2-matching can
be found in the bipartite graph.

Because we try to decompose the workload
matrix by using the technique of finding the perfect
2-matchings, the questions we have now are:

Q1. Does it guarantee that there exists a perfect 2-
matching in every round of the decomposition
process?

Q2. If it exists, how to compute?
Q3. Does it guarantee that the decomposing of the

workload matrix can be done in polynomial
time? That is, is the number of decomposing
rounds bounded?

We will answer the above questions one by one.
To answer Q1, we first extend the Hall’s Theory

[7]. For "U � T, we define N(U) = {S(j)jj 2 U,
S(j) 2 S}.

Theorem 1. Let G(S [ T,E) be a bipartite graph

with bipartition {S,T}, where jSj = 2jTj. G contains a

perfect 2-matching if and only if jN(U)jP 2jUj for all

U � T.

Proof. Obviously, the condition is necessary. We
will prove this necessary condition is in fact suffi-
cient. We apply induction on jTj. For jTj = 1, the
assertion is true.

We assume that the condition is sufficient when
jTj 6 p. That is, there exists a perfect 2-matching in
G if jN(U)jP 2jUj for all U � T.

When jTj = p + 1, we try to construct a perfect 2-
matching based on the above assumption. Since
jN(U)jP 2jUj for all U � T, there are three cases:
(1) $U � T, jUj5 0 and jN(U)j = 2jUj, (2) $U � T,
jUj5 0 and jN(U)j = 2jUj + 1, (3) for "U � T,
jN(U)jP 2jUj + 2. A perfect 2-matching can be
constructed for all three cases. We prove the
theorem case by case.

Case 1: If $U � T, jUj5 0 and jN(U)j = 2jUj, we
define V = N(U) and G 0((S � V) [ (T � U), E 0),
where E 0 is a subset of E after subtracting edges
related to U and V. We claim that G 0 satisfies:
jNG0 ðU 0ÞjP 2jU 0j for all U 0 � T � U. If not, there
exist U 0 � T � U and jNG0 ðU 0Þj < 2jU 0j.

We have jNGðU 0 þ UÞj 6 jNGðUÞj þ jN G0 ðU 0Þj <
2jU j þ 2jU 0j ¼ 2jU þ U 0j, that is jNG(U 0 + U)j <
2jU + U 0j.

It contradicts to our assumption. So, according
the induction hypothesis, we know there exists a
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perfect 2-matching in G 0 and G � G 0, respectively.
Putting the two matchings together, we obtain a
perfect 2-matching of T in G.

Case 2: If $U � T, jUj5 0 and jN(U)j = 2jUj +
1, similar to the above case, we claim that G 0

satisfies: jNG0 ðU 0ÞjP 2jU 0j for all U 0 � T � U. If
not, there exist U 0 � T � U and jNG0 ðU 0Þj < 2jU 0j.
We have

jNGðU 0 þUÞj6 jNGðUÞjþ jNG0 ðU 0Þj
< 2jU jþ1þ2jU 0j ¼ 2jU þU 0jþ1;

jNGðU 0 þUÞj< 2jU þU 0jþ1; that is; jNGðU 0 þUÞj6 2jU þU 0j.

Furthermore, we know jNG(U 0 + U)jP 2jU +
U 0j, then jNG(U 0 + U)j = 2jU + U 0j. This is the first
case we proved. So we can construct a perfect 2-
matching for this case.

Case 3: If for "U � T, jN(U)jP 2jUj + 2, we
arbitrarily pick two edges ab1, ab2 and consider the
graph G 0((S � {b1,b2}) [ (T � {a}),E � {ab1,ab2}).
For "U 0 � T � {a},

jN G0 ðU 0ÞjP jN GðU 0Þj � 2 P 2jU 0j þ 2� 2

¼ 2jU 0j; that is; jN G0 ðU 0ÞjP 2jU 0j.

So by the induction hypothesis G 0 contains a per-
fect 2-matching of T � {a}. Together with the edges
ab1 and ab2, we obtain a perfect 2-matching of T in
G.

Theorem is proved. h

Based on Theorem 1, the following theorem gives
an answer to Q1.

Theorem 2. For any workload matrix of size n by m,

if n = 2m, there exists a perfect 2-matching in every

round of decomposing process.

Proof. According to Theorem 1, we need to prove
jN(U)jP 2jUj for all U � T in every round of
decomposing process.

We first consider a workload matrix of size n by
m, where each row corresponds to a sensor while
each column corresponds to a target. For "U � T,
let p = jUj and q = jN(U)j, they represent p targets
(columns) and q sensors (rows), respectively.
jN(U)j = q means that we can use q rows to cover
all non-zero elements in the corresponding p
columns.

For each column of p, since q rows cover all non-
zero elements in this column, all non-zero elements in
this column are distributed on the positions of q

rows. That is, the sum of non-zero elements that are
covered by q rows in this column is equal to 2L. Thus,
the total sum of non-zero elements that are both
covered by q rows and p columns is equal to 2pL.

For each row of q, since the sum of all elements
in each row is equal to L, the sum of non-zero
elements that are covered by p columns in this row is
less than or equal to L. Thus, the total sum of
non-zero elements that are both covered by q rows
and p columns is less than or equal to qL. That
is qL P 2pL, thus, jN(U)jP 2jUj. According to
Theorem 1, we know that there exists a perfect
2-matching in the workload matrix.

In the following, we will prove that after
deducting a schedule matrix from the workload
matrix, the remaining matrix is still a workload
matrix. So the decomposing process can continue.

Assume that we compute a perfect 2-matching
and get its corresponding schedule matrix in round
i. Since n = 2m, there are exactly two non-zero
elements in each column and exactly one non-zero
element in each row in the schedule matrix. We
denote this non-zero element by ci. After deducting
the schedule matrix from the workload matrix, the
sum of all elements in each row in the remaining
matrix is equal to L � ci, and the sum of all elements
in each column in the remaining matrix is equal to
2L � 2ci. We replace (L � ci) with L, the remaining
matrix still satisfies the definition of the workload
matrix. That is, there exists a perfect 2-matching in
every round of decomposing process.

Theorem 2 is proved. h

With the guarantee of Theorem 2, our next step is
to find an algorithm to compute the perfect 2-
matching in bipartite graphs. We propose an effi-
cient decomposition algorithm that is extension of
the labeling algorithm for perfect matching [5]. Let
M denote a set of edges of a 2-matching. We use
(si, tj) to denote an edge from S to T and (tj, si)
denote an edge from T to S. There is no direction
of edges in the graph, but this notation helps to
describe the algorithm. Furthermore, we call a tar-
get tj in T is 2-unsaturated to M if and only if there
are less than 2 edges in M that start (end) with tj.
The algorithm starts from any matching in the
graph. Each time, it selects the first 2-unsaturated
target and tries to find an M-path (called augment
matching path) staring from this target. An M-path

is a path in the bipartite graph. It starts with a T

node that is 2-unsaturated to M and end with an
S node that is not in M, and any edge in the M-path
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from T to S should not be in M and any edge from
S to T should be in M. We can see that there are
always one more non-M-edges than the M-edges
in an M-path (an M-edge is an edge in M). Thus,
by replacing M-edges in the M-path by the non-
M-edges, the number of edges in M is incremented
by 1. We keep on finding this M-path for every 2-
unsaturated target and increasing the size of M,
until a perfect 2-matching is found. For clarity of
notation, in the algorithm, ‘‘si 2M’’ simply means
si is an end-node of an edge in M and ‘‘si 62M’’
means si is not an end-node of an edge in M. The
detailed algorithm is given as follows. (The labels
assigned to targets (sensors) in the algorithm are
used to remember the previous vertex of the targets
(sensors) in an M-path. The target labeled with ‘‘*’’
is the start of an M-path.)

Perfect-2-Matching Algorithm

Input: a bipartite graph G = (S [ T,E).
Output: a perfect 2-matching M.
Begin
pick any edge from E and add to M;
while there exist 2-unsaturated targets do

select the first 2-unsaturated target t and
label t with *;
for si 2 S(t) and (t, si) 62M

label si with t;
while all newly labeled si 2M do //M-path
is not found so far
for all newly labeled si and unlabeled
tj 2 T(si)

if (si, tj) 2M

label tj with si;
for all newly labeled tj and unlabeled
si 2 S(tj)

if(tj, si) 62M

label si with tj;
endwhile

// have found an M-path which starts with t

and ends with si 62M.
remove M-edges in M-path from M and
add in non-M-edges to M;

endwhile
End

The following theorem claims the correctness of
the Perfect-2-Matching algorithm.

Theorem 3. The Perfect-2-Matching algorithm is

correct and the time complexity is O(mn2).
Proof. It is equal to prove that the Perfect-2-Match-

ing algorithm can find the perfect 2-matching if it
exists in a bipartite graph. We will prove it using
induction method.

When jTj = 1, T = {t1}. Since the perfect 2-
matching exists, there should be at least two edges
that star with t1. The algorithm will find all the M-

paths of t1 before it enters the second ‘‘while’’ loop.
Each M-path contains only one edge. Then the
perfect 2-matching is found.

We assume that the algorithm is correct when
jTj = m. That is, the algorithm can find the perfect
2-matching which contains exactly 2m edges.

When jTj = m + 1, according to the above
assumption, a 2-matching which contains 2m edges
can be found. That is, only one target is left 2-
unsaturated. We consider this 2-unsaturated target
t. Since we assume the perfect 2-matching Mp exists,
the M-path which stars with t exists. Our algorithm
is to globally search the M-path which stars with t in
breadth-first order, so we can find the M-path which
stars with t. The only concern is that we may find an
improper M-path which stars with edge (t, si) 62Mp,
and adding this edge may affect the latter searching
for the M-path which stars with t. In the following,
we prove that if (t, si) 62Mp, there must exist another
perfect 2-matching M 0p which contains (t, si).

We assume that the two edges that star (end)
with t in Mp are (t, sp) and (t, sq), and initialize
M 0p ¼ Mp � fðt; spÞ; ðt; sqÞg. Note that current 2-
matching M increases by 1 each time after an M-

path is found. If t is still 2-unsaturated after we find
an M-path which stars with edge (t, si) 62Mp, we first
add (t, si) to M 0p to make its size 2m + 1. If si 2 M 0p, it
means that there exist ðtj; siÞ 2 M 0p and (tj, si) con-
flicts with (t, si), we remove (tj, si) from M 0p and
compensate it by adding a new edge (tj, sk) which
comes from M. If sk 2 M 0p still holds, we repeat the
above process to eliminate conflict until sk 62 M 0p or
sk 2 {sp, sq}. If sk 62 M 0p and sk 62 {sp, sq}, we arbi-
trarily pick an edge from (t, sp) or (t, sq) and add it
to M 0p. If sk 2 {sp, sq}, for example sk = sp, we add
the other edge (t, sq) to M 0p. Now, M 0p contains
2m + 2 edges and there are exactly two edges share a
common vertex in T. That is, M 0p is a perfect 2-
matching which contains edge (t, si). The Perfect-2-

Matching algorithm is correct.
In the algorithm, to find a perfect 2-matching

which contains 2m edges, we need to find 2m M-

paths. Furthermore, since we may search all edges in
the bipartite graph to find an M-path, it costs time
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O(mn). So the total time complexity is O(2m2n), i.e.,
O(mn2).

Theorem 3 is proved. h

The Perfect-2-Matching algorithm and Theorem
3 give an answer to Q2. The answer to Q3 is in
the following theorem.

Theorem 4. The decomposing of a workload matrix

can be done in O(m2n3), where m, n are the number of

targets and the number of sensors, respectively.

Proof. For the decomposition of the workload
matrix, Theorem 2 guarantees that there exists a
perfect 2-matching in every round of decomposing
process. Theorem 3 shows that we can find the per-
fect 2-matching if it does exist.

In each round, we use Perfect-2-Matching algo-
rithm to compute a perfect 2-matching in the
bipartite graph, which has exactly n edges. Let ci

be the smallest weight of the n edges. Deduct ci from
the weight of the n edges in the perfect 2-matching
and remove the edge whose weight becomes zero. It
is equal to deduct a schedule matrix from the
workload matrix, and there is at least one element in
the workload matrix becomes zero. This operation
is repeated until all elements in the workload matrix
become zero. Since there are n · m elements in the
workload matrix, the decomposition round is
bounded by n · m.

Combining with Theorem 3, the total time
complexity to decompose a workload matrix is
O(m2n3).

Theorem 4 is proved. h

After answering Q1, Q2 and Q3, the maximal
lifetime scheduling problem can be solved when
n = 2m, where m, n are the number of targets and
the number of sensors, respectively. In the next
section, we will discuss the general cases n > 2m.
3.2.2. General cases n > 2m

When n > 2m, our basic idea is to transform the
case to n = 2m by adding some dummy targets
and sensors. That is to ‘‘fill’’ the workload matrix
Xn·m with some dummy columns and rows, such
that the sum of all elements in each row and column
are equal to L and 2L, respectively. Let Zp·q denote
the dummy matrix, we consider two cases.

1. If n is even, we add Zn·(n/2�m) to the right hand
side of Xn·m, the resulting matrix, denoted by
Wn·n/2, is in the form as
W n�n=2 ¼

x11x12 . . . x1m z11z12 . . . z1n=2�m

x21x22 . . . x2m z21z22 . . . z2n=2�m

� � � � � �
xn1xn2 . . . xnm zn1zn2 . . . znn=2�m

2
6664

3
7775

n�n=2

.

2. If n is odd, we first add a dummy row (0, 0, . . . , 0)
to the bottom of Xn·m. It is equal to add a
dummy sensor with energy Ei = 0 to the network.
That does not affect our optimal solution. Then,
we add Z(n+1)·((n+1)/2�m) to the right hand side of
X(n+1)·m, the resulting matrix, denoted by
W(n+1)·(n+1)/2, is in the form as

W ðnþ1Þ�ðnþ1Þ=2

¼

x11x12 .. .x1m z11z12 . .. z1ðnþ1Þ=2�m

x21x22 .. .x2m z21z22 . .. z2ðnþ1Þ=2�m

� � � � � � � ��
xn1xn2 .. .xnm zn1zn2 . .. znðnþ1Þ=2�m

00 . . .0 zðnþ1Þ1zðnþ1Þ2 . . . zðnþ1Þðnþ1Þ=2�m

2
6666664

3
7777775
ðnþ1Þ�ðnþ1Þ=2

.

To make matrix W having the feature of (4) and
(7), i.e., the sum of each column is two times of the
sum of each row, the dummy matrix Zp·q should
satisfy the following conditions:

1. R0i ¼
Xq

j¼1

zij ¼ L� Ri; for 8i ¼ 1; 2; . . . ; p; ð8Þ

2. C0j ¼
Xp

i¼1

zij ¼ 2L; for 8j ¼ 1; 2; . . . ; q. ð9Þ

We propose a simple algorithm to compute the
dummy matrix Zp·q. The algorithm starts to assign
values to the elements of Zp·q from its top-left cor-
ner. Let R�i and C�j record the sum of the remaining
undetermined elements of row i and column j,
respectively, for i = 1,2, . . . ,p and j = 1,2, . . . ,q. Ini-
tially, R�i  ðL� RiÞ and C�j  2L, where Ri and L

are computed from matrix Xn·m. The strategy of the
algorithm is to assign the remaining sum of the row
(or column), as much as possible, to an element
without violating conditions (8) and (9), and assign
the rest elements of the row (or column) to 0. Then,
we move down to the next undetermined element
from the top-left of the matrix. For example, we
start with z11. Now R�1 is (L � R1) and C�1 is 2L,
i.e., R�1 < C�1 . Thus, we can assign R�1 to z11, and
assign 0 to the rest of elements of row 1 (so condi-
tion (8) is met). Then, C�1 should be updated to
ðC�1 � z11Þ, because the remaining sum of column
1 now becomes ðC�1 � z11Þ and this value is used to
ensure that condition (9) will be met during the pro-
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cess. Suppose we now come to element zij, (i.e., ele-
ments of zkl, for k = 1, . . . , i � 1 and l = 1, . . ., j � 1,
are already determined so far). We compare R�i with
C�j . There are three cases:

1. C�j > R�i : it means zij can use up the remaining
value the sum of row i, i.e., R�i . Thus, zij  R�i
and the rest elements of this row should be
assigned to 0. So, all elements of row i have been
assigned and condition (8) is met for row i.

2. R�i > C�j : it means zij can use up the remaining
value the sum of column j, i.e., C�j . Thus,
zij  C�j and the rest elements of this column
should be assigned to 0, i.e., zkj = 0, k = 2,
3, . . . ,p. By doing so, all elements of column j

have been assigned and condition (9) is met for
column j.

3. R�i ¼ C�j : we can determine elements in both row
i and column j by zij  R�i and setting the rest
elements in row i and in column j to 0. It is easy
to see that condition (8) is met for row i and
condition (9) is met for column j.

After determining each row (or column), we need
to update C�j (or R�i ), before moving to the next row
(or column). Each step, we can determine the ele-
ments in one row (or column). This process is
repeated until all elements in Zp·q are determined.
The details of the algorithm are given below.

FillMatrix Algorithm (k = 2)

Input: workload matrix Xn·m.
Output: dummy matrix Zp·q.
Begin
if (n � 2m)%2 = 0
p = n;

else
p = n + 1;

q = p/2 � m;
R�i ¼ L� Ri; for i ¼ 1 to p;
C�j ¼ 2L; for j ¼ 1 to q;
i = 1; j = 1;

while(i 6 p) && (j 6 q) do

if C�j > R�i then // determine elements in
row i.

zij ¼ R�i ;
zik = 0, for k = j + 1 to q; // set the rest
of row i to 0.
C�j ¼ C�j � zij;
i = i + 1;

else if R�i > C�j // determine elements in
column j.
zij ¼ C�j ;
zkj = 0, for k = i + 1 to p; // set the rest
of column j to 0.
R�i ¼ R�i � zij;
j = j + 1;

else // determine elements in both row i

and column j.
zij ¼ R�i ;
zik = 0, for k = j + 1 to q;
zkj = 0, for k = i + 1 to p;
i = i + 1; j = j + 1;

endwhile
End
The following theorem claims the correctness of
the FillMatrix algorithm.

Theorem 5. For a given workload matrix Xn·m,

FillMatrix algorithm can compute Zp·q, such that

the resulting matrix [Xp·m Zp·q]p·p/2 is the workload

matrix, where the sum of each column is two times of
the sum of each row.

Proof. At the beginning of the FillMatrix algo-
rithm, row sums and column sums of the dummy
matrix are initialized, and then the dummy matrix
is worked out step by step to satisfy conditions (8)
and (9). So we can prove a general case: given row
sums R0i and column sums C0j of a matrix Zn·m,
i = 1,2, . . . ,n, j = 1,2, . . . ,m, the proposed algorithm
can compute all elements zij that satisfy conditions
(8) and (9). We use the induction method to prove
the theorem.

1. When n = 1, m = 1, according to the FillMatrix

algorithm, since C�1 ¼ R�1 , we have z11 ¼
R�1 ¼ C�1 ¼ R01 ¼ C01. The conditions (8) and (9)
are both met.

2. We assume when n 6 p � 1, m 6 q � 1, the pro-
posed algorithm can compute Zn·m, such that
the conditions (8) and (9) are both met.

3. When n = p, m = q, according the algorithm, we
first compare C�1 with R�1 , there are three cases.
(a) If C�1 ¼ R�1 , then set z11 ¼ R�1 , z1k = 0,

k = 2,3, . . . ,m and zk1 = 0, k = 2,3, . . . ,n.
For the row 1 and column 1 where zij have
been determined, we have

Pm
j¼1z1j ¼ z11 ¼

R�1 ¼ R01 and
Pn

i¼1zi1 ¼ z11 ¼ C�1 ¼ C01. So
the conditions (8) and (9) are both met in
row 1 and column 1. The remaining undeter-
mined elements zij, i = 2,3, . . . ,n, j = 2,3, . . . ,
m, are in the matrix Z(p�1)·(q�1). According
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to assumption (2), the remaining matrix
Z(p�1)·(q�1) can be correctly worked out.

(b) If C�1 > R�1 , then set z11 ¼ R�1 , z1k = 0,
k = 2,3, . . . ,m and C�1 ¼ C�1 � R�1 . For the
row 1 where zij have been determined, we
have

Pm
j¼1z1j ¼ z11 ¼ R�1 ¼ R01, condition (8)

is met. For the column 1 which is updated,
we have C�1 þ z11 ¼ C01, it does not violate
condition (9). The remaining undetermined
elements zij, i = 2,3, . . . ,n, j = 1,2,3, . . . ,m,
are in the matrix Z(p�1)·q. We continue run
the algorithm to compute the remaining ele-
ments in Z(p�1)·q that satisfies the conditions
(8) and (9). Note that C�1 monotonously
decreases after each round of assignment
and

Pn
i¼2R�i ¼

Pm
j¼1C�j > C�1 . There must

exist R�l P C�1 in round l, we set zl1 ¼ C�1 ;
zk1 ¼ 0; k ¼ lþ 1; lþ 2; . . . ; n and R�l ¼
R�l � C�1 . Then the remaining matrix is
Z(p�l+1)·(q�1). According to assumption (2),
the remaining matrix Z(p�l+1)·(q�1) can be
correctly worked out.

(c) If R�1 > C�1 , similar to (b), we can prove this
case.
4. The proof of cases n = p, m = q � 1 and
n = p � 1, m = q are similar to (3).

Combining (1)–(3) with (4), the proposed algo-
rithm can correctly compute all elements in the
matrix Zp·q, such that the conditions (8) and (9) are
both met.

Theorem 5 is proved. h

Theorem 6. The time complexity of the FillMatrix

algorithm is O(n2).

Proof. In FillMatrix algorithm, each time we com-
pare R�i with C�j , and determine elements in row i

or column j. Note that the number of R�i and C�j
both are at most O(n). So the total time complexity
of the proposed algorithm is O(n2).

Theorem 6 is proved. h
Integrating together with FillMatrix algorithm
and Perfect-2-Matching algorithm, we have the
algorithm of decomposing the workload matrix as
follows.

DecomposeMatrix Algorithm

Input: the workload matrix Xn·m.
Output: a sequence of schedule matrices.
Begin

if n > 2m then

Run FillMatrix algorithm to obtain a
matrix Wp·p/2;

Construct a bipartite graph G fromWp·p/2;
while there exist edges in G do

Run Perfect-2-Matching algorithm on G to
find a perfect 2-matching M;
Record Pi; //Pi: the scheduling matrix of M;
Deduct Pi from Wp·p/2 and remove edges
with weight 0 in G;

endwhile
Output Wp·p/2 = P1 + P2 + � � � + Pt;

End
Theorem 7. The total time complexity of the Decom-

poseMatrix Algorithm is O(m2n3).

Proof. Combining Theorem 4 with Theorem 6, it is
proved. h
3.3. Obtain schedule timetable

The above discussion concludes that if each tar-
get requires two sensors to watch at anytime, the
maximal lifetime scheduling problem can be solved
in three steps. First, we compute the upper bound
on the maximal lifetime of the system by linear pro-
gramming technique, and get a workload matrix
Xn·m. Second, we use the FillMatrix algorithm to fill
the matrix, such that the resulting matrix Wp·p/2 sat-
isfies conditions (4) and (7). Then we use the Decom-

poseMatrix algorithm to decompose the workload
matrix Wp·p/2 into a sequence of schedule matrices
as follows:

W p�p=2 ¼ P 1 þ P 2 þ � � � þ P t; ð10Þ

where Pi is the scheduling matrix which corresponds
to a perfect 2-matching. According to Theorem 4, t

can be bounded by n · m.
Let P 0i denote the matrix which contains the first

n rows and m columns in Pi (i.e., the information for
the n valid sensors and m valid targets by dropping
the dummy parts), i = 1,2, . . . , t. We have

X n�m ¼ P 01 þ P 02 þ � � � þ P 0t. ð11Þ

Finally, we have obtained a sequence of schedule
matrices by decomposing the workload matrix.
Each schedule matrix specifies sensors watching tar-
gets for the same period of time (called a session). In
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fact, there is no need for all sensors to start watch-
ing their corresponding targets at the same time,
and switch synchronously to other targets (or switch
off) at the end of a session. Each sensor’s schedule
can be independent from the others. That is, sensors
can switch on/off and switch to watch other targets
asynchronously from each other. To come up with
the target-watching timetable for sensor i, we simply
take the i-th row of all the schedule matrices, and
combine the time of the consecutive sessions that
it watches the same target (in this case there is no
need for sensor i to switch). Finally, we have an
independent timetable for each sensor. Since global
clock synchronization is achievable in sensor net-
works by using some localized method [14] and time
synchronization scheme [17], sensors can cooperate
correctly according to timetable to achieve the max-
imal network lifetime.

We will show an example in Section 5 to demon-
strate the schedule timetable.
4. General cases k > 2

The maximal lifetime scheduling problem can be
solved in general cases k P 2. Similar to the discus-
sion of case k = 2, we tackle the problem in three
steps.

First, we extend the linear programming formu-
lations. The problem of finding the maximum life-
time for sensors watching targets can be
formulated as the following:

Objective : Max L

s.t.
X
i2SðjÞ

xij ¼ kL 8j 2 T ; ð12Þ

X
j2T ðiÞ

xij 6 L 8i 2 S; ð13Þ

X
j2T ðiÞ

xij 6 Ei 8i 2 S; ð14Þ

where L, xij, inequalities (13) and (14) all remain the
same. Eq. (12) specifies that for each target j in T,
since there should be k sensors to watch target j at
anytime, the total time that the target j under sur-
veillance is k times of lifetime of the system. That
is, each target should be watched by k sensors
throughout the lifetime. After solving the above
LP formulation, we get L, the upper bound on the
lifetime, and a workload matrix.

Second, to decompose the workload matrix and
achieve the upper bound, we first extend the defini-
tions of 2-matching, perfect 2-matching and 2-
unsaturated to the k-matching, perfect k-matching

and k-unsaturated, respectively.

Definition 3. k-matching: Let G(S [ T,E) be a
bipartite graph with bipartition {S,T}, where
jSjP kjTj. k-matching is defined as a subset of
edges in E, such that

1. For each vertex in S, no two edges share the
vertex.

2. For each matched vertex in T, there are exactly k

edges share the vertex.

The k-matching means that 1 vertex in T exactly
matches k vertexes in S.

Definition 4. Perfect k-matching: If jSj = kjTj, and
a k-matching contains kjTj edges, the largest
possible, we call it the perfect k-matching.

Definition 5. k-unsaturated: A target tj is called k-
unsaturated to a matching M if and only if there
are less than k edges in M that start (end) with tj.

For the workload matrix computed from (12)–
(14), if n = km, the sum of each column and the
sum of each row are equal to kL and L, respectively.
Similar to Theorems 1 and 2, we have following
theorems.

Theorem 8. Let G(S [ T,E) be a bipartite graph

with bipartition {S, T}, where jSj = kjTj. G contains a
perfect k-matching if and only if jN(U)jP kjUj for

all U � T.

Proof. Similar to the proof of Theorem 1, we use
induction method. We first consider whether there
exist U � T, jUj5 0 and jN(U)j = kjUj. If it is true,
similar to the proof of Theorem 1, we can construct
a perfect k-matching of T in G. Otherwise, we con-
sider whether there exist U � T, jUj5 0 and
jN(U)j = kjUj + 1. If it is true, we construct a per-
fect k-matching. Otherwise, we consider U � T,
jUj5 0 and jN(U)j = kjUj + 2. The above process
is continued until (1) we construct a perfect
k-matching of T in G; (2) for "U � T, jN(U)jP
kjUj + k. We can also construct the perfect
k-matching in case two. Theorem is proved. h

Theorem 9. For any workload matrix, if n = km,

there exists a perfect k-matching in every round of

decomposing process.
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Proof. Proof is similar to the proof of Theorem
2. h

Then, we extend the Perfect-2-Matching algo-
rithm to the Perfect-k-Matching algorithm.

Perfect-k-Matching Algorithm

Input: a bipartite graph G = (S [ T,E),k.
Output: a perfect k-matching M.
Begin
pick any edge from E and add to M;
while there exist k-unsaturated targets do

select the first k-unsaturated target t and
label t with *;
for si 2 S(t) and (t, si) 62M

label si with t;
while all newly labeled si 2M do // M-
path is not found so far

for all newly labeled si and unlabeled
tj 2 T(si)

if (si, tj) 2M

label tj with si;
for all newly labeled tj and unlabeled
si 2 S(tj)

if (tj, si) 62M
label si with tj;

endwhile

// have found an M-path which starts with t

and ends with si 62M.
remove M-edges in M-path from M and add in
non-M-edges to M;
endwhile

End
Theorem 10. The Perfect-k-Matching algorithm is

correct and the time complexity is O(mn2).

Proof. Proof is similar to the proof of Theorem
3. h

If n > km, we also need to fill the workload
matrix by adding some dummy columns (targets)
and rows (sensors). The FillMatrix algorithm is
extended as follows.

FillMatrix Algorithm

Input: workload matrix Xn·m, k.
Output: dummy matrix Zp·q.
Begin
if (n � km)%k = 0
p = n;

else
p = n + (k � (n � km)%k);
q = p/k � m;
R�i ¼ L� Ri, for i = 1 to p;
C�j ¼ 2L, for j = 1 to q;
i = 1; j = 1;

while (i 6 p) && (j 6 q) do

if C�j > R�i then // determine elements in
row i.

zij ¼ R�i ;
zik = 0, for k = j + 1 to q; // set the rest of
row i to 0.
C�j ¼ C�j � zij;
i = i + 1;

else if R�i > C�j // determine elements in
column j.

zij ¼ C�j ;
zkj = 0, for k = i + 1 to p; // set the rest of
column j to 0.
R�i ¼ R�i � zij;
j = j + 1;

else // determine elements in both row i and
column j.

zij ¼ R�i ;
zik = 0, for k = j + 1 to q;
zkj = 0, for k = i + 1 to p;
i = i + 1; j = j + 1;

endwhile

End
Integrating together with FillMatrix algorithm
and Perfect-k-Matching algorithm, we have the
algorithm of decomposing the workload matrix
for general cases as follows.

DecomposeMatrix Algorithm
Input: workload matrix Xn·m, k.
Output: a sequence of schedule matrices.
Begin
if n > km then

Run FillMatrix algorithm to obtain a
matrix Wp·p/k;
Construct a bipartite graph G from Wp·p/k;
while there exist edges in G do

Run Perfect-k-Matching algorithm on G to
find a perfect k-matching M;
Record Pi; //Pi: the scheduling matrix of M;
Deduct Pi from Wp·p/k and remove edges
with weight 0 in G;

endwhile

Output Wp·p/k = P1 + P2 + � � � + Pt;
End
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Theorem 11. The time complexity of the Decompo-
seMatrix algorithm is O(m2n3).

Proof. Proof is similar to the proof of Theorem
4. h

Finally, similar to the case k = 2, we obtain a
target watching timetable for each sensor based on
the schedule matrices.
5. Simulation

5.1. A numeric example

We randomly place 6 sensors (in clear color in
Fig. 1) and 2 targets (in grey in Fig. 1) in a
100 · 100 two-dimensional free-space region. For
simplicity, the surveillance range of all sensors is
set to 40 (our solution can work for any system with
non-uniform surveillance range). Fig. 1 shows the
surveillance relationship between sensors and tar-
gets, with an edge between a sensor and a target if
and only if the target is within the surveillance range
of the sensor. The initial energy reserves of sensors,
in terms of hours, are random number generated in
the range of [0,100] with the mean at 50, as shown
in Table 1. We assume k = 2 in this example, that
3

6

2

2

1 1

4

5

Fig. 1. An example system with 6 sensors and 2 targets (k = 2).

Table 1
The initial energy of 6 sensors (h)

Sensors

1 2 3 4 5 6

Ei 68.1335 2.2493 6.9318 3.2419 27.6030 88.9206
is, each target requires two sensors to watch at
anytime.

We follow the three steps in our method to find
the schedule timetable for the sensors.

First, we use the linear programming, described
in Section 3.1, to compute the maximum lifetime
L and the workload matrix that achieves L:

L ¼ 12:4230 h;

X 6�2 ¼

9:5218 2:9012

1:1751 1:0743

0 6:9318

1:7261 1:5157

12:4230 0

0 12:4230

2
666666666664

3
777777777775

.

In the workload matrix, we can see: (1) for each
column, the total time for target 1 and target 2 to be
watched is 24.8460 h, which is two times of the life-
time of the surveillance system; (2) for each row, the
total working time of sensors does not exceed their
battery’s lifetime.

Second, since n = 6, m = 2 and n > 2m, we run
the FillMatrix algorithm, proposed in Section
3.2.2, to append a dummy matrix to the workload
matrix, such that the sum of each column and
the sum of each row are equal to 2L and L, respec-
tively:

W 6�3 ¼

9:5218 2:9012 0

1:1751 1:0743 10:1736

0 6:9318 5:4912

1:7261 1:5157 9:1812

12:4230 0 0

0 12:4230 0

2
6666666666664

3
7777777777775

.

Then we run the DecomposeMatrix Algorithm,
proposed in Section 3.2.2, to decompose W6·3 into
a sequence of schedule matrices P1,P2, . . . , and P5

(i.e., the decomposition terminates at round 5), such
that

W 6�3 ¼ P 1 þ P 2 þ � � � þ P 5.

By removing the dummy columns of the schedule
matrices, we have



Table 2
The schedule timetable for 6 sensors

Sensors Watching duty (time duration and watching targets)

1 0–8.4475 Target 1 8.4475–11.3487 Target 2 11.3487–12.4230 Target 1
2 0–10.1736 Turn off 10.1736–11.3487 Target 1 11.3487–12.4230 Target 2
3 0–1.5157 Turn off 1.5157–8.4475 Target 2 8.4475–12.4230 Turn off
4 0–1.5157 Target 2 1.5157–8.4475 Turn off 8.4475–10.1736 Target 1 10.1736–12.4230 Turn off
5 0–12.4230 Target 1
6 0–12.4230 Target 2
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X 6�2 ¼

1:5157 0

0 0

0 0

0 1:5157

1:5157 0

0 1:5157

2
66666664

3
77777775
þ

6:9318 0

0 0

0 6:9318

0 0

6:9318 0

0 6:9318

2
66666664

3
77777775

þ

0 1:7261

0 0

0 0

1:7261 0

1:7261 0

0 1:7261

2
66666664

3
77777775
þ

0 1:1751

1:1751 0

0 0

0 0

1:1751 0

0 1:1751

2
66666664

3
77777775

þ

1:0743 0

0 1:0743

0 0

0 0

1:0743 0

0 1:0743

2
66666664

3
77777775

.

Finally, we obtain target watch timetables for
sensors based on the above schedule matrices. The
timetable for the 6 sensors is shown in Table 2.

It is easy to see that the timetable in Table 2 sat-
isfies the surveillance conditions that each sensor
can watch at most one target at a time and each tar-
get is watched by two sensors at anytime.
Fig. 2. Ratio of lifetime vs. the number of sensors.
5.2. Experiments

In this section, we study how the network life-
time is affected by varying the number of sensors.
We randomly place sensors and targets in a
100 · 100 two-dimensional free-space region. For
simplicity, the surveillance range of all sensors is
set to 40. There is an edge between a sensor and a
target if and only if the target is within the surveil-
lance range of the sensor. The initial energy reserves
of sensors, in terms of hours, are random number
generated in the range of [0, 100] with the mean at
50. We assume k = 3 in this experiment, that is,
each target requires three sensors to watch at any-
time. The number of targets is fixed at 20. We vary
the number of sensors from 100 to 1000. The results
presented in the following figure are the means of
100 separate runs.

We use the metric ratio of lifetime to study how
the network lifetime is affected by varying the num-
ber of sensors. The ratio of lifetime is defined to be
the ratio of the maximum network lifetime over the
mean lifetime of sensors in the network, such as

ratio of lifetime ¼ the maximum lifetime

the mean lifetime of sensors
.

The simulation results are plotted in Fig. 2.
From Fig. 2, we can conclude that there is a

strong linear relationship between network lifetime
and the number of sensors in the network. If more
sensors are placed in the network, more space is
provided to our optimal algorithm to compute
longer network lifetime. It means that increasing
the number of sensors is one of efficient ways to pro-
long the network lifetime.

6. Conclusions

This paper addressed the maximal lifetime sched-
uling problem for k to 1 sensor–target surveillance
networks.
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Our solution consists of three steps: (1) compute
the maximum lifetime of the system and the work-
load matrix by using linear programming method;
(2) extend the Hall’s theory and decompose the
workload matrix into a sequence of schedule matri-
ces by using perfect k-matching method. This
decomposition can preserve the maximum lifetime;
(3) obtain target watching timetable for sensors. It
is not difficult to see that our solution is the opti-
mum in the sense that it can find the schedules for
sensors watching targets that achieve the maximum
lifetime. The time complexity of our optimal
method is O(m2n3), where m, n are the number of
targets and the number of sensors, respectively.
We illustrated our optimal method by an example
in the end. Simulations were further conducted. It
showed a strong linear relationship between net-
work lifetime and the number of sensors in the
network.
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