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ABSTRACT
Deadlocks, in which threads wait on each other in a cyclic

fashion and can’t make progress, have plagued parallel pro-

grams for decades. In recent years, as the parallel program-

ming mechanism known as futures has gained popularity,

interest in preventing deadlocks in programs with futures

has increased as well. Various static and dynamic algorithms

exist to detect and prevent deadlock in programs with fu-

tures, generally by constructing some approximation of the

dependency graph of the program but, as far as we are aware,

all are specialized to a particular programming language.

A recent paper introduced graph types, by which one

can statically approximate the dependency graphs of a pro-

gram in a language-independent fashion. By analyzing the

graph type directly instead of the source code, a graph-based

program analysis, such as one to detect deadlock, can be

made language-independent. Indeed, the paper that proposed

graph types also proposed a deadlock detection algorithm.

Unfortunately, the algorithm was based on an unproven con-

jecture which we show to be false. In this paper, we present,

and prove sound, a type system for finding possible dead-

locks in programs that operates over graph types and can

therefore be applied to many different languages. As a proof

of concept, we have implemented the algorithm over a subset

of the OCaml language extended with built-in futures.

1 INTRODUCTION
The problem of deadlocks, in which two or more threads are

waiting on each other in a cyclic fashion so none can make

progress, has been observed since the early days of paral-

lel and concurrent programming [7]. Many solutions to the

problem have been proposed over the years. We can broadly

group these into static approaches (e.g. [5, 9, 13, 16, 21]),

which detect using either a type system or static analysis

on the source code of a program whether the conditions

necessary for a deadlock may exist in the program, and dy-

namic approaches (e.g., [8, 19, 20]) which run along side the

program and detect either that the conditions necessary for

a deadlock exist at runtime, or that a deadlock has occurred.

Much prior work on deadlock has been focused on cyclic

requests for resources (often locks) by coarse-grained system

threads, such as pthreads. In more recent years, there has
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been intense interest in fine-grained parallelism, where large

numbers of lightweight threads are scheduled automatically

by the runtime system onto system-level threads. A mecha-

nism for fine-grained parallelism that has attracted particular

interest recently is the future and its closely related cousin

the promise. A future is spawned to compute a designated

piece of work asynchronously with the rest of the program.

The handle to the future is then a first-class object that can

be stored, passed as an argument to functions, etc. When the

result of the asynchronous computation is needed (even in a

far-away part of the program), its handle can be “touched”

(or “forced”). This operation blocks until the future’s com-

putation completes and then returns the result. Since being

introduced in Multilisp [11], variants of these mechanisms

have made their way into numerous languages, including

Cilk [10], Habanero-Java [6], JavaScript, Python, Rust [1],

and the latest version of OCaml [17]. Futures can be used

for everything from reducing latency in concurrent interac-

tions to implementing asymptotically efficient pipelined data

structures [3]. Because of their generality, however, futures

can also be used in ways that cause a deadlock.

Even when considering one threading paradigm such as

futures, tools for solving the deadlock problem have been

proposed for numerous languages and libraries. However,

as far as we are aware, virtually all solutions proposed thus

far are specific to at least a particular language, if not a

particular runtime and/or threading library. This specificity

of deadlock analyses to a particular language is odd when

one considers that the essence of the deadlock problem for

futures, regardless of language, can be boiled down to a

graph problem. If we think of the program as a directed

graph of dependences between threads, a deadlock in which

two futures wait on each other will show up as a cycle in the

graph. Indeed, many existing static and dynamic analyses for

deadlock work by (implicitly or explicitly) constructing some

approximation of the dependency graph. This observation

leads to the central question of this paper: is it possible to

statically predict deadlocks in programs with futures in a

language-agnostic way by analyzing not the program source

code but a representation of dependency graphs?

Recent work [14] proposed graph types as a way of rep-

resenting the set of dependency graphs that might result

from executing a program. Such a representation is neces-

sary because, especially in fine-grained parallel programs

such as those with futures, runtime decisions based on either
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input values or nondeterminism can affect the structure of

the dependency graph. As a result, a dependency graph as

described above represents not the program itself but rather

a particular execution of the program. The program then

corresponds to a (possibly infinite) set of graphs describing

the structure of every possible execution. Graph types repre-

sent these sets in a finite, compact way, and can be statically

assigned to a program by a graph type system. Moreover, the

graph type representation is not tied to a particular language

or parallelism model (although the graph type system, which

produces a graph type from source code, is specific to the

language). The problem of determining whether a deadlock

is possible in a parallel program then reduces to determin-

ing whether any graph represented by the program’s graph

type can contain a cycle. Because graph types can, in princi-

ple, represent programs in many different languages, such

an analysis over the graph type would lead to a language-

agnostic static deadlock detection tool.

Indeed, the initial work on graph types presents a proof-of-

concept static deadlock algorithm based on the above idea—

after inferring graph types for a program, their tool, called

GML for Graph ML (the tool accepts source code in a dialect

of the ML language), can optionally run deadlock detection

on the resulting graph type. The algorithm in this prior work

is not proven sound and relies on a conjecture (admitted as

such in the paper) that any cycles that might arise in graphs

represented by a graph type can be found by “unrolling”

the graph type to a fixed depth and testing a small number

of representative graphs for cycles. Unfortunately, as we

show in this paper with a general family of counterexamples,

that conjecture is false and the deadlock detection algorithm

unsound. Moreover, any fixes to the algorithm that might

resolve these issues would result in an exponential blowup

in the number of graphs that must be checked for cycles.

In this paper, we propose a different static deadlock de-

tection algorithm on graph types, which takes the form of a

type system over graph types and does not rely on unrolling

the graph type to extract representative graphs. We prove

the algorithm sound by showing that any program it deter-

mines to be deadlock-free will at runtime obey the transitive
joins property [19], a condition used in prior work on dy-

namic deadlock avoidance for futures which has been shown

to imply deadlock-freedom. At a high level, the algorithm

works by controlling the ownership and use of futures in a

graph type, ensuring two properties. First, while the original

graph type system has a robust mechanism for determining

where futures may be spawned, we extend this to determine

where futures must be spawned, in order to detect situations

in which a future handle could be touched without a spawn

of the corresponding future. Next, we reject graph types in

which it cannot be determined statically that the touch of a

future comes “after” (in a well-defined partial order on the

program) the spawn, which prevents cycles of futures block-

ing on each other. We have implemented the algorithm in an

extension of GML and show using a number of qualitative

examples that it is not overly restrictive.

The rest of the paper proceeds as follows. In Section 2, we

introduce the thread model we consider—the language we

use for examples is intentionally simple so that it can repre-

sent the spectrum of languages for which our techniques can

be applied—and the basics of graph types. Next (Section 3),

we outline the counterexample to the prior deadlock detec-

tion algorithm. In Section 4, we present our algorithm as a

type system and prove it sound. In Section 5, we describe

our implementation of the algorithm as well as a qualitative

evaluation that shows the scope of programs it can prove

deadlock-free. Finally, we discuss related work and conclude.

For space reasons, details of some of the proofs are omit-

ted from the body of the paper but included in an appendix

submitted as supplementary material.

2 PRELIMINARIES
2.1 Language Model
Graph types abstract away details of the programming lan-

guage and even the exact parallelism constructs, so the algo-

rithm we describe in this paper is applicable to a wide variety

of languages with futures. For the purposes of presenting

examples, we adopt a simple, imperative language with a

built-in type future[A] representing a future asynchronously

computing a value of type A. We distinguish between a future
thread, or simply thread, which is an asynchronous thread

performing some computation, and a future handle, which
is a value of type future[A] providing the programmer a

means of accessing the result of an associated future thread.

When it is clear from context, we will simply use the term

future. We consider three operations on futures. The con-

structor new future[A]() creates a new future handle which

is currently not initialized with a running future thread. This

handle can then be used to perform two operations: if h is

a future handle, then h.spawn(f) spawns a new asynchro-

nous future thread to compute the function f, and installs

the handle to this future into h. Calling h.touch() waits for

the future thread associated with h to complete and returns

the thread’s return value (if no thread is associated with h

because spawn has not yet been called, then touch()waits for

a thread to be installed, and then waits for it to complete).

As an example, the program in Figure 1 implements a

generic parallel recursive divide-and-conquer algorithm (this

could be instantiated with Mergesort, Quicksort, Fibonacci,

or many other standard algorithms). If the length of an input

is greater than some threshold, the input is divided into two

halves. A new future is spawned to run the program recur-

sively on the first half, while the second half is computed in

2
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1 function divide_and_conquer (list[A] l):

2 if l.length < threshold:

3 return base_case(l)

4 else:

5 (l1, l2) = divide l

6 h = new future[B]()

7 h.spawn({ divide_and_conquer l1 })

8 l2_result = divide_and_conquer l2

9 l1_result = h.touch()

10 return combine(l1_result, l2_result)

Figure 1: Example code for a divide-and-conquer pro-
gram implemented with futures.

the current thread. The future handle is then touched to get

the result of the first half, and the two results are combined.

The combination of futures and an imperative language

with mutable state allows for programs with deadlocks. Con-

sider the following program:

1 a = new future[int]();

2 b = new future[int]();

3 a.spawn({ return b.touch() })

4 b.spawn({ return a.touch() })

The program declares two futures handles, and then initial-

izes each with a computation that touches the other. Neither

future thread can make progress until the other completes,

and so this is a classic deadlock. We note that the impera-

tive nature of spawn is crucial for this example. In purely

functional programs with futures, the use of futures is con-

strained to be structured [12], which precludes deadlocks;

however, many real-world uses of futures are not structured.

2.2 Graphs
We abstractly represent the parallel structure of a program

using a directed graph expressing the dependences between

threads. We will use metavariables 𝑢 and variants to refer to

vertices of the graph, which represent individual, sequential

computations. If 𝑢 is an ancestor of 𝑢 ′
, then 𝑢 must happen

before 𝑢 ′
. The lack of a path between two computations

indicates that they may occur in parallel.

Formally, we represent a graph 𝑔 as a quadruple (𝑉 , 𝐸, 𝑠, 𝑡)
of a set 𝑉 of vertices, a set 𝐸 of directed edges, a designated

“start” vertex 𝑠 and a designated “end” vertex 𝑡 . We consider

each graph to have a “main” thread that starts at 𝑠 and ends

at 𝑡 . We use a number of shorthands to build and compose

graphs. The notation • represents a graph containing a single
vertex. The graph 𝑔1 ⊕ 𝑔2 represents sequential composition

of the two graphs, composing the two main threads together

in sequence. The graph 𝑔 $𝑢 describes a main thread con-

sisting of one vertex that spawns another thread (e.g., a

future thread). The new thread consists of the graph 𝑔, post-

composed with a new designated “end” vertex 𝑢. We add this

vertex to give the future a unique name that can be referred

to later, such as when another thread wants to touch the

future. This touch corresponds to adding an edge from the

last vertex of the future thread, which is 𝑢, and we write this

as
𝑢 %. The notations are defined formally in Figure 2, and

additionally require that all vertices in the graph are unique.

2.3 Graph Types
The graphs of the previous section represent a record of one

execution of a program: while the graph abstracts away from

details of how parallel threads are scheduled, if a program

makes choices based on unknown input or involves any

nondeterminism, the graph still reflects only one possible

resolution of these choices. As an example, the graph that

results from performing a parallel Quicksort on a sorted list

will be quite different from the graph that results from a

randomly-ordered list. There is no way to know without

running the program exactly how the graph will look.

Graph types [14] compactly represent the set of all possible

graphs that might result from running a particular program,

and are assigned statically to programs, allowing us to make

statements about a program’s graph without running it. Like

the abstract graphs described above, graph types abstract

away details of the language model, and so are an ideal in-

termediate representation for performing analyses on the

structure of a program in a language-agnostic way. In this

subsection, we give a brief overview of the graph type nota-

tion we need for the rest of the paper, and direct readers to

the prior work for a more complete presentation.

The syntax for graph types 𝐺 is given below:

𝐺 ::= • | 𝐺1 ⊕ 𝐺2 | 𝐺 $𝑢 |
𝑢 %

| 𝐺1 ∨𝐺2 | 𝜇𝛾 .𝐺 | 𝛾 | 𝜈𝑢.𝐺 | Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺 | 𝐺 [®𝑢𝑓 ; ®𝑢𝑡 ]

The first row of constructs looks similar to the notation used

for building graphs in the previous subsection. Indeed, any

graph constructed using the constructs of Figure 2 is also a

valid graph type inhabited by only that one graph.

The constructs in the second row allow graph types to

reflect a set containing multiple graphs. The graph type𝐺1∨
𝐺2 represents the disjunction of two alternatives; for example,

if a program might take either branch of a conditional at

runtime, its graph might correspond to the if branch or the

else branch. The set of graphs represented by this graph type

is the union of the graphs represented by 𝐺1 and 𝐺2.

Graph types must also be able to represent unbounded sets

of graphs, which generally result from either recursion or

iteration in the parallel program. As an example, there is no

way to tell statically howmany times the divide_and_conquer

function of Figure 1 will call itself. The graph type for this

3
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• ≜ ({𝑢}, ∅, 𝑢,𝑢) 𝑢 fresh
(𝑉1, 𝐸1, 𝑠1, 𝑡1) ⊕ (𝑉2, 𝐸2, 𝑠2, 𝑡2) ≜ (𝑉1 ∪𝑉2, 𝐸1 ∪ 𝐸2 ∪ {(𝑡1, 𝑠2)}, 𝑠1, 𝑡2) 𝑉1 ∩𝑉2 = ∅
(𝑉 , 𝐸, 𝑠, 𝑡)$𝑢 ≜ (𝑉 ∪ {𝑢,𝑢 ′}, 𝐸 ∪ {(𝑢 ′, 𝑠), (𝑡,𝑢)}, 𝑢 ′, 𝑢 ′) 𝑢 ′ fresh, 𝑢 ∉ 𝑉
𝑢 % ≜ ({𝑢 ′}, {(𝑢,𝑢 ′)}, 𝑢 ′, 𝑢 ′) 𝑢 ′ fresh

Figure 2: Shorthands for combining graphs.

function needs to contain graphs corresponding to any num-

ber of recursive calls. This is represented with the recursive

graph type 𝜇𝛾 .𝐺 , which binds a graph variable 𝛾 inside 𝐺 .

The inner graph type,𝐺 , can “call” the entire recursive graph

type recursively using 𝛾 .

Here, we take a slight diversion to introduce an important

point about graph types. Recall from the previous subsection

that vertices in a graph must be unique—if there are two ver-

tices 𝑢 in a graph, then there is no way to know which one

is the source of an edge (𝑢,𝑢 ′). The graph-composition con-

structs in Figure 2 simply enforce, as a condition of their use,

that composing graphs would not duplicate vertex names.

In graph types, it is not always clear when a graph type

would yield a graph with duplicate vertex names. Consider

the following invalid graph type, which we might naively

use to represent the parallel divide-and-conquer example:

𝐺 ≜ 𝜇𝛾 . • ∨(𝛾 $𝑢 ⊕𝛾 ⊕ 𝑢 %)

The graph type indicates that the program either 1) “bottoms

out” to a sequential base case, or 2) spawns a future whose

graph is also represented by 𝐺 using a designated vertex

name 𝑢, then does another computation represented by 𝐺 ,

then touches the future. The problem with this graph type

is that finding the set of graphs to which it corresponds

requires “unrolling” the recursion, e.g., one such graph is

(•$𝑢 ⊕ • ⊕ 𝑢 %)$𝑢 ⊕(•$𝑢 ⊕ • ⊕ 𝑢 %) ⊕ 𝑢 %

which has 3 vertices “named” 𝑢.

To avoid duplicating vertex names when unrolling recur-

sion, we need a way to generate fresh vertex names. This is

accomplished with the 𝜈𝑢.𝐺 construct, which introduces a

vertex variable 𝑢 within the scope of𝐺 . This variable will be

instantiated with a unique vertex each time the binding is

encountered. The divide-and-conquer example graph could

then be expressed correctly as:

𝐺 ≜ 𝜇𝛾 .𝜈𝑢. • ∨(𝛾 $𝑢 ⊕𝛾 ⊕ 𝑢 %)

To enforce that graph types are used in a way that will not

result in graphs with duplicate vertices, prior work equips

graph types with a “well-formedness” judgment that takes

the form of a type system over graph types (or rather, a

“kind” system because graph types are already type-level

constructs). In this judgment, vertices that are used to spawn

futures are subject to an affine restriction, which prevents

them from being used more than once. In the next section,

we describe how this is accomplished in more detail.

The final two graph type constructs allow graph types to

be parameterized by sets of vertices. The graph typeΠ®𝑢𝑓 ; ®𝑢𝑡 .𝐺
introduces the variables ®𝑢𝑓 and ®𝑢𝑡 which may be used in 𝐺 .

Both notations represent a comma-separated vector of zero

or more vertices; we will use ∅ if there are no vertices in

one vector. The vertices in ®𝑢𝑓 may be used to spawn futures,

while the vertices in ®𝑢𝑡 may be used to touch futures. It will

become clear when we discuss well-formedness of graph

types in the next section why these two sets are separated.

The parameters of such a graph type can be instantiated with

the application 𝐺 [®𝑢𝑓 ; ®𝑢𝑡 ].
Finally, we discuss formally how to construct a set of

graphs from a graph type, a process we have motivated in-

formally above. We refer to this process as normalization.
Generally, one should not have to normalize graph types in

order to use them, but normalization is useful for defining

the semantics and soundness of graph types. Specifically,

the soundness theorem of the graph type system [14] en-

sures that any graph that results from executing a program

is contained in the normalization of the program’s graph

type. (We also use normalization in the proof of soundness

for the analysis we present in this paper, but normalization

is not necessary for actually performing the analysis.) Be-

cause graph types (such as the divide-and-conquer example

above) can correspond to infinite sets of graphs, we param-

eterize the normalization function by a natural number 𝑛

roughly corresponding to how many times. recursive graph

types should be unrolled. Figure 3 defines the normalization

operation as a functionNorm𝐺 (𝑛)1. Once𝑛 reaches zero, nor-

malization returns the empty set. Otherwise, normalization

proceeds largely as we have motivated above. A sequential

composition 𝐺1 ⊕ 𝐺2 is normalized by pairwise composing

the normalizations of the two subgraphs, disjunctions union

their normalizations, and a future 𝐺 $𝑢 introduces a spawn

of 𝑔 using vertex 𝑢 for all 𝑔 in the normalization of 𝐺 . The

normalization of recursive bindings allows the binding to

be unrolled or not; in either case, 𝑛 is decremented. A “new”

1
The definition here is slightly different from the presentation in prior

work [14]; specifically, the prior presentation returned the singleton graph

type • rather than the empty set of graphs as the base case. The defini-

tion here is more convenient for our proofs; we have confirmed that the

soundness proof of the graph type system is unaffected by this change.

4
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Norm0 (𝐺) ≜ ∅
Norm𝑛 (•) ≜ {•}
Norm𝑛 (𝐺1 ⊗ 𝐺2) ≜ {𝐺 ′

1
⊗ 𝐺 ′

2
| 𝐺 ′

1
∈ Norm𝑛 (𝐺1),𝐺 ′

2
∈ Norm𝑛 (𝐺2)

Norm𝑛 (𝐺1 ⊕ 𝐺2) ≜ {𝐺 ′
1
⊕ 𝐺 ′

2
| 𝐺 ′

1
∈ Norm𝑛 (𝐺1),𝐺 ′

2
∈ Norm𝑛 (𝐺2)

Norm𝑛 (𝐺1 ∨𝐺2) ≜ Norm𝑛 (𝐺1) ∪ Norm𝑛 (𝐺2)
Norm𝑛 (𝐺 $𝑢) ≜ {𝐺 ′$𝑢 | 𝐺 ′ ∈ Norm𝑛 (𝐺)}
Norm𝑛 (

𝑢 %) ≜ {𝑢 %}
Norm𝑛 (𝜇𝛾 .𝐺) ≜ Norm𝑛−1 (𝐺 [𝜇𝛾 .𝐺/𝛾]) ∪ Norm𝑛−1 (𝜇𝛾 .𝐺)
Norm𝑛 (𝜈𝑢.𝐺) ≜ Norm𝑛 (𝐺 [𝑢 ′/𝑢]) 𝑢 ′ fresh
Norm𝑛 (𝐺 [®𝑢𝑓 ; ®𝑢𝑡 ]) ≜ Norm𝑛−𝑘 (𝐺 ′[®𝑢𝑓 /®𝑢 ′

𝑓
] [®𝑢𝑡/®𝑢 ′

𝑡 ]) unroll𝑘 (𝐺) = Π®𝑢 ′
𝑓
; ®𝑢 ′

𝑡 .𝐺
′

Norm𝑛 (𝐺 [®𝑢𝑓 ; ®𝑢𝑡 ]) ≜ ∅ unroll𝑛 (𝐺) ≠ Π®𝑢 ′
𝑓
; ®𝑢 ′

𝑡 .𝐺
′

Figure 3: Normalization.

binding 𝜈𝑢.𝐺 is normalized by substituting a fresh vertex

for𝑢. The normalization of an application unrolls the applied

graph type until it is a Π binding (decrementing 𝑛 by the

number of times it needs to be unrolled) and then substitutes

the arguments for the parameters.

3 COUNTEREXAMPLE TO CONJECTURE
The original work on graph types [14] proposed and imple-

mented a proof-of-concept deadlock detection algorithm for

graph types. The algorithmworked by normalizing the graph

type to the minimum level 𝑛 (that is, computing Norm𝑛 (𝐺))
such that every recursive binding in the graph type is un-

rolled twice. It would then check each of the resulting graphs

for cycles
2
. The (purported) soundness of this algorithm de-

pends on a conjecture that if 𝑔 ∈ Norm𝑚 (𝐺) for any𝑚 and 𝑔

has a cycle, then there is a graph with a cycle in Norm𝑛 (𝐺),
where 𝑛 is as described above. In this section, we present a

counterexample to this conjecture. Consider the graph type

𝜈𝑢1, 𝑢2.•$𝑢2
⊕𝐺 [𝑢1;𝑢2]

where

𝐺 ≜ 𝜇𝛾 .Π𝑢𝑎 ;𝑢𝑥 .𝜈𝑢. • ∨(
𝑢𝑥 % ⊕•$𝑢𝑎 ⊕𝛾 [𝑢;𝑢])

This graph type could arise from the following program.

1 function g(future[int] a, x):

2 u = new future()

3 if (rand () == 0):

4 return

5 else:

6 x.touch()

7 a.spawn({ return 42 })

8 g (u, u)

9 return

2
Separately, the algorithm checks that the graph type does not allow a

vertex to be touched without being spawned, but we focus here on the cycle

detection part of the algorithm.

10

11 function main():

12 u1, u2 = new future[int]()

13 u2.spawn({ return 42 })

14 g(u1, u2)

15 return

The function g takes two futures, a and x, which it spawns

and touches, respectively. At the first call to g, these are

instantiated with different futures, but when it is called re-

cursively, both are instantiated with the same future.

If we unroll the recursive binding of 𝐺 once, we get:

•$𝑢2
⊕ 𝑢2 % ⊕•$𝑢1

⊕•
where we take the “else” branch in the first unrolling of 𝐺

and the “then” branch in the second (this is the only option

available that would produce a graph, because taking the

“else” branch again would require unrolling the recursion

again). Unrolling the recursion a second time gives rise to a

graph where we call g recursively with u as both arguments

and get the following graph:

•$𝑢2
⊕ 𝑢2 % ⊕•$𝑢1

⊕ 𝑢 % ⊕•$𝑢 ⊕
This graph has a cycle because 𝑢 is touched before it is

spawned, but this cycle was only detected by unrolling the

graph type an extra time.

Furthermore, the problem cannot be fixed by simply un-

rolling more times (increasing the 𝑛 value above) and check-

ing more graphs. If we unroll every recursion three times,

the following program serves as a counterexample (we have

omitted the main function here, which just initializes g)
3
:

3
While this example is syntactically valid, we note that if the code is con-

verted to GML’s OCaml-like syntax, GML is not able to infer a graph type

for the program. This is due to a design decision in GML’s handling of

polymorphic recursion; the details are beyond the scope of this paper, but

the high-level issue is that it may take several iterations of graph inference

over a recursive function to arrive at the proper type. In the type inference

literature, this is referred to as Mycroft iteration [15]. GML short-cuts this
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1 function g(future[int] a, b, x, y):

2 u = new future[int]()

3 if (rand () == 0):

4 return

5 else:

6 x.touch()

7 a.spawn({ return 42 })

8 g (b, u, y, u)

9 return

This version of the program takes two futures to spawn

and two to touch. On the recursive call, the second “spawn”

future, b, is moved into the first position so it will be spawned

on the next iteration, and the second “touch” future, y, is

moved into the first “touch” position so it will be touched

on the next iteration. The new future u is passed as both

the second “spawn” and second “touch” future so it will be

both touched and spawned (creating a cycle) on the following
iteration. For any number 𝑛 of unrollings, this example can

be extended so that the deadlock will not manifest until

the 𝑛 + 1
𝑠𝑡
call to g, and therefore the 𝑛 + 1

𝑠𝑡
unrolling.

The above counterexample shows that there is no global

number 𝑛 of unrollings such that a deadlock will mani-

fest in the first 𝑛 unrollings (which would make it possible

to soundly detect deadlocks by checking all of the graphs

in Norm𝑛 (𝐺) for cycles). It is possible that there exists such
an 𝑛 for each program. For the family of counterexamples

above, if𝑚 is the number of “spawn” and “touch” arguments,

𝑛 could be set to𝑚 + 1, as the examples were constructed

precisely to manifest a deadlock on the 𝑚 + 1
𝑠𝑡
unrolling.

However, this solution, even if sound, leaves much to be

desired in both elegance and efficiency. The latter is eas-

ily seen, as the number of graphs in Norm𝑛 (𝐺) is, for most

graph types, exponential in 𝑛. We therefore take a different

approach in designing the algorithm in the next section.

4 A GRAPH TYPE ANALYSIS FOR
DEADLOCK DETECTION

In Section 4.1, we present our main result, a type system for

detecting whether deadlock is possible in a given program

using its graph type. We then prove it correct in Section 4.2.

4.1 Graph Kind System
Our deadlock detection algorithm is a static analysis pass

over graph types [14]. That is, we do not depend on source

code and do not perform any evaluation (although our sound-

ness proof will involve normalizing graph types, a form of

evaluation on graph types). We present the analysis as a type

process by performing graph inference on each recursive function twice. If

the type has not reached a fixed point after the second iteration, an error is

raised. For reasons that are similar to why this works as a counterexample,

the type of this example will not reach a fixed point after two iterations.

(DF:Empty)

Δ; ·;Ψ ⊢𝐷𝐹 • : ∗

(DF:Var)

Δ, 𝛾 : 𝜅; ·;Ψ ⊢𝐷𝐹 𝛾 : 𝜅

(DF:Seq)

Δ;Ω1;Ψ ⊢𝐷𝐹 𝐺1 : ∗ Δ;Ω2;Ψ,Ω1 ⊢𝐷𝐹 𝐺2 : ∗
Δ;Ω1,Ω2;Ψ ⊢𝐷𝐹 𝐺1 ⊕ 𝐺2 : ∗

(DF:Or)

Δ;Ω;Ψ ⊢𝐷𝐹 𝐺1 : ∗ Δ;Ω;Ψ ⊢𝐷𝐹 𝐺2 : ∗
Δ;Ω;Ψ ⊢𝐷𝐹 𝐺1 ∨𝐺2 : ∗

(DF:RecPi)

Δ, 𝛾 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗; ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢𝐷𝐹 𝐺 : ∗
Δ; ·;Ψ ⊢𝐷𝐹 𝜇𝛾 .Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗

(DF:Spawn)

Δ;Ω;Ψ ⊢𝐷𝐹 𝐺 : ∗
Δ;Ω, 𝑢;Ψ ⊢𝐷𝐹 𝐺 $𝑢 : ∗

(DF:Touch)

Δ; ·;Ψ, 𝑢 ⊢𝐷𝐹
𝑢 % : ∗

(DF:New)

Δ;Ω, 𝑢;Ψ ⊢𝐷𝐹 𝐺 : ∗ 𝑢 ∉ Ω,Ψ

Δ;Ω;Ψ ⊢𝐷𝐹 𝜈𝑢.𝐺 : ∗

(DF:Pi)

Δ;Ω, ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢𝐷𝐹 𝐺 : ∗
Δ;Ω;Ψ ⊢𝐷𝐹 Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗

(DF:App)

Δ;Ω;Ψ, ®𝑢 ′𝑡 ⊢𝐷𝐹 𝐺 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜅
Δ;Ω, ®𝑢 ′

𝑓
;Ψ, ®𝑢 ′𝑡 ⊢𝐷𝐹 𝐺 [®𝑢 ′

𝑓
; ®𝑢 ′𝑡 ] : 𝜅

Figure 4: Rules for deadlock avoidance.

system over graph types (since graph types are analogous to

types, a better term would be a kind system, where kinds are

“types of types”). There are two graph kinds 𝜅 , which may be

thought of as the “types of graph types”:

𝜅 ::= ∗ | Π®𝑢𝑓 ; ®𝑢𝑡 .∗
The graph kind ∗ represents ordinary graph types; these

are graph types that can be directly normalized. The graph

kind Π®𝑢𝑓 ; ®𝑢𝑡 .∗ is a graph type with two sets of parameters ®𝑢𝑓

and ®𝑢𝑡 ; these parameters must be instantiated to produce

an ordinary graph type. The deadlock freedom judgment

is Δ;Ω;Ψ ⊢𝐷𝐹 𝐺 : 𝜅, which assigns a graph kind 𝜅 to the

graph type 𝐺 . The judgment uses three contexts: Δ contains

graph variables 𝛾 together with their graph kinds, Ω con-

tains vertex names that may be used for spawning futures,

and Ψ contains vertex names that may be touched. Other

than the subscript on the turnstile, the deadlock freedom

judgment looks quite similar to the well-formedness judg-

ment of Muller [14], which also assigns graph kinds to graph

types. That judgment, however, aims to assign a graph kind

to all properly formed graph types. It serves mainly to reject
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graph types that would spawn multiple futures using the

same vertex, which would result in meaningless graphs. As

such, the spawn context Ω is treated as affine, meaning that

vertices in this context may be used at most once in the type.

The touch context Ψ has no such restriction, as vertices may

be touched any number of times.

Our judgment serves a different purpose, in that it seeks

to assign a graph kind only to graph types that are guaran-

teed to be deadlock-free. This type system is designed to be

conservative, and (as with all static analysis) will reject some

safe programs. We seek to prevent two types of deadlocks:

(1) A touch targets a vertex that is never spawned, so the

touch will block indefinitely.

(2) Touches and spawns create a cycle in the graph.

Item (1) requires ensuring that vertices thatmay be spawned
indeed are spawned. It is therefore not enough, as in prior

work, to treat the spawn context as affine. Instead, we treat

it as linear, meaning that vertices in the spawn context must

be used exactly once. This guarantees that any vertex that

may be spawned by a graph type will be spawned. As before,
there are no affine or linear restrictions on the touch context.

However, we take more care in when we add vertices to the

touch context: we will add vertices to the touch context only

after they are known to have been spawned.

The rules for the deadlock freedom judgment are in Fig-

ure 4, and we describe a few of the key points here. Rule

DF:Empty indicates that the single-node graph iswell-kinded,

but only under an empty spawn context; if there are any

vertices in the spawn context, this would violate linearity

as they are not spawned by the graph type. Rule DF:Var

handles graph variables which are found in the context Δ.
Again, the spawn context must be empty. Rule DF:Seq han-

dles sequential composition of two graph types. The spawn

context is split (nondeterministically) into two pieces Ω1

and Ω2. As is typical in linear and affine type systems, this

must constitute a disjoint splitting of the spawn context. We

type 𝐺1 with the spawn context Ω1. Recall that this means

that 𝐺1 must spawn all vertices in Ω1. It is therefore safe

to add the vertices from Ω1 to the touch context when an-

alyzing 𝐺2—we know that all of these vertices will have

already been spawned. It is worth noting that rule DF:Or

does not split the spawn context—only one of𝐺1 and𝐺2 will

actually be executed, and so both may spawn the same set

of vertices (indeed, because of linearity, both must spawn
the same vertices). Rule DF:New introduces the new vertex

into the spawn context, but not the touch context (it will

only be added to the touch context after being spawned).

These are the important features of the type system for en-

suring deadlock freedom; the remaining rules are largely

unchanged from the original graph kinding judgment and

we describe them here only briefly. Rule DF:RecPi handles

recursive parameterized graph types, which arise from recur-

sive functions. The parameters are added to the appropriate

contexts when checking the body. The outer spawn context

must be empty, because it is not safe for linear resources

(vertices) to be captured in a recursive binding, where they

may be duplicated. This restriction is not needed in DF:Pi,

which checks graph types that accept parameters but do not

recur. Rules DF:Spawn and DF:Touch require 𝑢 to be in the

appropriate context. Finally, DF:App requires the vertex ar-

guments to be in the appropriate contexts and removes the

spawn arguments from the spawn context.

4.2 Soundness Proof
Wenowprove that a graph type that is declared to be deadlock-

free by the analysis of the previous subsection (that is, one

that is well-kinded) does not admit deadlocks. To do this, we

show that any graph contained in the normalization of such

a graph type obeys the transitive joins property [19], which

implies deadlock freedom. In short, the transitive joins (TJ)

property relies on a “permission to join” relation <, which is

the transitive closure of the following two properties:

(1) If 𝑎 spawns 𝑏, then 𝑎 may touch 𝑏 (𝑎 < 𝑏).

(2) If when 𝑎 spawns 𝑏, 𝑎 may touch 𝑐 , then 𝑏 also has

permission to touch 𝑐 (𝑏 < 𝑐).

It is shown that < establishes a total order on threads, pre-

venting the creation of cycles in the graph.

Preliminaries on Transitive Joins. We now go into more

detail on the formal definitions surrounding transitive joins,

which we will need in our proof. For more information, the

reader is directed to the original presentation [19]. A program

execution is abstracted as a trace 𝑡 , which records a sequence

of actions𝛼 . There are three types of actions: the initialization
of the main thread 𝑎, written init (𝑎); the thread 𝑎 spawning𝑏,
written fork(𝑎, 𝑏); and 𝑎 touching 𝑏, written join(𝑎, 𝑏). We

write the concatenation of two threads as 𝑡1; 𝑡2. We write ·
for the empty trace, and note that 𝑡 ; · = ·; 𝑡 = 𝑡 .

The “permission-to-join” relation depends on the history

of spawn operations, and so it is defined inductively over

traces with the judgment 𝑡 ⊢ 𝑎 < 𝑏, defined as follows:

(TJ-left)

𝑡 ⊢ 𝑐 ≤ 𝑎

𝑡 ; fork(𝑎, 𝑏) ⊢ 𝑐 < 𝑏

(TJ-right)

𝑡 ⊢ 𝑎 < 𝑐

𝑡 ; fork(𝑎, 𝑏) ⊢ 𝑏 < 𝑐

(TJ-mono)

𝑡1 ⊢ 𝑎 < 𝑏

𝑡1; 𝑡2 ⊢ 𝑎 < 𝑏

We may also write 𝑎 ≤ 𝑏 to mean that 𝑎 = 𝑏 or 𝑎 < 𝑏. A

trace is TJ-valid if it begins with the initialization of the main

thread and all subsequent touches obey the permission-to-

join relation. The judgment 𝑡 :𝐴 indicates that 𝑡 is a TJ-valid

trace with the set 𝐴 of thread names. This set is added to by

fork actions in the inductive definition of the judgment:
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(Tr:Empty)

• {𝑎 ·

(Tr:Seq)

𝑔1 {𝑎 𝑡1 𝑔2 {𝑎 𝑡2

𝑔1 ⊕ 𝑔2 {𝑎 𝑡1; 𝑡2

(Tr:Spawn)

𝑔 {𝑢 𝑡

𝑔$𝑢{𝑎 fork(𝑎,𝑢); 𝑡

(Tr:Touch)

𝑢 % {𝑎 join(𝑎,𝑢)

Figure 5: Rules for producing traces.

(valid-init)

init (𝑎) : {𝑎}

(valid-fork)

𝑡 :𝐴 𝑎 ∈ 𝐴 𝑏 ∉ 𝐴

𝑡 ; fork(𝑎, 𝑏) :𝐴 ∪ {𝑏}

(valid-join)

𝑡 :𝐴 𝑡 ⊢ 𝑎 < 𝑏

𝑡 ; join(𝑎, 𝑏) :𝐴

Well-formed graphs are TJ-valid. To connect our notation

for graphs to transitive joins, we must define a way to pro-

duce traces from graphs. We write 𝑔 {𝑎 𝑡 to mean that a

graph whose main thread is named 𝑎 produces the trace 𝑡 .

The rules for this judgment are defined in Figure 5. Spawns

and touches are recorded appropriately. When a new thread

is spawned using a vertex 𝑢, we reuse 𝑢 as the name of the

new thread and recursively compute the trace corresponding

to the new thread by deriving 𝑔 {𝑢 𝑡 (note that the “main”

thread of this derivation has now changed to 𝑢). To produce

a trace from the sequential composition of two graphs, we se-

quentially compose the traces resulting from the two graphs.

Note that 𝑡 will never contain an init action, so to produce a

(potentially) valid trace, we would take init (𝑎); 𝑡 .
We now turn our attention to proving the main result of

the section, which is that if a graph is in the normalization

of a well-kinded (according to the rules of Figure 4) graph

type, then the trace produced from the graph is TJ-valid.

The proof uses the following technical lemma, which says

that substituting graphs for graph variables or vertices for

vertex variables in well-kinded graph types results in well-

kinded graph types. Similar results have been shown for the

original graph type well-formedness judgment [14], but we

show them here for our deadlock-freedom judgment. The

full proof is available in the supplementary appendix.

Lemma 1. (1) If ·;Ω, ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢𝐷𝐹 𝐺 : 𝜅 then

·;Ω, ®𝑢 ′
𝑓
;Ψ, ®𝑢 ′

𝑡 ⊢𝐷𝐹 𝐺 [®𝑢 ′
𝑓
/®𝑢𝑓 ] [®𝑢 ′

𝑡/®𝑢𝑡 ] : 𝜅
and the height of this derivation is no larger than the
height of the original typing derivation.

(2) If 𝛾 : 𝜅 ′
;Ω;Ψ ⊢𝐷𝐹 𝐺 : 𝜅 and ·; ·;Ψ ⊢𝐷𝐹 𝐺 ′

: 𝜅 ′

then ·;Ω;Ψ ⊢𝐷𝐹 𝐺 [𝐺 ′/𝛾] : 𝜅.

Proof.

(1) By induction on the derivation of ·;Ω, ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢𝐷𝐹 𝐺 : 𝜅.

(2) By induction on the derivation of 𝛾 : 𝜅 ′;Ω;Ψ ⊢𝐷𝐹 𝐺 : 𝜅

□

The heavy lifting for ourmain theorem is done by Lemma 2,

which proves a stronger result. The lemma allows us to fo-

cus on a part of the graph and the corresponding part of

the resulting trace. In the statement of the lemma, the trace

generated up until this point is 𝑡0 and is assumed to be well-

formed with the set 𝐴0 of vertices. We furthermore assume

that we do not have permission to spawn any of the ver-

tices in 𝐴0 (that is, 𝐴0 ∩ Ω = ∅), because this would result

in spawning a vertex twice. We also assume that Ψ does

indeed represent the set of vertices we have permission to

touch based on the current trace 𝑡0 (that is, for all 𝑏 ∈ Ψ,
we have 𝑡0 ⊢ 𝑎 < 𝑏). Under these assumptions, the resulting

trace 𝑡0; 𝑡 is TJ-valid and its set of threads consists of 𝐴0 plus

the vertices in Ω (which must have been spawned), plus a set

of fresh vertex names that will not conflict with any other

names. Finally, the new trace gives permission to touch any

newly-spawned vertices (i.e., those in Ω).

Lemma 2. Suppose ·;Ω;Ψ ⊢𝐷𝐹 𝐺 : ∗, and 𝑔 ∈ Norm𝑛 (𝐺)
for some 𝑛. Let 𝑡0 :𝐴0 be a TJ-valid trace such that 𝐴0 ∩Ω = ∅
and for all 𝑏 ∈ Ψ, we have 𝑡0 ⊢ 𝑎 < 𝑏. If 𝑔 {𝑎 𝑡 , then 𝑡0; 𝑡 :𝐴
is TJ-valid and 𝐴 = Ω ∪𝐴0 ∪𝐴𝑓 where all vertices in 𝐴𝑓 are
fresh, and for all 𝑏 ∈ Ω, we have 𝑡0; 𝑡 ⊢ 𝑎 < 𝑏.

Proof. By lexicographic induction on𝑛 and the derivation

of ·;Ω;Ψ ⊢𝐷𝐹 𝐺 : ∗. If 𝑛 = 0, then Norm𝑛 (𝐺) = ∅, which
contradicts 𝑔 ∈ Norm𝑛 (𝐺). So, suppose 𝑛 > 0 and proceed

by induction on the derivation.

We prove some representative cases here. Proofs for the

remaining cases are available in the supplementary appendix.

• DF:Seq. Then𝐺 = 𝐺1 ⊕𝐺2 and 𝑔 = 𝑔1 ⊕ 𝑔2 where 𝑔1 ∈
Norm𝑛 (𝐺1) and𝑔2 ∈ Norm𝑛 (𝐺2) and Δ;Ω1;Ψ ⊢𝐷𝐹 𝐺1 :

∗ and Δ;Ω2;Ψ,Ω1 ⊢𝐷𝐹 𝐺2 : ∗. We have𝐴0∩Ω1,Ω2 = ∅
and for all 𝑏 ∈ Ψ, 𝑡0 ⊢ 𝑎 < 𝑏. By inversion, 𝑡 = 𝑡1; 𝑡2
and𝑔1 {𝑎 𝑡1 and𝑔2 {𝑎 𝑡2. By induction, 𝑡0; 𝑡1:𝐴1 is TJ-

valid and𝐴1 = Ω1 ∪𝐴0 ∪𝐴𝑓 1 where all vertices in𝐴𝑓 1

are fresh, and for all 𝑏 ∈ Ω1, we have 𝑡0; 𝑡1 ⊢ 𝑎 < 𝑏. We

have Ω1 ∩ Ω2 = ∅, so 𝐴1 ∩ Ω2 = ∅. For all 𝑏 ∈ Ψ,Ω1,

we have 𝑡0; 𝑡1 ⊢ 𝑎 < 𝑏. By induction on the second

premise, we have 𝑡0; 𝑡1; 𝑡2 : 𝐴 is TJ-valid where 𝐴 =

Ω2∪𝐴1∪𝐴𝑓 = Ω1,Ω2∪𝐴0∪𝐴𝑓 where all vertices in𝐴𝑓

are fresh, and for all 𝑏 ∈ Ω2, we have 𝑡0; 𝑡1; 𝑡2 ⊢ 𝑎 < 𝑏.

Combining this with the above and monotonicity of

<, for all 𝑏 ∈ Ω1,Ω2, we have 𝑡0; 𝑡1; 𝑡2 ⊢ 𝑎 < 𝑏.

• DF:Spawn. Then 𝐺 = 𝐺1 $𝑢 and Δ;Ω1;Ψ ⊢ 𝐺1 : ∗
whereΩ = Ω1, 𝑢, and𝑔 = 𝑔1$𝑢 , where𝑔1 ∈ Norm𝑛 (𝐺1).
By inversion, 𝑡 = fork(𝑎,𝑢); 𝑡1 where 𝑔1 {𝑎 𝑡1. We

have𝐴0∩Ω1 = ∅. By valid-fork, we have 𝑡0; fork(𝑎,𝑢):
8
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𝐴0 ∪ {𝑢} is TJ-valid and (𝐴0 ∪ {𝑢}) ∩ Ω1 = ∅. By in-

duction using 𝑡0; fork(𝑎,𝑢) as the trace, 𝑡0; 𝑡1 :𝐴 is TJ-

valid and 𝐴 = Ω1 ∪ 𝐴0 ∪ {𝑢} ∪ 𝐴𝑓 = Ω ∪ 𝐴0 ∪ 𝐴𝑓

where all vertices in 𝐴𝑓 are fresh and for all 𝑏 ∈ Ω1,

we have 𝑡0; 𝑡 ⊢ 𝑎 < 𝑏. For all 𝑏 ∈ Ω, if 𝑏 ∈ Ω1,

then 𝑡0; 𝑡 ⊢ 𝑎 < 𝑏 from above. If𝑏 = 𝑢, then 𝑡0; 𝑡 ⊢ 𝑎 < 𝑏

by TJ-left.

• DF:App. Then 𝐺 = 𝐺1 [®𝑢 ′
𝑓
; ®𝑢 ′

𝑡 ] and Ω = Ω1, ®𝑢 ′
𝑓
and

·;Ω1;Ψ ⊢𝐷𝐹 𝐺1 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗

By inversion, either

(1) 𝐺1 = Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺2 and 𝑔 ∈ Norm𝑛 (𝐺2 [®𝑢 ′
𝑓
/®𝑢𝑓 ] [®𝑢 ′

𝑡/®𝑢𝑡 ])
and ·;Ω1, ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢𝐷𝐹 𝐺2 : ∗ or

(2) 𝐺1 = 𝜇𝛾 .Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺2 and

𝑔 ∈ Norm𝑛−1 (𝐺2 [𝜇𝛾 .Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺2/𝛾] [®𝑢 ′
𝑓
/®𝑢𝑓 ] [®𝑢 ′

𝑡/®𝑢𝑡 ])

and 𝛾 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗; ·;Ψ, ®𝑢𝑡 ⊢𝐷𝐹 𝐺2 : ∗.
Proceed in these two cases.

(1) By Lemma 1, ·;Ω;Ψ ⊢𝐷𝐹 𝐺2 [®𝑢 ′
𝑓
/®𝑢𝑓 ] [®𝑢 ′

𝑡/®𝑢𝑡 ] : ∗. The
result follows by induction.

(2) By Lemma 1,

·; ·;Ψ ⊢𝐷𝐹 𝐺2 [𝜇𝛾 .Π∅; ®𝑢𝑡 .𝐺2/𝛾] [®𝑢 ′
𝑓
/®𝑢𝑓 ] [®𝑢 ′

𝑡/®𝑢𝑡 ] : ∗

The result follows by induction, decreasing on 𝑛.

□

The main theorem simply instantiates the lemma with ap-

propriate initial conditions: Ω and Ψ are empty, and the trace

generated so far is simply init (𝑎), where 𝑎 is a designated

name for the main thread.

Theorem 1. Suppose ·; ·; · ⊢𝐷𝐹 𝐺 : ∗, and 𝑔 ∈ Norm𝑛 (𝐺)
for some 𝑛. If 𝑔 {𝑎 𝑡 , then init (𝑎); 𝑡 :𝐴 is TJ-valid.

Proof. This is a direct result of Lemma 2, because init (𝑎) :
{𝑎} is TJ-valid by valid-init, and {𝑎} ∩ · = ∅. □

5 IMPLEMENTATION AND EVALUATION
We implemented the deadlock analysis, based on the rules

in Section 4, in OCaml as an extension of GML [14], a tool

for inferring graph types from source programs in a large

subset of OCaml (extended with futures as a built-in type).

In particular, the language subset accepted by GML includes

OCaml-style mutable references and is sufficient to express

all of the examples in this paper (except the extended coun-

terexample in Section 3, which as described in the footnote,

cannot be inferred by GML). After GML infers graph types

for the program, the user can request that one function or

the entire program be checked for deadlocks, in which case

our analysis extracts the corresponding graph type from the

graph-annotated output of GML and runs our algorithm on

it. It is relatively straightforward to turn the rules of Figure 4

into a type-checking algorithm because the rules are syntax-
directed, that is, it is clear from the syntax of the graph type

being checked which rule should be applied. Before present-

ing our evaluation of the implementation, we describe one

additional optimization that improves the precision of the

algorithm on some examples.

New pushing. Consider the graph type below.

𝜇𝛾 .𝜈𝑢. • ∨(𝛾 $𝑢 ⊕𝛾 ⊕ 𝑢 %)
This graph type corresponds to many common divide-and-

conquer parallel algorithms, e.g. Figure 1. However, as shown,

it is not well-formed according to the rules of Figure 4. The

reason is that the vertex 𝑢 is placed into the spawn context

for both branches of the∨, but the left branch (corresponding
to the base case of the algorithm) does not use this vertex,

violating linearity. However, the graph above is semantically

equivalent to this one:

𝜇𝛾 . • ∨(𝜈𝑢.𝛾 $𝑢 ⊕𝛾 ⊕ 𝑢 %)
where we have simply moved the “new” binding inside the

recursive case of the graph type, and so the base case is

no longer in the scope of this binding. However, GML will

always produce the first graph type because, for efficiency

reasons, it only inserts “new” bindings at the top of function

bodies. In order to reduce false positives for graph types

produced by GML, we introduce a procedure we call “new

pushing”, which pushes “new” bindings through a graph type

to the smallest scope possible, and apply this transformation

to graph types before checking them for deadlocks.

Precision comparison. In order to show the flexibility and

precision of our algorithm, we ran the implementation on

four example programs, with and without deadlocks:

(1) Fibonacci: An example from Muller [14] that computes

the 8
𝑡ℎ

Fibonacci number in parallel by spawning (in

parallel) 8 threads to compute the first 8 Fibonacci

numbers; threads 3–8 touch the previous two threads

and sum their results.

(2) FibDL: The Fibonacci program from above but with

one of the touches altered to create a cycle.

(3) Pipeline: The motivating example of GML, which per-

forms a pipelined map over a list of inputs.

(4) Counterex.: The second counterexample of Section 3.

For Counterex., to avoid the subtlety discussed in Section 3,

rather than run a source program through GML, we hand-

coded the AST for the graph type of the counterexample and

ran our deadlock detection algorithm on this directly. Be-

cause the contribution of this paper is the deadlock detection

algorithm, which already operates on ASTs for graph types,

no part of our algorithm is bypassed.

Table 1 lists the examples and (in column 2) whether or

not the example has a deadlock. The third column indicates

9
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Table 1: Example programs comparing the precision
of our deadlock detector with prior work.

Program DL? Does analysis give correct answer?

Ours GML [14] Known Joins [8]

Fibonacci No ✓ ✓ ✗
FibDL Yes ✓ ✓ ✓
Pipeline No ✓ ✓ ✓
Counterex. Yes ✓ ✗ ✓

that our algorithm gives the correct answer in each case (i.e.,

correctly identifies Fibonacci and Pipeline as deadlock-free

and FibDL and Counterex. as having deadlocks). The next

column shows the same results for GML [14], which is shown

to be unsound by the counterexample. We also compare to

Known Joins (KJ) [8], a weaker version of the Transitive

Joins property which also guarantees deadlock-freedom but

is overly pessimistic in some cases and, for example, is not

able to show the deadlock-freedom of the Fibonacci example.

We manually applied the rules of KJ to determine whether

each example would be considered valid by KJ at runtime.

We make two important caveats about this evaluation.

First, it is difficult to make an apples-to-apples comparison

between static and dynamic analyses. While we show in

Section 4 that any program guaranteed deadlock-free by our

algorithm will have the transitive joins property, the reverse

is not true, and cannot be true for any static analysis. De-

termining whether a program will have a dynamic property

(such as deadlock, known joins, or transitive joins) at run-

time using a static analysis is undecidable by reduction to

the halting problem, so there will naturally be some pro-

grams that are valid under transitive joins (and known joins)

but cannot be guaranteed so by our static analysis. A more

precise characterization of the false positive profile of our

algorithm is an area for future work. We also note that, while

a quantitative evaluation is outside the scope of this paper,

the deadlock detection algorithm finishes in under 1ms on a

commodity desktop for all four examples.

6 RELATEDWORK
Numerous solutions to the problem of deadlock have been

proposed since 1971 when Coffman et al. [7] neatly charac-

terized the problem and categorized potential solutions. The

classes of solutions they propose are (1) prevent deadlocks
statically by detecting whether the conditions to allow them

are present in source code, (2) avoid deadlocks at runtime by

detecting whether the conditions to allow them have arisen

dynamically and (3) detect at runtime whether a deadlock has

occurred, and ideally recover from the situation. Dynamic

techniques (2 and 3) are far too numerous to survey here, so

we focus on the most closely related ones. The known joins
property [8] restricts threads to join on, or touch, futures

spawned by an ancestor in the thread hierarchy. Known

joins is, however, fairly restrictive and was later extended

to transitive joins [19], which extends the “permission-to-

join” relation of known joins with transitivity. In doing so,

it establishes a total order on threads at runtime, in a way

similar to work on SP-order [2, 22] has been used for runtime

data race detection. We have shown that programs identified

by our algorithm as deadlock-free obey the transitive joins

property and are therefore indeed deadlock-free. We have

also shown (in Section 5) that our program can identify as

deadlock-free programs that known joins cannot. Voss and

Sarkar [20] present a dynamic deadlock detection algorithm

(class 3 above) for promises, a mechanism related to futures

for which they identify analogues of the two deadlock situ-

ations we prevent in futures (cycles and waits on promises

that will never be completed). Their semantics requires track-

ing an owner for each promise and detects if a promise is

unowned or if the ownership relation is cyclic.

Static techniques fall into two broad categories: type sys-

tems for controlling ownership of resources, and dataflow

analyses. Our work falls into the former, but operates at the

level of graph types rather than source programs. Boyapati

et al. [5] also proposed a type system for ownership of locks

that prevents deadlock. A similar ownership type system pre-

vents data races in Rust [1]. Vasconcelos et al. [18] present

a type system for a typed assembly language that prevents

deadlocks but requires annotating locks with an ordering.

Most dataflow analyses for deadlock (e.g., [9, 13, 16, 21]) track

relations between threads and usage of resources, in some

sense building an approximation of a dependency graph.

Boudol [4] proposes an approach that mixes static and dy-

namic techniques: a type system guarantees that programs

can be safely run using a “prudent” operational semantics

that makes deadlocks impossible by construction.

7 CONCLUSION
We have proposed a static algorithm for predicting deadlock.

The analysis is based on graph types, a language-independent
representation of the set of dependency graphs that might

result from a given program, and so in principle can be ex-

tended to many paradigms and languages. We have shown

the soundness of the algorithm by reduction to transitive
joins, a condition that is known to imply deadlock freedom.

We have implemented a prototype of the analysis on top of

GML, a graph type inference tool for a subset of the OCaml

language, and shown that it can effectively detect deadlocks

in a variety of examples. This work shows the promise of

graph types for the development of language-agnostic static

10
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analyses for parallel programs, which we hope can be applied

in the future to other problems such as race detection.
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