
Disentanglement with Futures, State, and Interaction

JATIN ARORA, Carnegie Mellon University, USA

STEFAN K. MULLER, Illinois Institute of Technology, USA

UMUT A. ACAR, Carnegie Mellon University, USA

Recent work has proposed a memory property for parallel programs, called disentanglement, and showed

that it is pervasive in a variety of programs, written in di�erent languages, ranging from C/C++ to Parallel

ML, and showed that it can be exploited to improve the performance of parallel functional programs. All

existing work on disentanglement, however, considers the “fork/join” model for parallelism and does not apply

to “futures”, the more powerful approach to parallelism. This is not surprising: fork/join parallel programs

exhibit a reasonably strict dependency structure (e.g., series-parallel DAGs), which disentanglement exploits.

In contrast, with futures, parallel computations become �rst-class values of the language, and thus can be

created, and passed between functions calls or stored in memory, just like other ordinary values, resulting in

complex dependency structures, especially in the presence of mutable state. For example, parallel programs

with futures can have deadlocks, which is impossible with fork-join parallelism.

In this paper, we are interested in the theoretical question of whether disentanglement may be extended

beyond fork/join parallelism, and speci�cally to futures. We consider a functional language with futures,

Input/Output (I/O), and mutable state (references) and show that a broad range of programs written in

this language are disentangled. We start by formalizing disentanglement for futures and proving that purely

functional programs written in this language are disentangled. We then generalize this result in three directions.

First, we consider state (e�ects) and prove that stateful programs are disentangled if they are race free. Second,

we show that race freedom is su�cient but not a necessary condition and non-deterministic programs, e.g. those

that use atomic read-modify-operations and some non-deterministic combinators, may also be disentangled.

Third, we prove that disentangled task-parallel programs written with futures are free of deadlocks, which

arise due to interactions between state and the rich dependencies that can be expressed with futures. Taken

together, these results show that disentanglement generalizes to parallel programs with futures and, thus, the

bene�ts of disentanglement may go well beyond fork-join parallelism.

CCS Concepts: • Software and its engineering → Runtime environments; Parallel programming

languages; Garbage collection.

Additional Key Words and Phrases: Disentanglement

ACM Reference Format:

Jatin Arora, Stefan K. Muller, and Umut A. Acar. 2024. Disentanglement with Futures, State, and Interaction.

Proc. ACM Program. Lang. 8, POPL, Article 53 (January 2024), 31 pages. https://doi.org/10.1145/3632895

1 INTRODUCTION

Functional programming o�ers important correctness bene�ts to parallel programmers, allowing
them to side step the challenges of pesky data races by writing pure code or guiding them with
powerful type systems so that they can use e�ects judiciously. Historically, these correctness bene�ts
meant little, because parallel functional programs delivered poor performance in comparison to

Authors’ addresses: Jatin Arora, jatina@andrew.cmu.edu, Carnegie Mellon University, Pittsburgh, USA; Stefan K. Muller,

smuller2@iit.edu, Illinois Institute of Technology, Chicago, USA; Umut A. Acar, umut@cmu.edu, Carnegie Mellon University,

Pittsburgh, USA.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART53

https://doi.org/10.1145/3632895

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0001-8302-6844
HTTPS://ORCID.ORG/0000-0002-3210-9727
HTTPS://ORCID.ORG/0000-0002-2623-4986
https://doi.org/10.1145/3632895
https://orcid.org/0000-0001-8302-6844
https://orcid.org/0000-0002-3210-9727
https://orcid.org/0000-0002-2623-4986
https://doi.org/10.1145/3632895

53:2 Jatin Arora, Stefan K. Muller, and Umut A. Acar

their procedural counterparts. Recent work on disentanglement has broken a new path towards
bridging the correctness and performance gap by exploiting the “disentanglement hypothesis”, the
idea that most objects in a fork-join program are never touched by concurrently executing threads.
Recent research has shown that when exploited to manage memory e�ciently, the disentanglement
hypothesis allows parallel functional programs to perform well, including at scale [Arora et al.
2021, 2023; Westrick et al. 2020].

Research on disentanglement originates with a key theoretical result that prove that all objects
in a race-free program are disentangled [Westrick et al. 2020]. Later work extended this theory
by showing that an object gets entangled only if it participates in determinacy races [Arora et al.
2023]. Because races typically lead to correctness bugs [Adve 2010; Allen and Padua 1987; Bocchino
et al. 2011, 2009; Boehm 2011; Emrath et al. 1991; Mellor-Crummey 1991; Netzer and Miller 1992;
Steele Jr. 1990], they are rare in parallel programs, leading to the hypothesis that most objects in a
fork-join parallel programs are disentangled.

The work on disentanglement has delivered promising results but it has a signi�cant limitation:
it applies to only fork-join (nested) parallel programs. Although the fork-join model is reasonably
expressive, it cannot express parallel programs with more complex dependencies and parallelism
techniques such as pipelining [Blelloch and Reid-Miller 1999; Singer et al. 2019a; Spoonhower
et al. 2009]. More generally fork-join parallelism does not help with asynchronous, interactive
applications [Acar et al. 2016; Muller et al. 2017, 2018, 2019; Singer et al. 2020b]. Recognizing these
limitations of fork-join parallelism, many modern programming languages and frameworks support
a more powerful form of parallelism called futures. Invented in the 1970s [Baker and Hewitt 1977],
futures allow you to create a parallel task and demand the result from the task at a later time
when needed (hence the name “future”). Unlike fork-join which is merely a control-�ow construct,
futures are �rst-class values, making parallelism a “�rst-class citizen” of the programming language,
which in turn contributes to their expressive power: futures can express data-dependent parallelism,
pipelining, asynchrony, and interaction. Perhaps unsurprisingly, languages such as Concurrent
Haskell [Marlow 2011; Peyton Jones et al. 2008], Habanero Java [Imam and Sarkar 2014], Parallel
ML (Manticore) [Fluet et al. 2008, 2011; Ohori et al. 2018; Spoonhower et al. 2009], PriML [Muller
et al. 2020; Muller and Acar 2016; Muller et al. 2017, 2019; Singer et al. 2020b], OCaml [Dolan et al.
2018a; LWT 2022], Rust [Rust Team 2019], and TPL (a .NET library) [Leijen et al. 2009], have all
embraced futures as a means of supporting more expressive parallelism and interaction. This raises
the question of whether disentanglement can be generalized to futures, and if so, how broadly—can
the many interesting applications of futures be disentangled.

In this paper, we generalize disentanglement to include futures.We consider a functional language
that supports futures, I/O (Input/Output), and (mutable) state in the form of references. The language
combines futures, which are �rst-class threads, with state and I/O, supporting thus the expression
of interactive and asynchronous programs. We show that a broad range programs written in the
language are disentangled. The language’s expressiveness also raises questions of safety, such as
deadlock-freedom, between (concurrent) futures.
To establish disentanglement for this language, we start by restricting our attention to a pure

functional fragment with I/O, and prove that programs written in this fragment are disentangled.
We then generalize this result by considering the full language with mutable state and prove that
determinacy race free ([Netzer and Miller 1992]) parallel programs with futures are disentangled.
Because races typically cause incorrect behavior at scale (e.g., [Adve 2010; Boehm 2011]), they are
frequently classi�ed as a correctness bug. Additionally, motivated by hardware support for atomic
read-modify-write operations, we generalize this result by showing that certain classes of races,
which involve races caused by atomic operations on machine words, do not harm disentanglement.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:3

These results therefore establish that a reasonably broad class of parallel programs written with
futures are disentangled.
Because they make parallelism a “�rst class citizen” of a programming language, futures have

great expressive power, especially when combined with mutable state. This great power has a cost:
using futures and state, the programmers can create circular dependencies, which lead to deadlock.
For example, two futures can discover each other through shared mutable state and attempt to
synchronize with each other, leading to deadlock [Cogumbreiro et al. 2017; Voss et al. 2019]. In this
paper, we show that all disentangled programs are deadlock-free.
These results are not straightforward extensions of prior work on disentanglement for fork-

join programs due to the complex dependency structure introduced by futures. Unlike, fork-join
programs, whose dependencies can be represented as series-parallel DAGs, the synchronization
patterns in programs with futures are more �exible. A series-parallel DAG forbids synchronization
between concurrently executing computations and allows us to infer disentanglement directly from
the DAG. But with futures, a computation may synchronize with a future essentially any time,
creating a dependency structure which is dynamic and data dependent. To tackle this challenge,
we track the memory objects owned by each future (via allocations) by organizing memory as
a tree de�ned by spawned futures. We then treat synchronization with a concurrent future as a
"one-way dependency" that reorganizes the memory tree to re�ect the new dependency structure.
This rewriting allows us to de�ne and reason about disentanglement for futures.

The speci�c contributions of this paper include the following.

• A trace-based de�nition of disentanglement that accounts for futures.
• A core calculus for programs with futures, mutable state, and I/O for generating traces that
can then be used to check for disentanglement.
• A proof that pure functional and purely interactive programs with futures are disentangled.
• A proof that race free programs with futures and mutable state satisfy disentanglement.
• Formal de�nition of weak races and proof that weakly race free programs are disentangled.
• Proof that disentangled programs ensure an important safety property: deadlock-freedom.
• Applications demonstrating the breadth of disentanglement using a variety of techniques
including pipelined parallelism, interaction, and asynchrony.

2 DISENTANGLEMENTWITH FUTURES

In this section, we de�ne disentanglement for programs of a language that supports futures, I/O
(input/output), and mutable references. We state disentanglement using the computation tree, a
tree that captures the control �ow dependencies between the program threads and their memory
actions such as allocations, reads, and writes. The computation tree is generated by the language
semantics at each step of program evaluation. At a high level, we say that a computation tree satis�es
disentanglement if the allocation actions of concurrent threads are oblivious to each other and a
program evaluation satis�es disentanglement if the computation tree satis�es disentanglement at
each step of the evaluation.
The language semantics models parallelism by interleaving the evaluation of futures and their

continuations. During the parallel evaluation of a future and its continuation, the semantics
represents their actions as parallel in the computation tree. However, once the future �nishes its
evaluation, the semantics applies a join transformation on the tree. This transformation rewrites
the computation tree to sequence the future’s actions with the continuation’s actions, capturing
the idea that after the future has completed, its actions no longer need to be considered concurrent
to the actions of the continuation. As we show in subsequent sections, the join transformation
enables us to reason about disentanglement for futures.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:4 Jatin Arora, Stefan K. Muller, and Umut A. Acar

Future names 0, 1

Memory Locations ℓ

Types g ::= bool | nat | g→g | g fut

Storables B ::= true | false | = | fun 5 G is 4 | fcell[0] | ref E

Values E ::= ℓ

Memory ` ∈ Locations ⇀ Storables

Expressions 4 ::= E | B | G | 4 4 | fut(4) | fpoll(4) | get(4) |

ref 4 | ! 4 | 41 := 42 | in_nat() | out_nat(4)

Future Map Δ ::= ∅ | Δ [0 ▶ 4] | Δ [0 ▷ E]

Action Trace C ::= • | Aℓ⇐B | Rℓ⇒B | Uℓ⇐B | Fℓ⇒E | C ⊕ C

Computation Trees) ::= [C] | C ⊕ () ⊗0)) | C ⊕0)

Fig. 1. Syntax of _*

2.1 Syntax

Our language contains constructs for functions, references, futures, and support for input/output
operations. Figure 1 presents the syntax of the language.
Types. The types include booleans, natural numbers, function types and the type g fut for

futures which evaluate an expression of type g .
Storables and memory locations. To de�ne disentanglement and precisely account for the

actions on memory, the language distinguishes between storables and locations. Storables include
numbers, named recursive functions, and future cells. The language steps storables to locations
and uses a memory store ` to map location to storables. A storable at a location may refer/point to
other locations. We use Loc(B) to denote the locations referred to by the storable B . We represent
locations with variables like ℓ , use ` (ℓ) to denote the storable at location ℓ , and use ` [ℓ ↩→ B]

to denote the allocation of location ℓ in the memory store ` (with the implicit requirement that
ℓ ∉ dom(`)). Locations are the only irreducible form of the language. In our dynamics, we use this
distinction between storables and locations to track all the program allocations.
Expressions. The expressions include the usual constructs for functions and references. The

expression fut(4) spawns a future to evaluate expression 4 . The language dynamics gives each
future a name like 0, 1 and other similar variables. For each future, the language allocates a future
cell, which can be used by other threads to either 1) block on the future with the expression get,
which returns the future’s value when it �nishes, or 2) poll the future with the expression fpoll,
which returns true or false depending on whether the future has terminated. We denote the future
cell for future 0 as fcell[0]. The expressions in_nat() and out_nat(4) support input and output
operations for natural numbers. The language models an input as a non-deterministic step to a
number and an output as a deterministic step that reads the argument and returns. This model
captures the memory e�ects associated with these operations, which is su�cient for our goal of
de�ning and reasoning about disentanglement.

2.2 Computation Trees

The computation tree records the memory actions taken during evaluation and organizes them
according to their control �ow dependencies. Each node of the tree represents a memory action

taken by the program, which may be one of the following:

• Aℓ⇐B is the allocation of location ℓ initialized with storable B .
• Rℓ⇒B is a memory lookup (read) at location ℓ which returns storable B .
• Uℓ⇐B is an update (write) which stores storable B at a mutable location ℓ .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:5

• Fℓ⇒E is a synchronization with the future whose future cell is at location ℓ which returns E .

The edges of the tree represent sequential ordering between the actions. For simplicity, we fuse
sequentially taken memory actions into a single node of the tree and call it an action trace. An
action trace contains a (possibly empty) series of actions composed by the operator ⊕, where the
connective ⊕ emphasizes that actions within a trace are taken sequentially. Figure 1 shows the
syntax of action traces and computation trees. We denote action traces with a lowercase variable
like C and computation trees with an upper case variable like) .
When the evaluation starts, the computation tree only contains a single node. When a thread

spawns a future, we add two leaves to the tree, one for storing the actions of the future and the
second for storing the actions of the thread after the spawn. After a thread spawns a future, we
refer to it as the continuation of that future.

A computation tree of the form [C] is a leaf and represents a sequential evaluation that performs
actions in trace C . A computation tree of the form C ⊕ ()1 ⊗0)2) represents an evaluation that
performs the actions in trace C before spawning a future named 0. The tensor ⊗0 is called the
spawn point of future 0. The spawn point denotes that the actions of the future are in subtree
)1, actions of the continuation are in subtree)2, and the respective actions are taken in parallel. A
computation tree of the form C ⊕0) represents an evaluation that spawned a future named 0, but
the future has �nished and “joined” with its continuation. The operator ⊕0 is called the join point

of future 0. We describe the join operation in Section 2.4.
Small example. Figure 2 shows two computation trees of an evaluation where a thread main

spawns a future 0, which in turn spawns future 1, and then thread main synchronizes with the
future 0 to retrieve its result (location ℓ ′′). The �gure shows two trees but we return to the right
side tree later in the section. In the left tree, each box denotes an action trace and the edges between
boxes denote the edges of the tree. The �gure labels each box with the thread that performs its
actions. After themain thread spawns the future 0, it allocates the future cell fcell[0] at location ℓ
(see Aℓ⇐fcell[0]); the thread can now use location ℓ to synchronize with the future. The future
0 spawns future 1 and similarly allocates a cell for it at location ℓ ′ (see Aℓ ′⇐fcell[1]). The future
0 then allocates some storable B at location ℓ ′′ (see Aℓ ′′⇐B), which is the return value of the future.
Its continuation (thread main) synchronizes with it and receives location ℓ ′′ (see Fℓ⇒ ℓ ′′).

2.3 Disentanglement

At a high level, disentanglement restricts concurrent threads from accessing each other’s allocations.
In the context of futures, disentanglement implies that a continuation is prohibited from accessing
a future’s allocations as long as the future is executing. However, if the continuation synchronizes
with the future, disentanglement lifts the restrictions and allows the continuation to freely access
the future’s allocations. This is because a synchronization between the continuation and the future
returns only after the future has terminated, rendering them non-concurrent.
We de�ne disentanglement using the computation tree. The computation tree arranges the

memory actions of program threads according to their control �ow dependencies, i.e., it orders se-
quentially dependent memory actions in an ancestor-descendant relationship and keeps concurrent
memory actions unrelated. A computation tree satis�es disentanglement when every action in the
tree only mentions locations that are allocated by the ancestor actions of that action. An evaluation
satis�es disentanglement if its computation tree maintains disentanglement at each step.

We formalize disentanglement for a tree with an inductive process using the judgement � ⊢) de.
The judgement’s context � stores the set of locations allocated by the ancestor actions of tree) .
The judgement checks that every location mentioned by an action of tree) is either present in

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:6 Jatin Arora, Stefan K. Muller, and Umut A. Acar

<latexit sha1_base64="G9UrScXLD/Q4BaMTEo66q0CfC5g=">AAAB9HicbVDLSgMxFM3UV62vqks3wSK4KjNS1GXRjcsK9gHtUDLpbRuayYzJnWIZ+h1uXCji1o9x59+YtrPQ1gOBwzn3cG9OEEth0HW/ndza+sbmVn67sLO7t39QPDxqmCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxjdzvzmGLQRkXrASQx+yAZK9AVnaCW/g/BkU2nIhJp2iyW37M5BV4mXkRLJUOsWvzq9iCchKOSSGdP23Bj9lGkUXMK00EkMxIyP2ADalioWgvHT+dFTemaVHu1H2j6FdK7+TqQsNGYSBnYyZDg0y95M/M9rJ9i/9lOh4gRB8cWifiIpRnTWAO0JDRzlxBLGtbC3Uj5kmnG0PRVsCd7yl1dJ46LsXZYr95VS9SarI09OyCk5Jx65IlVyR2qkTjh5JM/klbw5Y+fFeXc+FqM5J8sckz9wPn8AjyiSoA==</latexit>

main

<latexit sha1_base64="x2Iw9TpqSvj7ttT37ovzh1WFo9s=">AAACFHicbVDJSgNBEO2Je9yiHr00BkEQwoyIenS5ePCgYExgZgg9nZqkSc9Cd40ahvkIL/6KFw+KePXgzb+xE+fg9qDg8V4VVfWCVAqNtv1hVSYmp6ZnZueq8wuLS8u1ldUrnWSKQ5MnMlHtgGmQIoYmCpTQThWwKJDQCgYnI791DUqLJL7EYQp+xHqxCAVnaKRObdtDuMUgzI8KD6Sk3hmEyJRKbujY0WEecmO4zC86tbrdsMegf4lTkjopcd6pvXvdhGcRxMgl09p17BT9nCkUXEJR9TINKeMD1gPX0JhFoP18/FRBN43SpWGiTMVIx+r3iZxFWg+jwHRGDPv6tzcS//PcDMMDPxdxmiHE/GtRmEmKCR0lRLtCAUc5NIRxJcytlPeZYhxNjlUTgvP75b/kaqfh7DV2L3brh8dlHLNknWyQLeKQfXJITsk5aRJO7sgDeSLP1r31aL1Yr1+tFaucWSM/YL19AhrOn4A=</latexit>

A` ⇐ fcell[a]
<latexit sha1_base64="UWw/HYgaqVQgtH2si61n5mD1XtE=">AAACDHicbVDJSgNBFOxxjXGLevTSGCSewowE9RgUxGMUs0AmhJ7Om6RJz0L3GzUM+QAv/ooXD4p49QO8+Td2loMmFjQUVfV4/cqLpdBo29/WwuLS8spqZi27vrG5tZ3b2a3pKFEcqjySkWp4TIMUIVRRoIRGrIAFnoS6178Y+fU7UFpE4S0OYmgFrBsKX3CGRmrn8i7CA3p+ejl0QUrq3ohuD5lS0T1NR0qhMDQpu2iPQeeJMyV5MkWlnftyOxFPAgiRS6Z107FjbKVMoeAShlk30RAz3mddaBoasgB0Kx0fM6SHRulQP1LmhUjH6u+JlAVaDwLPJAOGPT3rjcT/vGaC/lkrFWGcIIR8sshPJMWIjpqhHaGAoxwYwrgS5q+U95hiHE1/WVOCM3vyPKkdF52TYum6lC+fT+vIkH1yQI6IQ05JmVyRCqkSTh7JM3klb9aT9WK9Wx+T6II1ndkjf2B9/gDP/5t2</latexit>

F` ⇒ `
00

<latexit sha1_base64="G9UrScXLD/Q4BaMTEo66q0CfC5g=">AAAB9HicbVDLSgMxFM3UV62vqks3wSK4KjNS1GXRjcsK9gHtUDLpbRuayYzJnWIZ+h1uXCji1o9x59+YtrPQ1gOBwzn3cG9OEEth0HW/ndza+sbmVn67sLO7t39QPDxqmCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxjdzvzmGLQRkXrASQx+yAZK9AVnaCW/g/BkU2nIhJp2iyW37M5BV4mXkRLJUOsWvzq9iCchKOSSGdP23Bj9lGkUXMK00EkMxIyP2ADalioWgvHT+dFTemaVHu1H2j6FdK7+TqQsNGYSBnYyZDg0y95M/M9rJ9i/9lOh4gRB8cWifiIpRnTWAO0JDRzlxBLGtbC3Uj5kmnG0PRVsCd7yl1dJ46LsXZYr95VS9SarI09OyCk5Jx65IlVyR2qkTjh5JM/klbw5Y+fFeXc+FqM5J8sckz9wPn8AjyiSoA==</latexit>

main

<latexit sha1_base64="t+onMjI3k46B7Y46Md/lRb6v89Y=">AAACFXicbVDJSgNBEO1xN25Rj14ag+hBwowE9ehy8eAhglFhZgg9nRrTpGehu0YNw/yEF3/FiwdFvAre/Bs7kxzcHhQ83quiql6QSqHRtj+tsfGJyanpmdnK3PzC4lJ1eeVCJ5ni0OKJTNRVwDRIEUMLBUq4ShWwKJBwGfSOB/7lDSgtkvgc+yn4EbuORSg4QyO1q9sewh0GYX5YeCDlJvVOIUSmVHJLS0uHeciN4wZ+0a7W7Lpdgv4lzojUyAjNdvXD6yQ8iyBGLpnWrmOn6OdMoeASioqXaUgZ77FrcA2NWQTaz8uvCrphlA4NE2UqRlqq3ydyFmndjwLTGTHs6t/eQPzPczMM9/1cxGmGEPPhojCTFBM6iIh2hAKOsm8I40qYWynvMsU4miArJgTn98t/ycVO3dmtN84atYOjURwzZI2sky3ikD1yQE5Ik7QIJ/fkkTyTF+vBerJerbdh65g1mlklP2C9fwGG7Z+y</latexit>

A`
0
⇐ fcell[b]

<latexit sha1_base64="/4VAjdkdiyhyliAPozVbZ0YSIbA=">AAACD3icbVC5TsNAEF1zhnAZKGlWRBxVZKMIKAM0FBQgkUOKo2i9GcOK9aHdMRBZ/gMafoWGAoRoaen4GzYmBQSeNNLTezOamecnUmh0nE9rYnJqema2NFeeX1hcWrZXVps6ThWHBo9lrNo+0yBFBA0UKKGdKGChL6HlXx8P/dYNKC3i6AIHCXRDdhmJQHCGRurZWx7CHfpBdph7IOX2NvVOIUCmVHxLC08Hmc57dsWpOgXoX+KOSIWMcNazP7x+zNMQIuSSad1xnQS7GVMouIS87KUaEsav2SV0DI1YCLqbFf/kdNMofRrEylSEtFB/TmQs1HoQ+qYzZHilx72h+J/XSTE46GYiSlKEiH8vClJJMabDcGhfKOAoB4YwroS5lfIrphhHE2HZhOCOv/yXNHer7l61dl6r1I9GcZTIOtkgO8Ql+6ROTsgZaRBO7skjeSYv1oP1ZL1ab9+tE9ZoZo38gvX+BW9tnPA=</latexit>

A`
00
⇐ s

<latexit sha1_base64="4C0CpiXOXzNVGa8DV5y7IkJ1dfg=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APboWTSO21oJjMkGbEM/Qs3LhRx69+4829M21lo64HA4Zx7yL0nSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ66Bp8sqmMTnrlilt1ZyDLxMtJBXLUe+Wvbj9maYTSMEG17nhuYvyMKsOZwEmpm2pMKBvRAXYslTRC7WezjSfkxCp9EsbKPmnITP2dyGik9TgK7GREzVAvelPxP6+TmvDKz7hMUoOSzT8KU0FMTKbnkz5XyIwYW0KZ4nZXwoZUUWZsSSVbgrd48jJpnlW9i+r53Xmldp3XUYQjOIZT8OASanALdWgAAwnP8ApvjnZenHfnYz5acPLMIfyB8/kDJvGRPg==</latexit>

a

<latexit sha1_base64="4C0CpiXOXzNVGa8DV5y7IkJ1dfg=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APboWTSO21oJjMkGbEM/Qs3LhRx69+4829M21lo64HA4Zx7yL0nSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ66Bp8sqmMTnrlilt1ZyDLxMtJBXLUe+Wvbj9maYTSMEG17nhuYvyMKsOZwEmpm2pMKBvRAXYslTRC7WezjSfkxCp9EsbKPmnITP2dyGik9TgK7GREzVAvelPxP6+TmvDKz7hMUoOSzT8KU0FMTKbnkz5XyIwYW0KZ4nZXwoZUUWZsSSVbgrd48jJpnlW9i+r53Xmldp3XUYQjOIZT8OASanALdWgAAwnP8ApvjnZenHfnYz5acPLMIfyB8/kDJvGRPg==</latexit>

a

<latexit sha1_base64="avcCkMk2pAez4y6YinjijAR4j/w=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APboWTSTBuayQzJHbEM/Qs3LhRx69+4829M21lo64HA4Zx7yL0nSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFjd4zjhfkQHSoSCUbTSQxf5k01lwaRXrrhVdwayTLycVCBHvVf+6vZjlkZcIZPUmI7nJuhnVKNgkk9K3dTwhLIRHfCOpYpG3PjZbOMJObFKn4Sxtk8hmam/ExmNjBlHgZ2MKA7NojcV//M6KYZXfiZUkiJXbP5RmEqCMZmeT/pCc4ZybAllWthdCRtSTRnakkq2BG/x5GXSPKt6F9Xzu/NK7TqvowhHcAyn4MEl1OAW6tAABgqe4RXeHOO8OO/Ox3y04OSZQ/gD5/MHKHaRPw==</latexit>

b

<latexit sha1_base64="G9UrScXLD/Q4BaMTEo66q0CfC5g=">AAAB9HicbVDLSgMxFM3UV62vqks3wSK4KjNS1GXRjcsK9gHtUDLpbRuayYzJnWIZ+h1uXCji1o9x59+YtrPQ1gOBwzn3cG9OEEth0HW/ndza+sbmVn67sLO7t39QPDxqmCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxjdzvzmGLQRkXrASQx+yAZK9AVnaCW/g/BkU2nIhJp2iyW37M5BV4mXkRLJUOsWvzq9iCchKOSSGdP23Bj9lGkUXMK00EkMxIyP2ADalioWgvHT+dFTemaVHu1H2j6FdK7+TqQsNGYSBnYyZDg0y95M/M9rJ9i/9lOh4gRB8cWifiIpRnTWAO0JDRzlxBLGtbC3Uj5kmnG0PRVsCd7yl1dJ46LsXZYr95VS9SarI09OyCk5Jx65IlVyR2qkTjh5JM/klbw5Y+fFeXc+FqM5J8sckz9wPn8AjyiSoA==</latexit>

main

<latexit sha1_base64="t+onMjI3k46B7Y46Md/lRb6v89Y=">AAACFXicbVDJSgNBEO1xN25Rj14ag+hBwowE9ehy8eAhglFhZgg9nRrTpGehu0YNw/yEF3/FiwdFvAre/Bs7kxzcHhQ83quiql6QSqHRtj+tsfGJyanpmdnK3PzC4lJ1eeVCJ5ni0OKJTNRVwDRIEUMLBUq4ShWwKJBwGfSOB/7lDSgtkvgc+yn4EbuORSg4QyO1q9sewh0GYX5YeCDlJvVOIUSmVHJLS0uHeciN4wZ+0a7W7Lpdgv4lzojUyAjNdvXD6yQ8iyBGLpnWrmOn6OdMoeASioqXaUgZ77FrcA2NWQTaz8uvCrphlA4NE2UqRlqq3ydyFmndjwLTGTHs6t/eQPzPczMM9/1cxGmGEPPhojCTFBM6iIh2hAKOsm8I40qYWynvMsU4miArJgTn98t/ycVO3dmtN84atYOjURwzZI2sky3ikD1yQE5Ik7QIJ/fkkTyTF+vBerJerbdh65g1mlklP2C9fwGG7Z+y</latexit>

A`
0
⇐ fcell[b]

<latexit sha1_base64="/4VAjdkdiyhyliAPozVbZ0YSIbA=">AAACD3icbVC5TsNAEF1zhnAZKGlWRBxVZKMIKAM0FBQgkUOKo2i9GcOK9aHdMRBZ/gMafoWGAoRoaen4GzYmBQSeNNLTezOamecnUmh0nE9rYnJqema2NFeeX1hcWrZXVps6ThWHBo9lrNo+0yBFBA0UKKGdKGChL6HlXx8P/dYNKC3i6AIHCXRDdhmJQHCGRurZWx7CHfpBdph7IOX2NvVOIUCmVHxLC08Hmc57dsWpOgXoX+KOSIWMcNazP7x+zNMQIuSSad1xnQS7GVMouIS87KUaEsav2SV0DI1YCLqbFf/kdNMofRrEylSEtFB/TmQs1HoQ+qYzZHilx72h+J/XSTE46GYiSlKEiH8vClJJMabDcGhfKOAoB4YwroS5lfIrphhHE2HZhOCOv/yXNHer7l61dl6r1I9GcZTIOtkgO8Ql+6ROTsgZaRBO7skjeSYv1oP1ZL1ab9+tE9ZoZo38gvX+BW9tnPA=</latexit>

A`
00
⇐ s

<latexit sha1_base64="avcCkMk2pAez4y6YinjijAR4j/w=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APboWTSTBuayQzJHbEM/Qs3LhRx69+4829M21lo64HA4Zx7yL0nSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFjd4zjhfkQHSoSCUbTSQxf5k01lwaRXrrhVdwayTLycVCBHvVf+6vZjlkZcIZPUmI7nJuhnVKNgkk9K3dTwhLIRHfCOpYpG3PjZbOMJObFKn4Sxtk8hmam/ExmNjBlHgZ2MKA7NojcV//M6KYZXfiZUkiJXbP5RmEqCMZmeT/pCc4ZybAllWthdCRtSTRnakkq2BG/x5GXSPKt6F9Xzu/NK7TqvowhHcAyn4MEl1OAW6tAABgqe4RXeHOO8OO/Ox3y04OSZQ/gD5/MHKHaRPw==</latexit>

b
<latexit sha1_base64="x2Iw9TpqSvj7ttT37ovzh1WFo9s=">AAACFHicbVDJSgNBEO2Je9yiHr00BkEQwoyIenS5ePCgYExgZgg9nZqkSc9Cd40ahvkIL/6KFw+KePXgzb+xE+fg9qDg8V4VVfWCVAqNtv1hVSYmp6ZnZueq8wuLS8u1ldUrnWSKQ5MnMlHtgGmQIoYmCpTQThWwKJDQCgYnI791DUqLJL7EYQp+xHqxCAVnaKRObdtDuMUgzI8KD6Sk3hmEyJRKbujY0WEecmO4zC86tbrdsMegf4lTkjopcd6pvXvdhGcRxMgl09p17BT9nCkUXEJR9TINKeMD1gPX0JhFoP18/FRBN43SpWGiTMVIx+r3iZxFWg+jwHRGDPv6tzcS//PcDMMDPxdxmiHE/GtRmEmKCR0lRLtCAUc5NIRxJcytlPeZYhxNjlUTgvP75b/kaqfh7DV2L3brh8dlHLNknWyQLeKQfXJITsk5aRJO7sgDeSLP1r31aL1Yr1+tFaucWSM/YL19AhrOn4A=</latexit>

A` ⇐ fcell[a]
<latexit sha1_base64="UWw/HYgaqVQgtH2si61n5mD1XtE=">AAACDHicbVDJSgNBFOxxjXGLevTSGCSewowE9RgUxGMUs0AmhJ7Om6RJz0L3GzUM+QAv/ooXD4p49QO8+Td2loMmFjQUVfV4/cqLpdBo29/WwuLS8spqZi27vrG5tZ3b2a3pKFEcqjySkWp4TIMUIVRRoIRGrIAFnoS6178Y+fU7UFpE4S0OYmgFrBsKX3CGRmrn8i7CA3p+ejl0QUrq3ohuD5lS0T1NR0qhMDQpu2iPQeeJMyV5MkWlnftyOxFPAgiRS6Z107FjbKVMoeAShlk30RAz3mddaBoasgB0Kx0fM6SHRulQP1LmhUjH6u+JlAVaDwLPJAOGPT3rjcT/vGaC/lkrFWGcIIR8sshPJMWIjpqhHaGAoxwYwrgS5q+U95hiHE1/WVOCM3vyPKkdF52TYum6lC+fT+vIkH1yQI6IQ05JmVyRCqkSTh7JM3klb9aT9WK9Wx+T6II1ndkjf2B9/gDP/5t2</latexit>

F` ⇒ `
00

<latexit sha1_base64="G9UrScXLD/Q4BaMTEo66q0CfC5g=">AAAB9HicbVDLSgMxFM3UV62vqks3wSK4KjNS1GXRjcsK9gHtUDLpbRuayYzJnWIZ+h1uXCji1o9x59+YtrPQ1gOBwzn3cG9OEEth0HW/ndza+sbmVn67sLO7t39QPDxqmCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxjdzvzmGLQRkXrASQx+yAZK9AVnaCW/g/BkU2nIhJp2iyW37M5BV4mXkRLJUOsWvzq9iCchKOSSGdP23Bj9lGkUXMK00EkMxIyP2ADalioWgvHT+dFTemaVHu1H2j6FdK7+TqQsNGYSBnYyZDg0y95M/M9rJ9i/9lOh4gRB8cWifiIpRnTWAO0JDRzlxBLGtbC3Uj5kmnG0PRVsCd7yl1dJ46LsXZYr95VS9SarI09OyCk5Jx65IlVyR2qkTjh5JM/klbw5Y+fFeXc+FqM5J8sckz9wPn8AjyiSoA==</latexit>

main

<latexit sha1_base64="4C0CpiXOXzNVGa8DV5y7IkJ1dfg=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APboWTSO21oJjMkGbEM/Qs3LhRx69+4829M21lo64HA4Zx7yL0nSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ66Bp8sqmMTnrlilt1ZyDLxMtJBXLUe+Wvbj9maYTSMEG17nhuYvyMKsOZwEmpm2pMKBvRAXYslTRC7WezjSfkxCp9EsbKPmnITP2dyGik9TgK7GREzVAvelPxP6+TmvDKz7hMUoOSzT8KU0FMTKbnkz5XyIwYW0KZ4nZXwoZUUWZsSSVbgrd48jJpnlW9i+r53Xmldp3XUYQjOIZT8OASanALdWgAAwnP8ApvjnZenHfnYz5acPLMIfyB8/kDJvGRPg==</latexit>

a

<latexit sha1_base64="4C0CpiXOXzNVGa8DV5y7IkJ1dfg=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APboWTSO21oJjMkGbEM/Qs3LhRx69+4829M21lo64HA4Zx7yL0nSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ66Bp8sqmMTnrlilt1ZyDLxMtJBXLUe+Wvbj9maYTSMEG17nhuYvyMKsOZwEmpm2pMKBvRAXYslTRC7WezjSfkxCp9EsbKPmnITP2dyGik9TgK7GREzVAvelPxP6+TmvDKz7hMUoOSzT8KU0FMTKbnkz5XyIwYW0KZ4nZXwoZUUWZsSSVbgrd48jJpnlW9i+r53Xmldp3XUYQjOIZT8OASanALdWgAAwnP8ApvjnZenHfnYz5acPLMIfyB8/kDJvGRPg==</latexit>

a

Fig. 2. Two computation trees representing an evaluation where a thread main spawns a future named 0,

which in turn spawns future 1, and then the main thread synchronizes with future 0 to retrieve its result

(location ℓ′′). We denote each node of the tree with a box containing a possibly empty action trace. The labels

on the boxes denote the thread that performed the actions. The le� and right trees show the tree structure

without and with the join transformation.Without the join transformation, the le� tree (mis-)characterizes the

computation as entangled, as it represents the allocation ℓ′′ of future 0 to be concurrent to the synchronized

access of location ℓ′′ by thread main. With the join transformation, the right tree correctly characterizes the

computation to be disentangled as the allocation action is an ancestor of the synchronization action.

� ⊢ C de

� ⊢ • de

Loc(B) ⊆ �

� ⊢ (Aℓ⇐B) de

ℓ ∈ � Loc(B) ⊆ �

� ⊢ (Rℓ⇒B) de

ℓ ∈ � Loc(E) ⊆ �

� ⊢ (Fℓ⇒E) de

ℓ ∈ � Loc(B) ⊆ �

� ⊢ (Uℓ⇐B) de

� ⊢ C1 de � ∪ A(C1) ⊢ C2 de

� ⊢ C1 ⊕ C2 de

� ⊢) de

� ⊢ C de

� ⊢ [C] de

� ⊢ C de � ∪ A(C) ⊢)1 de � ∪ A(C) ⊢)2 de

� ⊢ C ⊕ ()1 ⊗0)2) de

� ⊢ C de � ∪ A(C) ⊢) de

� ⊢ C ⊕0) de

Fig. 3. The figure defines the judgements� ⊢) de and� ⊢ C de, which formalize disentanglement for a tree)

and a node C respectively. The context � contains locations allocated by the ancestor actions of the tree/node.

the context �, or is allocated by some ancestor action in tree) . For a full tree) , if the judgement
∅ ⊢) de holds (i.e., with the empty context) then the tree) satis�es disentanglement.
Figure 3 de�nes the rules for the judgement � ⊢) de for the tree and judgement � ⊢ C de for a

node C of the tree. When the tree is of the form [C], the judgement checks the node C which is an
action trace. If the trace C is of the form C1 ⊕ C2, then its rule checks the trace C1 and subsequently
checks the trace C2 after extending the context � with the allocations in trace C1. This is because
actions in trace C1 are ancestors to actions in trace C2.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:7

)1 = [C1]

⊲⊳ (0,)1,)2) = C1 ⊕0)2
Leaf

)1 = C1 ⊕1)
′
1

⊲⊳ (0,)1,)2) = C1 ⊕1 ⊲⊳ (0,)
′
1 ,)2)

Join Point

)1 = C1 ⊕ ()
′
1 ⊗1)

′′
1)

⊲⊳ (0,)1,)2) = C1 ⊕ ()
′
1 ⊗1 ⊲⊳ (0,)

′′
1 ,)2))

Spawn Point

Fig. 4. Function Join

The rule for the allocation action Aℓ⇐B checks that all locations in storable B are in the set �.
The rule for the read action Rℓ⇒B checks that both the location ℓ and locations in storable B are in
set �. Similarly, the rule for the update action inspects both the location and the new storable. The
rule for the synchronization action (Fℓ⇒E) checks the location ℓ and the locations in value E .

The rule for the form C ⊕ ()1 ⊗0)2) checks that the trace C is disentangled (� ⊢ C de) and inspects
the subtrees)1 and)2 after extending the context � with locations allocated by the trace C (denoted
as�(C)). This is because actions of trace C are ancestors of actions in subtrees)1 and)2. Importantly,
the rule does not include the locations allocated by tree)2 to check tree)1 and vice-versa. This is
because their actions are not in an ancestor-descendant relationship.

When the tree is of the form C ⊕0) , the judgement checks the trace C and the tree) . In a tree of
this form, actions of trace C are ancestors to actions in tree) . Thus, the rule for this form checks
the tree) after extending the context � with allocations of the trace C .

2.4 Joins

After a future terminates, its continuation can access its allocations without violating disentan-
glement. Our semantics represents this in the computation tree by transforming the tree after
a future terminates. The semantics rearranges the tree such that memory actions of the future
become ancestors of its continuation’s actions, and they appear sequentially ordered. The semantics
performs this join transformation at an evaluation step called join. The join step is only a tool
for reasoning about disentanglement and, in no way, a�ects the actual parallelism of the program.
Example. To illustrate the join transformation, we draw two trees in Figure 2. The two trees

represent an evaluation in which a thread main spawns future 0, which subsequently spawns
future 1, and then thread main synchronizes with the future to retrieve its result. The left tree
does not incorporate the join transformation whereas the right tree does. In the left tree, the
synchronization action by thread main (Fℓ⇒ ℓ ′′) and the allocation action (Aℓ ′′⇐B) by future 0
are positioned concurrently in the tree, i.e., they are not in an ancestor-descendant relationship.
Consequently, since the allocation of location ℓ ′′ is not an ancestor of the synchronization action,
the left tree mistakes the evaluation as violating disentanglement. In contrast, the right tree satis�es
disentanglement because of the join transformation. By sequencing the future’s actions with those
of the continuation, the join transformation ensures that the allocation action (Aℓ ′′⇐B) for location
ℓ ′′ becomes an ancestor of the synchronization action (Fℓ⇒ ℓ ′′).
By sequencing the future’s actions before the continuation’s actions, the join transformation

represents that once a future �nishes, it is no longer concurrent with the continuation. However, it
is essential to note that any futures spawned by the completed future may still be executing and
remain concurrent with the continuation. As a result, it is crucial for the join transformation to not
sequence their actions with the continuation.

Join Function. Figure 4 shows the join transformation with the function ⊲⊳. The function takes
arguments 0,)1,)2, where 0 is the future that �nished and trees)1 and)2 are the children of the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:8 Jatin Arora, Stefan K. Muller, and Umut A. Acar

spawn point of future 0, i.e., tree)1 is the tree containing the future’s actions, and tree)2 is the
tree containing the continuation’s actions. To perform the join, the function recurses down the
tree)1, following the actions of the future until it reaches the leaf. This leaf marks the end of the
future’s actions because it has �nished. Then, the function sticks tree)2 as a descendant of that
leaf, making all of the future’s actions ancestors of the continuation’s actions. The function does
not change the relationship between any actions corresponding to other threads in trees)1 and)2.
In the leaf case, when tree)1 is a leaf of form [C1], the function returns C1 ⊕0)2, where the

operator ⊕0 marks the join point of future 0. For tree)1 of the form C1 ⊕1)
′
1 , which represents the

join point of future 1, the function returns the tree C1 ⊕1 ⊲⊳ (0,)
′
1 ,)2). This resulting tree maintains

the relationship between trace C1 and tree) ′1 , and also incorporates the join of tree)2 with tree) ′1 .
For tree)1 of the form C1 ⊕ ()

′
1 ⊗1)

′′
1), which represents the spawn point of future 1, the function

recurses on subtree) ′′1 and leaves subtree) ′1 unchanged. This is because the tree) ′1 contains the
actions of future 1 and the actions of the future 0 are in tree) ′′1 . By recursing down tree) ′′1 , the
function makes all the actions of the future 0 ancestors to the actions of tree)2. We give another
example to illustrate this function in the Appendix.

Fork/Join. We note that our join here is similar to a “join” in a fork-join computation but there
are some important di�erences. The join in fork-join is two-way because two sibling tasks �nish
their execution and join with each other. It requires that all tasks nested within the joining tasks
also terminate before the join can proceed. As a result, join e�ectively eliminates all concurrency
and parallelism within its scope. On the other hand, in the case of futures, the join is one-way
because a future �nishes and joins into its continuation. Furthermore, tasks spawned by the joining
future can escape its scope. This key di�erence allows for concurrency and parallelism even after
the join, as the spawned tasks can execute independently of the future and its continuation.
We can indeed observe these di�erences by considering the join function. For fork-join, a

corresponding join function, say function J, is J([C1], [C2]) = [C1 ⊕ C2]. This function is relatively
simple because both its arguments are guaranteed to be leaves in the computation tree. Any tasks
nested within their scope have �nished. In contrast, the join function for futures operates on trees.
This is because the continuation has not �nished and the future, even though itself has �nished,
may have spawned other futures which are still executing. This ability of futures to spawn futures
which continue to execute concurrently beyond the joining point introduces additional challenges
for reasoning about concurrency and proving disentanglement.

2.5 Language Semantics

Our operational semantics steps a program state consisting of four components: (i) a future map
Δ tracking the evaluation of futures, (ii) a memory store ` mapping locations to storables, (iii) a
computation tree) , and (iv) an expression 4 . We write a program state as (Δ ; ` ;) ; 4). Figure 5
shows the rules for the semantics.
Allocations and functions. The allocation rule Alloc extends the memory ` with location ℓ

mapped to storable B and records it in the leaf [C] as the allocation action Aℓ⇐B . Rules AppSL and
AppSR for function application step the function and the argument respectively. The application
rule App applies the function to the argument. It substitutes recursive mentions of the function in
its body 4 by location ℓ , and substitutes the variable G by the argument E .

References. Rules RefS, BangS, UpdSL, and UpdSR evaluate their corresponding subexpressions.
The rule Bang corresponds to dereferencing a mutable location ℓ and looks up the location ℓ in
memory store ` and returns the stored value E . The rule records this in the leaf [C] as the read
action Rℓ⇒ ref E . The rule Upd corresponds to a destructive update and updates the memory
location ℓ to refer to value E . The rule records this in the leaf [C] as the update action Uℓ⇐ref E .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:9

ℓ ∉ dom(`)

Δ ; ` ; [C] ; B → Δ ; ` [ℓ ↩→B] ; [C ⊕ (Aℓ⇐B)] ; ℓ
Alloc

Δ ; ` ;) ; 41 → Δ
′ ; `′ ;) ′ ; 41

′

Δ ; ` ;) ; (41 42) → Δ
′ ; `′ ;) ′ ; (4′1 42)

AppSL
Δ ; ` ;) ; 42 → Δ

′ ; `′ ;) ′ ; 42
′

Δ ; ` ;) ; (ℓ1 42) → Δ
′ ; `′ ;) ′ ; (ℓ1 4

′
2)

AppSR

` (ℓ) = fun 5 G is 4

Δ ; ` ; [C] ; (ℓ E) → Δ ; ` ; [C ⊕ (Rℓ⇒fun 5 G is 4)] ; [ℓ, E / 5 , G]4
App

Δ ; ` ;) ; 41 → Δ ; `′ ;) ′ ; 41
′

Δ ; ` ;) ; (41 := 42) → Δ ; `′ ;) ′ ; (4′1 := 42)
UpdSL

Δ ; ` ;) ; 42 → Δ ; `′ ;) ′ ; 42
′

Δ ; ` ;) ; (ℓ1 := 42) → Δ ; `′ ;) ′ ; (ℓ1 := 4
′
2)

UpdSR

Δ ; ` ;) ; 4 → Δ ; `′ ;) ′ ; 4′

Δ ; ` ;) ; (ref 4) → Δ ; `′ ;) ′ ; (ref 4′)
RefS

Δ ; ` ;) ; 4 → Δ ; `′ ;) ′ ; 4′

Δ ; ` ;) ; (! 4) → Δ ; `′ ;) ′ ; (! 4′)
BangS

` (ℓ) = ref E

Δ ; ` ; [C] ; (! ℓ) → Δ ; ` ; [C ⊕ (Rℓ⇒ref E)] ; E
Bang

Δ ; `0 [ℓ ↩→B] ; [C] ; (ℓ := E) → Δ ; `0 [ℓ ↩→ref E] ; [C ⊕ (Uℓ⇐ref E)] ; E
Upd

(0 fresh) Δ
′
= Δ[0▶4]

Δ ; ` ; [C] ; fut(4) → Δ
′ ; ` ; C ⊕ ([•] ⊗0 [•]) ; fcell[0]

FSpawn

Δ(0) ▶ 41 Δ ; ` ;)1 ; 41 → Δ
′ ; `′ ;) ′1 ; 4′1 (Δ′ = Δ

′
B [0▶41])

Δ ; ` ; C ⊕ ()1 ⊗0)2) ; 42 → Δ
′
B [0▶4

′
1] ; `

′ ; C ⊕ () ′1 ⊗0)2) ; 42
FutS

Δ ; ` ;)2 ; 42 → Δ
′ ; `′ ;) ′2 ; 4′2

Δ ; ` ; C ⊕ ()1 ⊗0)2) ; 42 → Δ
′ ; `′ ; C ⊕ ()1 ⊗0)

′
2) ; 4

′
2

ContS

Δ = ΔB [0▶E] ⊲⊳ (0,)1,)2) =) Δ
′
= ΔB [0▷E]

Δ ; ` ; C ⊕ ()1 ⊗0)2) ; 42 → Δ
′ ; ` ; C ⊕) ; 42

FJoin

` (ℓ) = fcell[0] Δ(0) ▷ E

Δ ; ` ; [C] ; fpoll(ℓ) → Δ ; ` ; [C ⊕ (Rℓ⇒fcell[0])] ; true
PollT

` (ℓ) = fcell[0] Δ(0) ▶ 4

Δ ; ` ; [C] ; fpoll(ℓ) → Δ ; ` ; [C ⊕ (Rℓ⇒fcell[0])] ; false
PollF

Δ ; ` ;) ; 4 → Δ
′ ; `′ ;) ′ ; 4′

Δ ; ` ;) ; get(4) → Δ
′ ; `′ ;) ′ ; get(4′)

GetS
` (ℓ) = fcell[0] Δ(0) ▷ E

Δ ; ` ; [C] ; get(ℓ) → Δ ; ` ; [C ⊕ (Fℓ⇒E)] ; E
Get

= : int

Δ ; ` ; [C] ; in_nat() → Δ ; ` ; [C] ; =
Input

` (ℓ) = =

Δ ; ` ; [C] ; out_nat(ℓ) → Δ ; ` ; [C ⊕ Rℓ⇒=] ; ()
Output

Fig. 5. Dynamics of _*

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:10 Jatin Arora, Stefan K. Muller, and Umut A. Acar

Futures. The rule FSpawn spawns a future. It steps the expression fut(4) to the future cell
fcell[0], where 0 is an unused/fresh name. Each future’s evaluation is tracked in the future map,
denoted Δ, which stores all future names and their expressions. We write Δ[0▶4] to extend map
Δ with future 0 and use Δ(0) ▶ 4 to denote that 0 is mapped to expression 4 . The rule FSpawn

extends the future map with the new future and also adds two empty leaves to the computation
tree. The resulting tree is of the form C ⊕ ([•] ⊗0 [•]), where the symbol • denotes the empty trace.
The rule composes the leaves with the operator ⊗0 , marking the spawn point of future 0. The left
and right leaf will store the subsequent actions of the future and the continuation respectively.
The rules FutS and ContS step the program state if the computation tree is of the form C ⊕

()1 ⊗0)2). The rule FutS looks up the future name 0 and expression 41 in future map Δ, and steps
the expression 41 with the left subtree)1. The rule has a premise, the condition Δ

′
= Δ

′
B [0 ▶ 41]

which guarantees that stepping 41 does not change the future map for future 0, i.e., Δ(0) = Δ
′ (0).

The rule has the premise because this rule is responsible for tracking the evaluation of future 0.
For the resulting state, the rule FutS maps the future 0 to expression 4′1. The rule ContS steps the
continuation 42 with the right subtree)2. These rules can be interleaved non-deterministically to
model parallel evaluation.
Once a future is fully evaluated to a value, the rule FJoin joins it with its continuation. The

rule performs the join transformation on the computation tree, as described earlier in Section 2.4,
and also updates the future map to mark that the future has joined. In the future map, we use an
unshaded triangle to denote joined futures. The rule changes the map from ΔB [0 ▶ E] to ΔB [0 ▷ E].
Polling and synchronization. The rules Poll, PollT, and PollF describe the semantics of

polling. The rule Poll steps its argument subexpression. If the future being polled has joined, then
the rule PollT steps fpoll(ℓ) to true; otherwise, the rule PollF steps fpoll(ℓ) to false. Since
both the rules look up location ℓ in the memory store `, they insert the read action Rℓ⇒fcell[0]

to the computation tree. Note that polling is a non-blocking primitive, as the expression fpoll

always steps immediately.
Unlike the expression fpoll(4), the expression get(4) blocks until the future completes and

then returns its the value. The rule GetS steps the argument expression 4 to a location ℓ . Then, once
the future referred by location ℓ has joined, the rule Get retrieves the value of from the future map
and returns it. The rule records this synchronization in the computation tree with the action Fℓ⇒E ,
where E is the return value of the future. Notice that the rule Get has the condition ΔB [0 ▷ E] in
the premise, asserting that it blocks until the future has joined.
Input/Output. The rule Input steps the expression in_nat() to a non-deterministic natural

number =. The natural number = will then be allocated in the memory store by the rule Alloc. The
rule’s non-determinism models the e�ect of the input on evaluation and the allocation captures the
e�ect of the input on memory and disentanglement. The rule output takes a location ℓ , which
stores a natural number =, and steps the location to a unit value. The rule extends the computation
tree with the read action Rℓ⇒=. This step models an output to an environment and the read action
captures the e�ect of the output on disentanglement. For brevity, we do not model I/O on other
types but the language can be extended to support them.

3 DISENTANGLEMENT IN PURE AND PURELY INTERACTIVE PROGRAMS

In this section, we focus on a subset of our language which includes futures and I/O. We call the
subset language _% , where % indicates that the language is “pure” or “purely interactive”, i.e., the
language supports futures and I/O, but does not allow mutable references. Because the language
disallows mutation, its programs are automatically devoid of races, making it an excellent medium
for expressing parallel programs. The language supports futures which can express sophisticated
algorithms and techniques such as pipelining. When coupled with the ability to interact with the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:11

1 type U tree =

2 Empty

3 | Node of U * (U tree) fut * (U tree) fut

4

5 merge :: U tree → U tree → U tree

6 fun merge t1 t2 =

7 case (t1 , t2) of

8 (Empty , _) → t2

9 | (_, Empty) → t1

10 | (Node (v, l, g), _) →

11 let s = split v t2

12 ll = fut merge (get l) (#1 s)

13 gg = fut merge (get g) (#2 s)

14 in

15 Node (v, ll , gg)

1 split :: U → U tree

2 → ((U tree) fut * (U tree) fut)

3 fun split k t =

4 case t of

5 Empty → (fut Empty , fut Empty)

6 | Node (v, l, g) →

7 if k < v then

8 let s = fut split k (get l)

9 in

10 (fut #1 s,

11 fut Node (v, #2 s, g))

12 else

13 let s = fut split k (get g)

14 in

15 (fut Node (v, l, #1 s),

16 fut #2 s)

Fig. 6. Pipelinedmerge with futures.We define the function #1 x = get (fst x) and #2 x = get (snd x),

where fst and snd project out the first and the second component of a pair.

environment, futures can elegantly express asynchronous and interactive applications such as a web
server. In this section, we show that all such algorithms and applications satisfy disentanglement
by showing that all programs of language _%are disentangled.
Before delving into the technical details, we begin with a classic example of pipelining with

futures. As another example, we present a web server written in this language in Section 6.1.

3.1 Pipelining with Futures

Pipelining is a fundamental technique in the design of parallel algorithms that can meaningfully
reduce the parallel depth (span). For example, pipelining was used by Paul et al. to improve
parallel operations on balanced trees [Paul et al. 1983] and by Cole to give a $ (lg=) span parallel
mergesort algorithm [Cole 1988]. Implementing pipelined algorithms, however, is quite challenging,
because the programmer has to carefully manage the rather complex, producer-consumer-like data
dependencies between parallel computations. Blelloch and Reid-Miller [Blelloch and Reid-Miller
1999] showed that pipelined algorithms can be expressed at quite a high level by using functional
programming extended with futures.

Figure 6 shows the code for a pipelined tree merge from Blelloch and Reid-Miller [Blelloch and
Reid-Miller 1999], adapted to our language 1. The tree datatype is a binary search tree whose
branches are of future type. The merge function returns the non-empty tree if one of the trees is
empty. In the case where both trees are non-empty, the function splits the second tree by using the
key at the root of the �rst tree and recursively merges the two “halves” from the two trees. These
recursive merges run inside futures, allowing them to proceed in parallel. Because the function
split also returns the recursive portion of its result inside a future, the recursive calls to merge can
run in a pipelined fashion with the split. This is possible because each node of the tree is wrapped
inside future and is demanded by the get expression as needed.
Given two balanced trees of depth $ (lg=), the parallel merge runs in $ (lg=) span or parallel

time. With fork-join parallelism, however, the best parallel merge runs in $ (lg2 (=)) span.

3.2 Disentanglement for Futures and Interaction

We show here that evaluation of a program in language _%always satis�es disentanglement. To
evaluate a program, we consider the stepping relation (→%), which contains a subset of the rules we

1The example in Blelloch and Reid-Miller [Blelloch and Reid-Miller 1999] uses a non-strict semantics for forcing futures

whereas our futures are strict.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:12 Jatin Arora, Stefan K. Muller, and Umut A. Acar

 ;� ⊢Δ,`) ; 4 defut

Loc(4) ⊆ � Fut(4, `) ⊆ ∀ℓ ∈ �. Loc(` (ℓ)) ⊆ �

 ;� ⊢Δ,` [•] ; 4 defut
(5.1)

� ⊢ C de ;� ∪ A(C) ⊢Δ,` [•] ; 4 defut

 ;� ⊢Δ,` [C] ; 4 defut
(5.2)

� ⊢ C de Δ(0) ▷ E (0 ∉)

 ;� ∪ A(C) ⊢Δ,` [•] ; E defut

 ∪ {0} ;� ∪ A(C) ⊢Δ,`) ; 4 defut

 ;� ⊢Δ,` C ⊕0) ; 4 defut
(5.3)

� ⊢ C de Δ(0) ▶ 41 (0 ∉)

 ;� ∪ A(C) ⊢Δ,`)1 ; 41 defut

 ∪ {0} ;� ∪ A(C) ⊢Δ,`)2 ; 42 defut

 ;� ⊢Δ,` C ⊕ ()1 ⊗0)2) ; 42 defut
(5.4)

Fig. 7. Rules for the invariant defut

de�ne in our full language (Section 2.5). The subscript “P” denotes that the relation only considers
rules for the constructs in the language _% , which contains futures and I/O but nomutable references.
To prove the result formally, we consider the computation tree produced by the language semantics
and show that it is disentangled at each step, i.e.,

Theorem 3.1 (Pure and purely interactive futures are disentangled). For any ∅ ; ∅ ; [•] ;
40 ↦−→

∗
% Δ ; ` ;) ; 4 , where Loc(40) = ∅, we have ∅ ⊢) de.

The theorem states that starting from the initial state (∅ ; ∅ ; [•] ; 40), if the program takes an
arbitrary number of steps, then the tree of the resulting state satis�es disentanglement. Because
the theorem leaves the number of steps to be arbitrary, it implies that the computation tree of each
state satis�es disentanglement, proving that the evaluation satis�es disentanglement.
To prove the theorem, we observe that in a pure program, the only way a thread can share an

allocation with another thread is by synchronizing with it as a future. Such a synchronization
returns allocations, potentially including handles to other futures because futures are themselves
memory allocations (they are �rst class). Thus, to establish disentanglement, we must prove that a
thread never gets a handle to a future that is spawned concurrently. We formalize this by de�ning
two properties, namely defut and ok and prove them as invariants of the computation. For a
program state (Δ ; ` ;) ; 4), we de�ne the properties with an inductive process on the tree) , using
the judgements ; � ⊢Δ,`) ; 4 defut and � ; Δ′ ⊢`′ ok respectively. The set contains future
names and the set � contains memory locations. For the full tree, the sets and � are empty,
but for internal subtrees, the sets contain the futures and locations that actions of a subtree may
mention without violating disentanglement. We discuss the properties in detail and prove them by
induction.

Property defut. The defut property implies disentanglement and in addition imposes restrictions
on the memory locations mentioned by the expressions of various program threads. Given a subtree
) and an expression 4 , the judgement defut (;� ⊢Δ,`) ;4 defut) enforces that (i) the tree) satis�es
disentanglement w.r.t. the set �, i.e., � ⊢) de, (ii) the expression 4 only mentions futures present in
set and locations present in set �, in addition to futures spawned and locations allocated within
the subtree) , and (iii) all subtrees of tree) satisfy the judgement defut.
Figure 7 show the rules for the judgement defut. The Rule (5.1) applies to an empty leaf of the

form [•]. The rule checks that all locations mentioned by expression 4 are in the set �. The rule
uses the function Fut(4, `), which returns all futures mentioned by expression 4 , and asserts that

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:13

they are in the set 2. Crucially, the rule also enforces that the set � is closed under the memory
pointer relation, i.e., a location in � only points to locations which are also in � (highlighted in
purple). Since all locations mentioned by the expression 4 are in set �, the purple premise ensures
that that accessing a location mentioned in expression 4 does not lead to a location outside �. The
Rule (5.2) considers the case when the tree is a leaf, i.e., of the form [C]. It checks that trace C is
disentangled and defers to the Rule (5.1) after extending the set � with the allocations in trace C .
The Rule (5.4) applies to a tree of the form C ⊕ ()1 ⊗0)2). Recall that this tree represents the

spawning of future 0 after actions in trace C , with tree)1 recording the actions of the future, and
tree)2 recording the actions of the continuation. The rule checks the tree)2 with expression 42
after extending the set A to � ∪ A(C) and set to ∪ {0}. These extensions represent that the
tree)2 and expression 42 can mention locations allocated by the trace C and also access the future
0. For the tree)1, the rule uses future map Δ to retrieve the future’s expression 41 and checks
 ;� ∪ A(C) ⊢Δ,`)1 ; 41 defut. The rule extends the set � with the allocations in tree C , but unlike
for tree)2, the rule does not extend the set with future 0. By excluding future 0 from set , the
rule prohibits the future from mentioning and accessing itself.

The Rule (5.3) shows the conditions for future 0 after it has joined with its continuation 4 . The
tree in this case is of the form C ⊕0) , where the operator ⊕0 marks the join point of future 0.
Because the future has joined, its is mapped to a value E in the future map and the rule checks the
value similar to Rule (5.1).

Property ok. The judgement ok (� ; Δ ⊢` ok) guarantees that the value of every terminated
future in set only refers to futures and locations within sets and �. With this judgement, we
can show that if a thread performs a synchronization action on a future to retrieve a value, then the
value only contains locations and futures within sets and�. We can de�ne it formally as follows.

 ⊆ dom(Δ) ∀0 ∈ . Δ(0) ▷ E ⇒ Loc(E) ⊆ � ∧ Fut(E, `) ⊆

� ; Δ ⊢` ok

As a sanity check, the property ok ensures that all futures in are in the future map Δ. The
property then checks the values of terminated futures; recall that futures that have terminated are
mapped with an unshaded triangle in the future map Δ. For each terminated future, the property
checks that the return value E of the future only refers to locations and futures in sets � and
respectively. The property uses the function Loc(E) that returns all the locations mentioned in
value E and asserts that all such locations are in the set �. The property uses the function Fut(E, `),
which returns all futures referred by value E and asserts that they are in the set . We leave the
de�nitions of these functions to the Appendix B.

We show the following lemma which is the inductive step for the main theorem (Theorem 3.1).

Lemma 3.2. For any sets � and , and step Δ ; ` ;) ; 4 →% Δ
′ ; `′ ;) ′ ; 4′, if � ; Δ ⊢` ok and

 ;� ⊢Δ,`) ; 4 defut then � ; Δ′ ⊢`′ ok and ;� ⊢Δ′,`′)
′ ; 4′ defut.

The lemma says: if a state satisfying the properties defut and ok takes a step, then the resulting
state also satis�es both the properties. We prove the lemma itself by induction on the stepping
relation: Δ ; ` ;) ; 4 →% Δ

′ ; `′ ;) ′ ; 4′.

Proof. We cover the stepGet of the operational semantics here and leave others to the Appendix.
Case Get.

2We de�ne the function Fut(4, `) formally in the Appendix B

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:14 Jatin Arora, Stefan K. Muller, and Umut A. Acar

` (ℓ) = fcell[0] Δ(0) ▷ E

Δ ; ` ; [C] ; get(ℓ) → Δ ; ` ; [C ⊕ (Fℓ⇒E)] ; E
Get

The ruleGet synchronizeswith a terminated future and returns its value. The initial state (Δ;`;) ;4)
for this rule is (Δ ; ` ; [C] ; get(ℓ)). The state after the step (Δ′ ; `′ ;) ′ ; 4′) is (Δ ; ` ; [C ⊕ (Fℓ⇒E)]).
The step requires that the location ℓ points to future 0 (` (ℓ) = fcell[0]) and that the future 0 has
joined (Δ(0) ▷ E). Thus, we have 4 = get(ℓ),) = [C], ` (ℓ) = fcell[0], Δ(0) ▷ E , Δ′ = Δ , `′ = `,
) ′ = [C ⊕ (Fℓ⇒E)], and 4′ = E .

To prove the lemma, we need to prove the defut and ok properties for the state after the step. We
can also assume that the properties hold for the state before the step, i.e., we assume ; � ⊢Δ,`
[C] ; get(ℓ) defut and � ; Δ ⊢` ok. The ok judgement � ; Δ′ ⊢`′ ok follows directly from
� ; Δ ⊢` ok because `′ = ` and Δ

′
= Δ.

To prove property defut, we need to show ;� ⊢Δ′,`′)
′ ; 4′ defut which is equivalent ;� ⊢Δ,`

[C ⊕ (Fℓ⇒E)] ; E defut. We can show this using the (Rule (5.2)) and prove its premise as follows:

• � ⊢ C ⊕ (Fℓ⇒E) de. To prove the judgement � ⊢ C ⊕ (Fℓ⇒E) de, it su�ces to show � ⊢ C de
and � ∪ A(C) ⊢ (Fℓ⇒E) de. We can show the �rst part, � ⊢ C de, by inversion on ;� ⊢Δ,`
[C] ; get(ℓ) defut. To prove � ∪ A(C) ⊢ (Fℓ⇒E) de, we need to show Loc(E) ⊆ � ∪ A(C) and
ℓ ∈ �∪A(C). We can show the �rst part, Loc(E) ⊆ �∪A(C), by inversion on� ;Δ ⊢` ok and
Δ(0) ▷ E . The second part, ℓ ∈ �∪A(C), follows from inversion on ;� ⊢Δ,` [•] ;get(ℓ) defut,
which gives us Loc(get(ℓ)) ⊆ � ∪ A(C), which means that ℓ ∈ � ∪ A(C).
• ;� ∪ A(C ⊕ (Fℓ⇒E)) ⊢Δ,` [•] ; E defut. This follows from � ∪ A(C ⊕ (Fℓ⇒E)) = � ∪ A(C)

and ;� ∪ A(C) ⊢Δ,` [•] ; E defut which we shows as follows:
– Loc(E) ⊆ � ∪ A(C), by inversion on � ; Δ ⊢` ok
– ∀ℓ ∈ (� ∪ A(C)) . Loc(` (ℓ)) ⊆ � ∪ A(C), by inversion on ;� ⊢Δ,` [•] ; get(ℓ) defut
– Fut(E, `) ⊆ , by inversion on ;� ⊢Δ,` [•] ; get(ℓ) defut

□

4 STATEFUL PROGRAMSWITH DISENTANGLEMENT

Because it allows for in-place updates, mutable state improves the e�ciency and scalability of
many parallel algorithms. When used in conjunction with futures, state further allows expressing
parallelism hidden behind complex dependencies e�ortlessly, for example, by allowing futures to
be stored inside stateful data structures such as references and arrays. In this section, we show
that determinacy race free programs with futures and state satisfy disentanglement. This result
broadens disentanglement to encompass a huge variety of programs because determinacy race
freedom is a generally accepted safety property for parallel programs.

Some programs, however, use races to improve performance and control them carefully so as to
not harm correctness. With the introduction of atomic hardware instructions such as “compare-
and-swap”, one can safely perform atomic updates, which has further increased the prevalence of
this practice. For example, many graph algorithms today use “compare-and-swap” instructions to
mark the vertices of a graph that they visit to prevent multiple, possibly concurrent visits, to the
same vertex. To account for these programs, we introduce the cas (“compare-and-swap”) primitive
to our language. and establish that weakly race-free programs, i.e., programs which may exhibit
races on “unboxed values” such as integers, are still disentangled.
We start this section with an example that uses futures and state to express parallelism and

asynchrony in a PDF viewer. The application is devoid of races and is therefore disentangled.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:15

1 type pdf = {raw_data : bytes array ,

2 num_pages : int ,

3 page_offsets : int → int}

4 val render : pdf * int → page

5 val display : page → unit

6 val getClick : unit → int

7

8 fun viewer (p : pdf) =

9 let

10 page_arr = tabulate (# num_pages p) NONE

11 fun loop () =

12 let pnum = getClick () in

13 case page_arr[pnum] of

14 NONE =>

15 pg = render (p, pnum);

16 display (pg);

17 page_arr[pnum] ← SOME (fut (pg));

18 fill_page_arr (pnum - X , pnum + X) page_arr p

19 SOME f =>

20 display (get f)

21 in

22 loop ()

1 fun fill_page_arr (l, r) page_arr p =

2 let

3 fun fill i =

4 case page_arr[i] of

5 NONE => page_arr[i] ←

6 fut (render (p, i))

7 | SOME _ => ()

8 in

9 foreach (l, r) (fn i => fill (i))

Fig. 8. PDF viewer with disentanglement

4.1 PDF Viewer with Disentanglement

We consider a PDF viewer that accepts a page number from the user and displays the corresponding
page of the PDF on the screen. Before displaying a requested page, the viewer must �rst render the
page, i.e., it must interpret the bytes in the PDF and generate a visual representation, like a pixel
array, which it can then display. Our viewer renders pages in an optimized manner, as it not only
renders the pages as requested by the user, but also anticipates the user’s navigation actions and
renders adjacent pages in the background. It spawns futures to perform this proactive rendering
and stores the futures in an array indexed by the appropriate page numbers. In this way, futures
and array implement a proactive memoization/caching mechanism, allowing the viewer to display
rendered pages e�ciently and without delay.

Figure 8 shows the code for the viewer. The function viewer allocates the “page array”, a future
option array indexed by the page numbers of the PDF. Initially all elements of the array are NONE.
The function then runs the loop function, which repeatedly awaits for the user to request a page
number by calling the function getClick. To complete the user request, the function loop looks up
the page number in the array and if it �nds NONE, the loop prepares the page by calling function
render, displays the page to the user, and writes it to the page array at this page number. After
completing the user request, the function loop proactively renders X number of pages near the
current page by calling the function fill_page_arr, which spawns futures to render the given range
of pages and writes the corresponding futures in the page array. Note that function fill_page_arr

takes constant time because it returns immediately after spawning futures that render pages in the
background. This allows the loop to be ready promptly for the next user request.

The code uses the stateful array to track futures and also to memoize the already prepared pages.
Note that the array is accessed exclusively by a single thread, the thread that runs the functions
viewer, loop, and fill_page_arr. The futures spawned by the thread never read or write to the
array. Thus, the code does not exhibit determinacy races because all the writes in the code are
visible only to the writer itself. The next subsection proves that determinacy race freedom implies
disentanglement, thereby establishing that the PDF viewer is also disentangled.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:16 Jatin Arora, Stefan K. Muller, and Umut A. Acar

� ⊢ • drf

ℓ ∉ �

� ⊢ (Aℓ⇐B) drf

ℓ ∉ �

� ⊢ (Fℓ⇒E) drf

ℓ ∉ �

� ⊢ (Uℓ⇐B) drf

ℓ ∉ �

� ⊢ (Rℓ⇒B) drf

� ⊢ C1 drf � ⊢ C2 drf

� ⊢ C1 ⊕ C2 drf

� ⊢ C drf

� ⊢ [C] drf

� ⊢ C drf � ⊢) drf

� ⊢ C ⊕0) drf

� ⊢ C drf � ∪ AW()2) ⊢)1 drf � ∪ AW()1) ⊢)2 drf

� ⊢ C ⊕ ()1 ⊗0)2) drf

Fig. 9. The figure defines the judgement � ⊢) drf, where � is a set of locations that actions of) must not

mention. The function AW takes a tree and returns the set of locations allocated/updated by it.

4.2 Determinacy Race Freedom implies Disentanglement

Determinacy Races. A determinacy race occurs when two concurrent threads access the same
memory location, and one of those accesses modi�es the location [Netzer and Miller 1992]. De-
terminacy race freedom is the program property that guarantees that every execution of the
program is free of determinacy races. We say that a computation with no determinacy races is
determinacy race free. For brevity, we write race and race freedom to mean determinacy race and
determinacy race freedom.

We de�ne race-freedom formally using the computation tree. The computation tree organizes the
memory actions of program threads based on their control �ow dependencies. It orders sequential
memory actions in an ancestor-descendant relationship and keeps concurrent memory actions
unrelated. The memory actions in the tree include modifying actions such as allocation (Aℓ⇐B) and
update (Uℓ⇐B) and non-modifying actions such as read (Rℓ⇒B) and sync (Fℓ⇒E). A computation
tree satis�es race freedom if no modifying action on a location is concurrent to another action,
modifying or otherwise, on that location.
Figure 9 de�nes race freedom for a computation tree with an inductive process using the

judgement � ⊢) drf. The judgement’s context � represents a set of “forbidden locations” that are
modi�ed by threads concurrent to those represented in tree) . The judgement � ⊢) drf ensures
that no action of tree) operates on a location in the set � .
Let’s look at the rules for the judgement. The rule for the tree C ⊕ ()1 ⊗0)2) shows how the

forbidden set prohibits races between the concurrent trees)1 and)2. When checking tree)1, the
rule extends the forbidden set with locations that are modi�ed by tree)2. Speci�cally, let AW())
represents the set of locations modi�ed by tree) . Then the rule checks tree)1 with the forbidden
set � ∪ AW()2), which ensures that actions of tree)1 are forbidden from locations modi�ed by tree
)2. The rule checks tree)2 similarly.

The rule for the read action Rℓ⇒B checks that location ℓ is not in the set � , checking that no
concurrent action modi�ed location ℓ . The rules for other actions also check the respective locations.
These rules uncover an interesting perspective on the distinction between race freedom and
disentanglement. While race freedom only restricts where an action occurs, disentanglement goes a
step further and also restricts what an action can store or retrieve. For example, the rule for checking
disentanglement of a read action Rℓ⇒B checks both the location ℓ and the locations in storable B
(see Figure 3), whereas the rule for race freedom only checks the location ℓ , leaving the contents of
storable B unrestricted. From this perspective, it is perhaps surprising that disentanglement applies
to a broader class of programs (because it is implied by race freedom).

DRF implies DE. We prove taking an arbitrary number of steps from an initial state, if the
computation tree satis�es the drf property at each step, then it satis�es the de property after the
�nal step. Thus, if the drf property holds for every step, the de property does as well.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:17

 ;� ; � ⊢` Δ ;) ; 4 drfde

Loc(4) ⊆ � Fut(4, `) ⊆ ∀ℓ ∈ � \ � . Loc(` (ℓ)) ⊆ � ∀ℓ ∈ �. ` (ℓ) = fcell[0] ⇒ 0 ∈

 ;� ; � ⊢` Δ ; [•] ; 4 drfde

� ⊢ C drf � ⊢ C de ;� ∪ A(C) ; � ⊢` Δ ; [•] ; 4 drfde

 ;� ; � ⊢` Δ ; [C] ; 4 drfde

� ⊢ C drf � ⊢ C de Δ(0) ▷ E

 ;� ∪ A(C) ; � ⊢` Δ ; [•] ; E drfde

 ∪ {0} ;� ∪ A(C) ; � ⊢` Δ ;) ; 4 drfde

 ;� ; � ⊢` Δ ; C ⊕0) ; 4 drfde

� ⊢ C drf � ⊢ C de Δ(0) ▶ 41

 ;� ∪ A(C) ; � ∪ AW()2) ⊢` Δ ;)1 ; 41 drfde

 ∪ {0} ;� ∪ A(C) ; � ∪ AW()1) ⊢` Δ ;)2 ; 42 drfde

 ;� ; � ⊢` Δ ; C ⊕ ()1 ⊗0)2) ; 42 drfde

Fig. 10. Strengthening of disentanglement and race freedom with invariants on futures and memory

Theorem 4.1 (DRF⇒ DE). For any ∅ ; ∅ ; [•] ; 40 →
=
Δ ; ` ;)= ; 4= where Loc(40) = ∅, if every

intermediate tree)8 in {)1 . . .)=} satis�es ∅ ⊢)8 drf, then ∅ ⊢)= de.

To prove the theorem, we observe that determinacy race freedom forbids concurrent threads to
read each other’s memory updates, and thus prevents them from communicating their allocations
among each other. This, in turn, prevents threads from sharing spawned futures and violating
disentanglement. We prove the theorem by induction on the number of steps. The inductive
hypothesis enforces two properties on the program state: the property drfde which implies both
disentanglement and race freedom and the property ok which restricts the structure of futures. For
a state Δ ; ` ;) ; 4 , we write the drfde property as the judgement ;� ; � ⊢` Δ ;) ; 4 drfde and the
ok property as the judgement � ; Δ ⊢` ok. The sets �, , and � are empty for the full state, but
for sub states of various threads in the program, the sets encode memory information relevant to
disentanglement and race freedom. The set � is a set of locations and set is a set of futures, both
of which a thread can access without violating disentanglement. The set � is the set of forbidden
locations that a thread should not access or else the thread violates race freedom.

 ⊆ dom(Δ) ∀0 ∈ . Δ(0) ▷ E ⇒ Loc(E) ⊆ � ∧ Fut(E, `) ⊆

� ; Δ ⊢` ok

The ok property is identical to the one used in the Section 3 and roughly guarantees that any
future in set which has terminated can only return locations in set � and futures in set .
Figure 10 shows the rules for the judgement ;� ; � ⊢` Δ ;) ; 4 drfde. The rules encode both

disentanglement and race freedom by creating the sets � and � in the same way as the de�nitions
of judgement de and drf respectively. The rules additionally maintain the set of futures, which
contains futures whose spawn/join points are ancestors of tree) ; recall that operator ⊗0 denotes the
spawn point of future 0 and operator ⊕0 denotes the join point. Whenever a rule sees a spawn/join
point, it adds the appropriate future to the set in its premise.

The rule for the empty tree (;� ; � ⊢` Δ ; [•] ; 4 drfde) contains additional constraints imposed
by the property drfde (see the �rst rule in Figure 10). The rule ensures that 1) expression 4 only
mentions locations in set �, 2) expression 4 only mentions futures in set � , 3) all locations that are
in set � but not in set � , i.e. in set di�erence � \ � , point to locations in set �, and 4) if a location in
set � refers to a future, then the future is in set . The four properties guarantee that no matter
what the expression 4 does in the next step, it will not access a location outside set � or access a

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:18 Jatin Arora, Stefan K. Muller, and Umut A. Acar

future outside set , assuming the step does not access a location in set � (which is implied by the
race freedom assumption). These constraints guarantee disentanglement. We prove in the following
lemma that with race freedom, the properties drfde and ok are invariants of the computation.

Lemma 4.2. For any Δ ; ` ;) ; 4 → Δ
′ ; `′ ;) ′ ; 4′ if ;� ; � ⊢` Δ ;) ; 4 drfde, � ; Δ ⊢` ok, and

 ⊢) ′ drf, then ;� ; � ⊢`′ Δ
′ ;) ′ ; 4′ drfde and � ; Δ′ ⊢`′ ok.

The lemma states that if the drfde and the ok properties hold for a sub state Δ ; ` ;) ; 4 and if
state takes a step to state Δ′ ; `′ ;) ′ ; 4′, then the drfde and the ok properties holds for the resulting
state assuming its tree) ′ satis�es race freedom, i.e., � ⊢) ′ drf.

We can use the lemma to show that the full program state always satis�es disentanglement. For
the full state, the sets , �, and � are empty. From the lemma, we have that if a state that satis�es
drfde takes a step such that the resulting state satis�es the drf property then the resulting state
also satis�es the drfde property. Because the initial state satis�es the property drfde and we assume
that all states satisfy the drf property, we have that all states satisfy the drfde property. Since the
drfde property implies the de property, we have that race freedom implies disentanglement.

We prove the lemma by induction on the stepping relation Δ ; ` ;) ; 4 → Δ
′ ; `′ ;) ′ ; 4′. We cover

the case for reading a reference (Rule Bang of Figure 5) here, and leave others to the Appendix.

Proof. Case Bang. This step reads a reference’s value from memory. The expression 4 is of the
form ! ℓ and it steps to location ℓ ′, such that ` (ℓ) = ref ℓ ′. The tree) is a leaf of the form [C];
this step extends it with the read action and creates the tree) ′ = [C ⊕ (Rℓ⇒ref ℓ ′)]. The future
map and the memory remain unchanged, i.e., Δ′ = Δ and `′ = `. Thus, for the resulting state, the
condition >:—� ; Δ′ ⊢`′ ok, follows directly from � ; Δ ⊢` ok.
Because the step is assumed to be race-free, we know � ⊢) ′ drf. Recall that the drf property

makes sure that no action tree) ′ mentions a location in � . Because the read action Rℓ⇒ref ℓ ′ is
in tree) ′, we know ℓ ∉ � . By applying inversion on ;� ; � ⊢` Δ ; [C] ; ! ℓ drfde, we get: � ⊢ C drf,
� ⊢ C de, and ; � ∪ A(C) ; � ⊢` Δ ; [•] ; ! ℓ drfde. By applying inversion on ; � ∪ A(C) ; � ⊢`
Δ ; [•] ; ! ℓ drfde, we have: ℓ ∈ � ∪ A(C), ∀ℓ ∈ (� ∪ A(C)) \ � . Loc(` (ℓ)) ⊆ � ∪ A(C), Fut(4, `) ⊆ ,
and ∀ℓ ∈ � ∪ A(C). ` (ℓ) = fcell[0] ⇒ 0 ∈ .
The judgement ;� ; � ⊢` Δ ;) ′ ; 4′ drfde follows from applying Rule (8.2) with the following:

• � ⊢) ′ drf, assumed.
• � ⊢) ′ de. Note that) ′ is a leaf of the form [C ⊕ (Rℓ⇒ref ℓ ′)]. We know trace C is disentan-
gled from � ⊢) de and) = [C]. To prove, that the read action (Rℓ⇒ref ℓ ′) is disentangled,
we need to show ℓ ∈ � and ℓ ′ ∈ � (both established above).
• ; � ∪ A(C ⊕ (Rℓ⇒ref ℓ ′)) ; � ⊢` Δ ; [•] ; ℓ ′ drfde. There is no allocation in this step, i.e.,
� ∪ A(C ⊕ (Rℓ⇒ref ℓ ′)) = � ∪ A(C). We prove ; � ∪ A(C) ; � ⊢` Δ ; [•] ; ℓ ′ drfde using
Rule (8.1) with the following:
– Loc(ℓ ′) ⊆ � ∪ A(C), established above
– ∀ℓ ∈ (� ∪ A(C)) \ � . Loc(` (ℓ)) ⊆ � ∪ A(C), established above.
– Fut(ℓ ′, `) ⊆ . If ℓ ′ refers to a future cell, i.e. ` (ℓ ′) = fcell[0] for some 0, then we know
that 0 ∈ because: ℓ ′ ∈ � ∪ A(C) and ∀ℓ ∈ � ∪ A(C). ` (ℓ) = fcell[0] ⇒ 0 ∈ . Thus, in
this case, Fut(ℓ ′, `) = {0} ⊆ . Otherwise, Fut(ℓ ′, `) = ∅, which is trivially a subset of .

– ∀ℓ ∈ � ∪ A(C). ` (ℓ) = fcell[0] ⇒ 0 ∈ , established above

□

4.3 Weakly Race-Free Programs are Disentangled

We consider a weaker notion of race freedom that allows “weak races” on small, word-size, values
of primitive types, e.g., int, and bool. The distinguishing property of values of these primitive

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:19

1 val claimed = array n false

2

3 fun search (g: graph) (start: node) (goal: node) =

4 (start = goal) ||

5 (let children = filter_map

6 (fun i →

7 if cas (claimed[i], false , true) then

8 Some (future (search g i goal))

9 else

10 None)

11 (neighbors g start)

12 in

13 fold (fun found child → found || get child) false children)

Fig. 11. Parallel graph search using futures

types is that they do not require explicit allocation at runtime. The motivation for allowing such
races comes from the practice of parallel programming, where many algorithms and their imple-
mentations [Kumar et al. 2017] use weak races for e�ciency reasons.

Example. As an example of a class of algorithms that use weak races for improved e�ciency
and scalability, consider the graph-search example given in Figure 11. This function search takes a
graph g and a start vertex and searches for a goal vertex. If the goal node hasn’t been reached,
the function attempts to claim its neighbors by using an atomic compare and swap against a bit
vector claimed. The atomic operation cas(r, exp, tar) compares the expected value exp to the
value stored at r; if they are equal, then it stores the target value tar and returns true, otherwise it
returns false. If cas returns false, another thread has claimed the neighbor node. For each neighbor
the current thread claims, the search creates a future to search the neighbor; each such neighbor
can be thought of as child in the search tree de�ned by claimed neighbors of all vertices. The search
then iterates over the list of children futures and waits for each to complete using the get operation.

Because of the compare-and-swap operation, this graph search algorithm is not determinacy race
free and therefore violates a broadly accepted safety condition. Yet, such algorithms are common
and many other graph algorithms use some variant of the same technique to avoid visiting vertices
multiple times redundantly. There are several reasons for the use of such a race. First, the race is
relatively simple to reason about, because it involves a trusted atomic operation implemented in
hardware. Second, compare-and-swap operations are e�cient in practice. Third, the alternative to
the race is to implement a relatively sophisticated parallel or concurrent set data structure.

This example is disentangled even though it is not determinacy race free. Intuitively, the example
remains disentangled because the objects involved in the race are all small value of primitive type
bool. Because such values do not share allocations between concurrent tasks, they do not cause
entanglement. In the rest of this subsection, we formalize this intuition and prove that races on
primitive values do not violate disentanglement.

Language extension. We extend our language to distinguish primitive values from other values.
We de�ne the syntactic class small values, denoted D, containing values of types bool and int,
which the language no longer allocates in the memory store `. For other types, the language
has storables which the language allocates in the memory store ` by stepping them to memory
locations. Thus, a value E in the language is either a location or a small value. We also extend the
language with expression cas(41, 42, 43) that atomically performs a compare and swap. We leave
much of its dynamics to the Appendix C, but show a key rule here, which corresponds to the case

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:20 Jatin Arora, Stefan K. Muller, and Umut A. Acar

where the cas operation succeeds. The dynamics of other expressions does not change.

` = `0 [ℓ ↩→ref E ′1] E1 = E
′
1 `′ = `0 [ℓ ↩→ref E2]

Δ ; `0 [ℓ ↩→B] ; [C] ; cas(ℓ, E1, E2) → Δ ; `′ ; [C ⊕ (Rℓ⇒ref E ′1) ⊕ (Uℓ⇐ref E2)];true
CasS

To step the operation cas(ℓ, E1, E2), the dynamics checks the value stored at the mutable reference ℓ .
In the above step, the operation succeeds because the value E ′1 stored at reference ℓ matches the
�rst argument E1 of the cas expression. This step, thus, modi�es the memory reference ℓ to store E2
and also updates the computation tree with read and write actions. The step returns the boolean
true indicating that the operation succeeded.

Weak race freedom. For computation trees of our extended language, we de�ne a property called
wrf which stands for weak race freedom. We de�ne the property as a judgment � ⊢) wrf, which is
similar to the judgement � ⊢) drf for determinacy race freedom, as it checks that no action in tree
) mentions any location in the set � . Their rules are the same except for the following rule:

� ⊢ C wrf � ∪ A()2) ∪ LW()2) ⊢)1 wrf � ∪ A()1) ∪ LW()1) ⊢)2 wrf

� ⊢ C ⊕ ()1 ⊗0)2) wrf

This rule checks the tree C ⊕ ()1 ⊗0)2) for the wrf property by checking the trace C and checking
trees)1 and)2. When it checks tree)1, it extends the set � with all the modifying actions of tree)2,
except those actions that read/write small values. The rule ignores actions like Rℓ⇒ ref D and
Uℓ⇐ref D, thereby allowing races on small values. Speci�cally, the rule extends the set � with
locations that are allocated by tree)2, i.e., A()2) and also some of the locations that are modi�ed
by tree)2, i.e., LW()2), ignoring those that operate on references of small values.

WRF⇒ DE. Even though mutable references containing small values get special status when it
comes to weak race freedom, they are still allocated in the memory store ` and need to be accounted
for disentanglement. We show the following theorem.

Theorem 4.3 (WRF⇒ DE). For any ∅ ; ∅ ; [•] ; 40 →
=
Δ ; ` ;)= ; 4= where Loc(40) = ∅, if every

intermediate tree)8 in {)1 . . .)=} satis�es ∅ ⊢)8 wrf, then ∅ ⊢)= de.

We prove that the wrf property implies the de property, meaning weak races do not break
disentanglement. For space reasons, we leave the proof to the Appendix, but the approach is similar
to the proof of drf implies de (Theorem 4.1).

5 DISENTANGLEMENT GUARANTEES DEADLOCK FREE FUTURES

Futures are a powerful mechanism for parallelism. They are more general than fork-join and, as
illustrated in prior sections, they are an excellent medium for pipelining, dynamic programming,
graph algorithms, and interactive applications. But this generality comes at a cost: programs with
futures can deadlock. A program deadlocks when there is a circular dependency among futures
and all of them wait for others to complete. This prevents futures from making progress.

Disentanglement guarantees that futures don’t get stuck, i.e., a disentangled execution can never
deadlock. By disallowing concurrent threads from sharing their allocations, disentanglement also
prevents sharing of futures. Disentanglement imposes a partial order on the “knowledge” of futures
and prohibits cyclical dependencies. In the context of computation trees, disentanglement ensures
that no two disjoint subtrees mention futures spawned in each other.

Assuming disentanglement, we make the following observation: a thread can synchronize with
a future only if the future is spawned by an ancestor of the thread in the computation tree. This
observation raises an interesting question because futures can return handles to other futures.
Suppose a thread synchronizes with some future 0, and receives a handle to another future, 1, that

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:21

 ;� ⊢` Δ ;) ; 4 kf

Fut(4, `) ⊆ ∀ℓ ∈ � ∪ A(C). ` (ℓ) = fcell[0] ⇒ 0 ∈

 ;� ⊢` Δ ; [C] ; 4 kf

0 ∉ Δ(0) ▷ E ;� ∪ A(C) ⊢` Δ ; [•] ; E kf ∪ {0} ;� ∪ A(C) ⊢` Δ ;) ; 4 kf

 ;� ⊢` Δ ; C ⊕0) ; 4 kf

0 ∉ Δ(0) ▶ 41 ;� ∪ A(C) ⊢` Δ ;)1 ; 41 kf ∪ {0} ;� ∪ A(C) ⊢` Δ ;)2 ; 42 kf

 ;� ⊢` Δ ; C ⊕ ()1 ⊗0)2) ; 42 kf

Fig. 12. The judgement kf checks that a future is only known to the descendants of its spawn node (⊗) or

join node (⊕). and � represent the set of known futures and allocations respectively.

was spawned by 0. Now that the thread has a handle, it can synchronize with future 1, which
was concurrently spawned, and at �rst glance, it may appear that this breaks the aforementioned
observation. However, there is a subtle point to consider. When the thread accesses future 0 and
its return value, the future 0 has already joined, indicating that future 0 and the spawn point of
future 1 are ancestors of the thread in the computation tree, even though the future 1 was spawned
concurrently to the thread (see the right side tree in Figure 2). We prove the following theorem.

Theorem 5.1 (No Deadlock). If Δ0 ; `0 ;)0 ; 40 →
=
Δ= ; `= ;)= ; 4= and ∀8 ≤ =. ∅ ⊢)8 de, then

either 4= is a value and ∀0 ∈ dom(Δ=), ∃E . Δ= (0) ▷ E , or Δ= ; `= ;)= ; 4= → Δ=+1 ; `=+1 ;)=+1 ; 4=+1.

The theorem states that starting from the initial program state (Δ0 ; `0 ;)0 ; 40), if we take an
arbitrary number of steps that satisfy disentanglement, then the resulting state is either �nal,
i.e., its expression and all its futures have been evaluated, or it can step. Thus, if an evaluation
satis�es disentanglement, it never encounters a deadlock. We prove the theorem using progress and
preservation techniques and leave its details to the Appendix. Here, we prove the key invariant.

Property kf. The key invariant that allows us to show the theorem is the property kf, which
ensures that a thread can synchronize with a future only if the future is spawned by an ancestor of
the thread in the computation tree. Given a program state (Δ ; ` ;) ; 4), we formalize the property
with an inductive process (on the tree)) using the judgement ;� ⊢` Δ ;) ; 4 kf. The judgement
checks that futures in subtree) only refer to locations in set � and futures in set . The sets � and
 correspond to the locations and futures that are created by the ancestors of subtree) .

Figure 12 shows the rules for the judgement. In the base case, when the tree is a leaf [C], the
judgement asserts that all the futures mentioned in expression 4 (represented as Fut(`, 4)) are in
the set . The judgement also checks that every location in set � only mentions futures in set ,
ensuring that if an expression reads a location in set�, it does not discover a future outside set . If
the tree is of the form C ⊕ ()1 ⊗0)2), the judgement checks subtree)1 along with the expression 41
of future 0 and checks subtree)2 along with expression 42 of the continuation. The rule extends the
set for checking the continuation but keeps it the same for checking the future (see Figure 12).
This ensures that future 0 and any other futures spawned by future 0 can not access future 0. This
prevents cyclical dependencies and deadlocks.

DE⇒ KF. We prove that if a state satis�es the kf property and takes a step resulting in a state
that satis�es the de property, then the resulting state also satis�es the kf property.

Lemma 5.2. For any Δ ; ` ;) ; 4 → Δ
′ ; `′ ;) ′ ; 4′ if ; � ⊢` Δ ;) ; 4 kf and � ⊢) ′ de, then

 ;� ⊢`′ Δ
′ ;) ′ ; 4′ kf

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:22 Jatin Arora, Stefan K. Muller, and Umut A. Acar

We prove the lemma by induction on the stepping relation. It uses ideas similar to the proofs
presented earlier in the paper and we leave the formal proof to the Appendix.

6 APPLICATIONS

Because it combines futures, state, and I/O, our language enables us to express a broad range
of applications in a disentangled fashion. For example, in Section 3, we used our language to
express a parallel tree merge algorithm and show that futures express pipelining in a succinctly and
e�ciently. In Section 4.1, we presented a PDF viewer, demonstrating the language’s ability to handle
asynchrony by utilizing futures and state to proactively compute and cache results, improving
responsiveness. In Section 4.3, we showed a graph search algorithm, illustrating that the language
can implement non-deterministic algorithms that use atomic read-modify-write operations on
machine words. All of these programs satisfy disentanglement.

However, establishing disentanglement for such programs is not easy. Disentanglement is a low-
level property of memory allocations that requires the programmer to reason about the program
threads and their allocation behavior, which is particularly di�cult in a high-level language that
hides allocations from the programmer. Our main theorems can facilitate this reasoning because
they establish determinacy race freedom as a su�cient condition for disentanglement. Because
race freedom is a broadly accepted correctness condition for parallel programs, researchers have
devised many methods for reasoning about race freedom and tools for detecting races [Feng and
Leiserson 1997; Mellor-Crummey 1991; Xu et al. 2020]. Furthermore, in our context, determinacy
race freedom is relatively easier to reason about because our language explicitly delineates mutable
e�ects. In this section, we provide two examples to illustrate this. The �rst example is a web server
involving interaction, and the second example is a dynamic programming algorithm leveraging
data-dependent parallelism.

6.1 Web Server

Our web server listens for clients on its socket and spawns futures to handle their requests.
Each future services exactly one client and as it does so, the future tracks the relevant information
from their requests and aggregates it into a log object. Our current example simpli�es the log to
only include the name of the client and request count, but in practice, the log could contain many
di�erent statistics that we omit. When a client terminates the connection, the corresponding future
produces a log of its interaction with the client and completes its evaluation.
The server synchronizes with the futures to obtain their logs. However, in order to respond

to incoming clients e�ciently, the server never blocks or waits on a future. The server achieves
this by regularly polling the futures it spawned, �ltering out the ones that have terminated, and
synchronizing only with terminated futures. By only synchronizing with the terminated futures,
the server ensures that it gets the logs immediately without creating any interruption.

Figure 13 shows the code for the server. The function server initializes a socket and proceeds to
listen for incoming clients by calling the function listen. Subsequently, the server calls the function
loop. The function loop accepts new clients, spawns futures to handle their requests, and collects
and processes logs. The function loop maintains the spawned futures in a set named clients. Each
time it accepts a client, the loop spawns a future to (concurrently) execute the function process,
which services the requests of the client and returns the log.

Before spawning a future for a new client, the loop checks on the other clients by calling the
function handle_clients. The function handle_clients takes the set of futures, �lters those that
have �nished servicing their clients, and aggregates their logs. To �lter out completed futures,
the function uses the non-blocking primitive fpoll, which returns true for terminated futures
(see line 14). Subsequently, the function uses the primitive get to obtain the logs. Note that each

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:23

1 type socket

2 type log = {name : string , requests: int}

3 start_socket : unit → socket

4 listen : socket → unit

5 accept : socket → socket option

6 process : socket → log

7

8 fun server () =

9 let

10 server_sock = start_socket ()

11 val _ = listen(server_sock)

12 fun handle_clients (clients : log fut set) =

13 let

14 completed = filter (fn c => fpoll c) clients

15 logs = map (completed , fn c => get c)

16 in

17 (logs , Set.diff (clients , completed))

18

19 fun loop (clients : log fut set) =

20 let

21 (logs , remaining_clients) = handle_clients (clients)

22 (* Process logs as desired *)

23 in

24 case accept (server_sock) of

25 NONE => loop (remaining_clients) (* No new clients *)

26 | SOME client_sock =>

27 let val f = fut (process (client_sock))

28 in loop (Set.add (remaining_clients , f))

29 in

30 loop (Set.empty ())

1 type request

2 recv : socket → request option

3 service : request → unit

4 name : socket → string

5

6 fun process (c) =

7 let fun loop (req , cnt) =

8 case req of

9 NONE =>

10 {name = name (c),

11 count = cnt}

12 | SOME req =>

13 service (req);

14 loop (recv (c), cnt + 1)

15 in

16 loop (recv (c), 0)

Fig. 13. A server with pollable futures and disentanglement

use of get returns immediately because the function only calls them on terminated futures. After
aggregating the logs, the function removes the terminated futures from the set of futures, and
returns the logs and the running futures back to the loop.

The function loop processes the logs it receives. We leave the log processing abstract as it varies
with the use case. Then, it proceeds to process a new client, adds it to the set of clients, and repeats.

Overall the application uses the ability to store futures in a set and to poll them for managing
clients without ever blocking. The application does not use any mutable e�ects and is purely inter-
active. Therefore, from the result that purely interactive programs are disentangled (Theorem 3.1),
we get that application satis�es disentanglement. This is interesting because the server is interactive
and involves communication between threads, and performs I/O, but it remains disentangled. The
key point is that the server thread obtains a log only after the corresponding future has terminated,
which, as we show in this paper, does not violate disentanglement.

6.2 Futures and References for Dynamic Programming

We consider a dynamic programming algorithm that tabulates an" × # matrix by computing a
cell’s value from the value of its neighboring cells in the row above the cell. Speci�cally, it computes
the value at a cell (8, 9) by applying an abstract function f to the values at cells (8 − 1, 9 − 1), (8 − 1, 9)
and (8 − 1, 9 + 1). The algorithm exempli�es a common pattern and has various applications, such
as seam carving and sequence alignment [Avidan and Shamir 2007; Singer et al. 2019b]. In seam
carving, for instance, the function f takes the minimum of the neighbor’s values and adds a constant
factor to compute the value of a cell.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:24 Jatin Arora, Stefan K. Muller, and Umut A. Acar

Fig. 14. An illustration of data-dependent parallelism in a DP matrix: two paths can proceed in parallel

regardless of all the other elements in their respective rows.

1 fun f: U * U * U → U

2 val id : U

3 val arr = array2D (M, N, NONE)

4

5 fun lookup (i, j) =

6 if i < 0 || j < 0 || j ≥ M then id (* Out -of-bounds reads return id *)

7 else

8 case arr[i][j] of

9 | SOME r → get r

10 | NONE → raise Impossible

11

12 fun compute_cell (i, j) =

13 f (lookup (i - 1, j - 1), lookup (i - 1, j), lookup (i - 1, j + 1))

14

15 (* Initialize the array row -by-row in parallel *)

16 val _ = seq_fill M

17 (fun i → par_fill N

18 (fun j → arr[i][j] ← SOME (future (compute_cell (i, j)))))

19 val result = lookup (M - 1, N - 1)

Fig. 15. Dynamic programming with futures, state, and disentanglement

To tabulate the matrix, we could implement an algorithm that proceeds in a row-by-row manner
and �lls each row in parallel (because cells of a row do not depend on each other). This algorithm,
however, does not exploit parallelism across the rows. In particular, once three consecutive cells
of row 8 are computed, the middle cell in the next row 8 + 1 can be computed without waiting for
the rest of the cells of row 8 . Because such “vertical” parallelism depends on the data �ow, it is
impossible to express with fork-join parallelism, but is naturally expressible by using a combination
of futures and state. Figure 14 illustrates the �ow of data and parallelism present in this application.

Figure 15 shows an algorithm where futures unleash the data dependent parallelism across rows.
The algorithm represents each cell of the matrix with a future, which waits for the neighbors to
complete and then computes the cell’s value by using the function compute_cell. The algorithm
starts by initializing each cell of a mutable" × # array arr with NONE. It then �lls the array with
futures. To do so, the algorithm proceeds in a row-by-row manner and writes the futures of a row in
parallel, ensuring that a future is spawned only after the futures it depends on have been spawned.
Each future executes the function compute_cell which synchronizes with the neighboring cells by
calling the function lookup, a function that handles boundary conditions around the edges of the
matrix, waits for a cell to �nish using expression get, and returns its value.

The algorithm satis�es disentanglement but this is not easy to establish by reasoning about the
the memory allocations of the program. One potential concern arises from the fact that futures
read handles to other futures from the array, and since these handles themselves are allocated
concurrently, reading them could create entanglement. However, we can see that each future only

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:25

reads those indices of the shared array which are tabulated before the future is spawned. Thus, no
future witnesses the concurrent updates of the array (see line 10) and the code satis�es determinacy
race freedom. Using the result that race freedom implies disentanglement (Theorem 4.1), we get
that the code satis�es disentanglement.

7 RELATED WORK

From Fork-Join Parallelism to Futures. Fork-join parallelism has proved to be an e�ective model for
many parallel computations [Blumofe et al. 1996; Frigo et al. 1998; Lea 2000]. Fork-join parallelism,
however, is only e�ective for a set of computations that, especially viewed from the angle of
increasing hardware parallelism, is increasingly limited. For example, it is di�cult, if not impossible,
to use fork-join parallelism to express parallel tasks that execute asynchronously until a data-driven
condition, e.g., based on input from the user, is satis�ed. Muller et al.’s work shows that futures can
provide this kind of asynchrony, which is pervasive in interactive applications [Muller et al. 2020;
Muller and Acar 2016; Muller et al. 2017, 2023, 2019; Singer et al. 2020b]. This line of work observed
that, when combining asynchronous interaction and �ne-grained compute-heavy parallelism, it
is necessary to assign higher priorities in the scheduler to the interactive threads to maintain
responsiveness. Priorities are orthogonal to the theory of disentanglement we explore in this paper,
and so we did not add them to this theory to keep the focus on disentanglement.
Even if we restrict ourselves to computational applications, many of which can in principle

be expressed in fork-join parallelism, techniques such as pipelining cannot be expressed in fork-
join [Blelloch and Reid-Miller 1999]. The primary reason for this is that fork-join parallelism is
only able to capture parallelism exposed by the control dependencies of the computation, whereas
futures can capture parallelism via data dependencies [Acar et al. 2016]. A secondary reason is that
with futures, parallelism may be treated as a “�rst-class” value in a computation, e.g., futures may
be stored in ordinary data structures (we used this property in several examples in this paper)—this
is not possible with fork-join parallelism.
Researchers have therefore converged on using futures for increasing the expressiveness of

parallel languages. Futures were invented in the 1970s [Baker and Hewitt 1977] and were brought
to their current form by Halstead in the 1980s [Halstead 1985]. Today, many concurrent and parallel
programming systems support futures, including Cilk-F/L [Singer et al. 2020a, 2019a], I-Cilk [Muller
et al. 2020], Concurrent Haskell [Hammond 2011; Li et al. 2007; Marlow and Peyton Jones 2011;
Peyton Jones et al. 2008], Habanero Java [Imam and Sarkar 2014], Parallel ML [Acar et al. 2020;
Arora et al. 2021, 2023; Fluet et al. 2008, 2011; Guatto et al. 2018; Ohori et al. 2018; Raghunathan
et al. 2016; Sivaramakrishnan et al. 2014; Spoonhower 2009a; Westrick et al. 2020], OCaml [Dolan
et al. 2018a; LWT 2022], Rust [Rust Team 2019], and TPL (a .NET library) [Leijen et al. 2009].
Futures can also be challenging to manage in the run-time system of a programming language.

For example, data locality of parallel programs with futures can signi�cantly worsen when they
execute in parallel [Acar et al. 2002] and restricting their expressiveness can improve the data
locality [Herlihy and Liu 2014; Spoonhower et al. 2009].

Race Freedom. As we established in this paper, disentanglement is implied by freedom from
determinacy races [Feng and Leiserson 1997; Netzer and Miller 1992]. Determinacy races, also called
general races, cause non-determinism and are considered bugs for programs that are intended to be
deterministic [Netzer and Miller 1992]. Absence of determinacy races guarantees determinism: in
every execution, the executed instructions and their execution order are the same. Determinacy races
are di�erent from data races, which only occur when a critical section of the code is not executed
atomically. Unlike data races, determinacy races are quite conservative and can include accesses
that produce deterministic outcomes. For example, atomic fetch-and-add operations by concurrent

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:26 Jatin Arora, Stefan K. Muller, and Umut A. Acar

threads do not cause a data race because each increment is performed atomically. However, such
operations cause a determinacy race because the execution order is nondeterministic.
We do not propose a way to check for disentanglement in this paper, but there has been work

on checking and managing entanglement in fork-join programs [Arora et al. 2023; Westrick et al.
2022]. There is a lot of work checking for race freedom and bounding the impact of races, partly
because data races usually cause incorrect behavior [Adve 2010; Boehm 2011; Dolan et al. 2018b].
Many algorithms for race detection in fork-join parallel programs have been proposed [Bender et al.
2004; Cheng et al. 1998; Feng and Leiserson 1997; Fineman 2005; Mellor-Crummey 1991; Raman
et al. 2010, 2012; Utterback et al. 2016; Xu et al. 2020]. More recent work considers race detection
for futures [Xu et al. 2020]. Because our theorems establish race freedom as a su�cient condition
for disentanglement, we can leverage all of this work to check for disentanglement.
There has also been signi�cant research on race detection for more general concurrent pro-

grams [Flanagan and Freund 2009; Kini et al. 2017; O’Callahan and Choi 2003; Savage et al. 1997;
Smaragdakis et al. 2012; Yu et al. 2005]. Such programs di�er from task-parallel programs, because
they use coarse-grained threads and synchronize in an unstructured manner, using locks and
other synchronization primitives. The two classes of programs therefore typically require di�erent
approaches for reasons of e�ciency, soundness (ability to correctly detect races), and completeness
(ability to detect all races). In the paper, we have also proved that a weaker form of race freedom,
which allows for determinacy races on primitive data types, does not break disentanglement. We
are not aware of prior work that studied such “weak” races, but this could be of interest, because
many practical parallel programs today employ such races to improve e�ciency.

Disentanglement. The motivation for this work comes from recent results on e�cient task paral-
lelism in functional languages [Arora et al. 2021, 2023; Guatto et al. 2018; Raghunathan et al. 2016;
Westrick et al. 2022, 2020]. The goal of all this work is to develop provably and practically e�cient
and scalable parallel memory management techniques for nested-parallel functional languages by
taking advantage of disentanglement, a memory property that was initially discovered for fork-join
pure functional programs [Raghunathan et al. 2016] , was later extended to account for mutable
state [Guatto et al. 2018; Westrick et al. 2020]. Our de�nition of disentanglement is consistent
with these works, i.e., if we restrict our language to fork-join, the class of programs that satisfy
our de�nition of disentanglement is the same as previous works. Our disentanglement de�nition
and the corresponding results are strictly more general because futures are more expressive than
fork-join (we can implement fork join constructs using futures) [Spoonhower 2009b].
More recently, disentanglement was proposed as a continuous object-level property with the

hypothesis that most objects in all programs are disentangled. The hypothesis is supported by
a theoretical observation that objects become entangled only when they participate in a race
and a practical observation that races are rare in parallel programs. Using the hypothesis, the
work culminates in language called MPL that implements a provably and practically e�cient
memory manager for fork-join programs. [Arora et al. 2021, 2023]. We believe our techniques are
compatible with the memory manager used in MPL. First, because our results establish race free
programs to be disentangled, we expect that the disentanglement hypothesis holds for parallel
programs with futures. This is important because the memory manager in MPL is designed to
exploit disentanglement and its e�ciency relies on the observation that entanglement is rare.
Second, our semantics shows that the heap trees in MPL can be generalized for futures, as the
semantics produces a computation tree for each step of the execution; each node (action trace) of
the computation tree would be a heap in the MPL runtime. However, one engineering challenge is
extending the specialized scheduling infrastructure of MPL to support futures, which have a more
complex dependency structure than fork-join.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

Disentanglement with Futures, State, and Interaction 53:27

Deadlock. The expressiveness of futures can make them harder to use safely. One important
concern is deadlock: with futures, it is possible to create cyclic dependencies in a computation
that prevent the computation from making progress. Cogumbreiro et al. identify this problem
and formulate two properties called “known joins” and “transitive joins” that can be enforced by
restricting the expressive power of joins [Cogumbreiro et al. 2017; Voss et al. 2019] to prevent
deadlock. They achieve this by enforcing a discipline on the use of futures, i.e., they forbid tasks
from synchronizing with certain other futures. Loosely speaking, the known joins property states
that task � is allowed to sync with future � only if � is spawned by one of the ancestors of �. The
transitive joins work relaxes the known joins restriction by adding transitivity, i.e., if task � can
synchronize with � and � can synchronize with � , then � is allowed to synchronize with � . The
known joins property is naturally satis�ed in disentangled executions—in a disentangled execution,
a task only knows about those locations/futures that are allocated/spawned by its ancestors (thus, as
we have already proven separately in this paper, disentanglement implies deadlock freedom). Prior
work has shown that determinacy race freedom implies known joins. We showed that determinacy
race freedom implies disentanglement and also introduce weak race freedom, not considered in the
above work, and showed that this more practical notion implies disentanglement.

8 CONCLUSION

In the past several years, researchers have discovered that parallel functional programs, even
e�ectful ones, exhibit a memory property, called disentanglement. This property requires that
concurrent threads remain oblivious to each other’s allocations. Initially, disentanglement was
motivated by e�ciency and performance concern in parallel functional programming languages.
But recent work shows that it is also a property of independent interest, because it is exhibited by
a variety of parallel programs, even those written in low-level parallel programming languages
such as C/C++ [Arora et al. 2023; Wilkins et al. 2023]. All of this prior work on disentanglement
assumes fork-join (nested) parallel programs and take advantage of their structured dependencies,
which can be represented by “series-parallel” directed acyclic graphs, which allow only serial and
parallel composition.

In this paper, we show that a broad range of parallel programs that use futures are also disentan-
gled under certain conditions, even as they perform I/O and use mutable state. These results were
surprising to us—we did not expect that the complex dependency structure of parallel programs
with futures, which allows asynchronous and data-dependent dependencies between threads/tasks,
could be “tamed” to establish disentanglement. We observe that futures rely on one-way synchro-
nization, where synchronization occurs from the future being read to the reader, in contrast to
the two-way synchronization as in fork-join. Using this observation, we develop techniques to
“comb” the complex dependency structure and ensure disentanglement. We show that futures, when
combined with I/O and mutation, expand the applicability of disentanglement-based approaches
to interactive programs. In this more general setting with I/O and mutation, futures e�ectively
provide an implementation technique for “�rst-class” threads, which can then be used to implement
a variety of concurrency patterns, raising thus the possibility of deadlock. As a �nal result, we
prove that disentanglement ensures deadlock-freedom.

ACKNOWLEDGMENTS

This research was supported by the following grants NSF (CCF-1901381, CCF-2115104,CCF-2119352,
CCF-2107241) and by a gift from Intel.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

53:28 Jatin Arora, Stefan K. Muller, and Umut A. Acar

REFERENCES

Umut A. Acar, Jatin Arora, Matthew Fluet, Ram Raghunathan, Sam Westrick, and Rohan Yadav. 2020. MPL: A High-

Performance Compiler for Parallel ML. https://github.com/MPLLang/mpl.

Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2002. The Data Locality of Work Stealing. Theory of Computing

Systems 35, 3 (2002), 321–347.

Umut A. Acar, Arthur Charguéraud, Mike Rainey, and Filip Sieczkowski. 2016. Dag-calculus: A Calculus for Parallel

Computation. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016).

18–32.

Sarita V. Adve. 2010. Data races are evil with no exceptions: technical perspective. Commun. ACM 53, 11 (2010), 84.

T. R. Allen and D. A. Padua. 1987. Debugging Fortran on a Shared Memory Machine. In Proceedings of the 1987 International

Conference on Parallel Processing. 721–727.

Jatin Arora, SamWestrick, and Umut A. Acar. 2021. Provably Space E�cient Parallel Functional Programming. In Proceedings

of the 48th Annual ACM Symposium on Principles of Programming Languages (POPL)".

Jatin Arora, Sam Westrick, and Umut A. Acar. 2023. E�cient Parallel Functional Programming with E�ects. Proc. ACM

Program. Lang. 7, PLDI (2023), 1558–1583. https://doi.org/10.1145/3591284

Shai Avidan and Ariel Shamir. 2007. Seam Carving for Content-Aware Image Resizing. In ACM SIGGRAPH 2007 Papers

(San Diego, California) (SIGGRAPH ’07). Association for Computing Machinery, New York, NY, USA, 10–es. https:

//doi.org/10.1145/1275808.1276390

Henry G. Baker and Carl E. Hewitt. 1977. The Incremental Garbage Collection of Processes. AI memo 454. MIT Press.

Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson. 2004. On-the-Fly Maintenance of Series-

Parallel Relationships in Fork-Join Multithreaded Programs. In 16th Annual ACM Symposium on Parallel Algorithms and

Architectures. 133–144.

Guy Blelloch and Margaret Reid-Miller. 1999. Pipelining with Futures. Theory of Computing Systems 32, 3 (1999), 213–239.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. 1996.

Cilk: An E�cient Multithreaded Runtime System. J. Parallel and Distrib. Comput. 37, 1 (1996), 55 – 69.

Robert L. Bocchino, Stephen Heumann, Nima Honarmand, Sarita V. Adve, Vikram S. Adve, Adam Welc, and Tatiana

Shpeisman. 2011. Safe nondeterminism in a deterministic-by-default parallel language. In ACM POPL.

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann, Rakesh Komuravelli, Je�rey Overbey,

Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. 2009. A type and e�ect system for deterministic parallel Java. In

Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and applications

(Orlando, Florida, USA) (OOPSLA ’09). 97–116.

Hans-Juergen Boehm. 2011. How to Miscompile Programs with "Benign" Data Races. In 3rd USENIX Workshop on Hot Topics

in Parallelism, HotPar’11, Berkeley, CA, USA, May 26-27, 2011.

Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and Andrew F. Stark. 1998. Detecting data races

in Cilk programs that use locks. In Proceedings of the 10th ACM Symposium on Parallel Algorithms and Architectures

(SPAA ’98).

Tiago Cogumbreiro, Rishi Surendran, Francisco Martins, Vivek Sarkar, Vasco T. Vasconcelos, and Max Grossman. 2017.

Deadlock avoidance in parallel programs with futures: why parallel tasks should not wait for strangers. Proc. ACM

Program. Lang. 1, OOPSLA (2017), 103:1–103:26.

Richard Cole. 1988. Parallel merge sort. SIAM J. Comput. 17, 4 (1988), 770–785.

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, K. C. Sivaramakrishnan, and Leo White. 2018a.

Concurrent System Programming with E�ect Handlers. In Trends in Functional Programming, Meng Wang and Scott

Owens (Eds.). Springer International Publishing, Cham, 98–117.

Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018b. Bounding Data Races in Space and Time. SIGPLAN

Not. 53, 4 (jun 2018), 242–255. https://doi.org/10.1145/3296979.3192421

Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. 1991. Event Synchronization Analysis for Debugging Parallel Programs.

In Supercomputing ’91. 580–588.

Mingdong Feng and Charles E. Leiserson. 1997. E�cient Detection of Determinacy Races in Cilk Programs. In Proceedings

of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA). 1–11.

Jeremy T. Fineman. 2005. Provably Good Race Detection That Runs in Parallel. Master’s thesis. Massachusetts Institute of

Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA.

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: e�cient and precise dynamic race detection. SIGPLAN Not. 44, 6

(June 2009), 121–133. https://doi.org/10.1145/1543135.1542490

Matthew Fluet, Mike Rainey, and John Reppy. 2008. A scheduling framework for general-purpose parallel languages. In

ACM SIGPLAN International Conference on Functional Programming (ICFP).

Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2011. Implicitly threaded parallelism in Manticore. Journal of

Functional Programming 20, 5-6 (2011), 1–40.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

https://github.com/MPLLang/mpl
https://doi.org/10.1145/3591284
https://doi.org/10.1145/1275808.1276390
https://doi.org/10.1145/1275808.1276390
https://doi.org/10.1145/3296979.3192421
https://doi.org/10.1145/1543135.1542490

Disentanglement with Futures, State, and Interaction 53:29

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Implementation of the Cilk-5 Multithreaded Language.

In PLDI. 212–223.

Adrien Guatto, SamWestrick, Ram Raghunathan, Umut A. Acar, andMatthew Fluet. 2018. Hierarchical memory management

for mutable state. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP 2018, Vienna, Austria, February 24-28, 2018. 81–93.

Robert H. Halstead. 1985. MULTILISP: a language for concurrent symbolic computation. ACM Transactions on Programming

Languages and Systems 7 (1985), 501–538.

Kevin Hammond. 2011. Why Parallel Functional Programming Matters: Panel Statement. In Reliable Software Technologies -

Ada-Europe 2011 - 16th Ada-Europe International Conference on Reliable Software Technologies, Edinburgh, UK, June 20-24,

2011. Proceedings. 201–205.

Maurice Herlihy and Zhiyu Liu. 2014. Well-structured Futures and Cache Locality. In Proceedings of the 19th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (Orlando, Florida, USA) (PPoPP ’14). ACM, New York, NY,

USA, 155–166.

Shams Mahmood Imam and Vivek Sarkar. 2014. Habanero-Java library: a Java 8 framework for multicore programming. In

2014 International Conference on Principles and Practices of Programming on the Java Platform Virtual Machines, Languages

and Tools, PPPJ ’14. 75–86.

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic race prediction in linear time. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June

18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 157–170.

Ananya Kumar, Guy E. Blelloch, and Robert Harper. 2017. Parallel functional arrays. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna

and Andrew D. Gordon (Eds.). ACM, 706–718.

Doug Lea. 2000. A Java fork/join framework. In Proceedings of the ACM 2000 conference on Java Grande (San Francisco,

California, USA) (JAVA ’00). 36–43.

Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. 2009. The design of a task parallel library. In Proceedings of the

24th ACM SIGPLAN conference on Object Oriented Programming Systems Languages and Applications (Orlando, Florida,

USA) (OOPSLA ’09). 227–242.

Peng Li, Simon Marlow, Simon L. Peyton Jones, and Andrew P. Tolmach. 2007. Lightweight concurrency primitives for GHC.

In Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2007, Freiburg, Germany, September 30, 2007. 107–118.

LWT. 2022. LWT OCaml. GitHub. https://github.com/ocsigen/lwt

Simon Marlow. 2011. Parallel and Concurrent Programming in Haskell. In Central European Functional Programming School

- 4th Summer School, CEFP 2011, Budapest, Hungary, June 14-24, 2011, Revised Selected Papers (Lecture Notes in Computer

Science, Vol. 7241), Viktória Zsók, Zoltán Horváth, and Rinus Plasmeijer (Eds.). Springer, 339–401.

Simon Marlow and Simon L. Peyton Jones. 2011. Multicore garbage collection with local heaps. In Proceedings of the 10th

International Symposium on Memory Management, ISMM 2011, San Jose, CA, USA, June 04 - 05, 2011, Hans-Juergen Boehm

and David F. Bacon (Eds.). ACM, 21–32.

John Mellor-Crummey. 1991. On-the-�y Detection of Data Races for Programs with Nested Fork-Join Parallelism. In

Proceedings of Supercomputing’91. 24–33.

Stefan Muller, Kyle Singer, Noah Goldstein, Umut A. Acar, Kunal Agrawal, and I-Ting Angelina Lee. 2020. Responsive Paral-

lelism with Futures and State. In Proceedings of the ACM Conference on Programming Language Design and Implementation

(PLDI).

Stefan K. Muller and Umut A. Acar. 2016. Latency-Hiding Work Stealing: Scheduling Interacting Parallel Computations

with Work Stealing. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016,

Asilomar State Beach/Paci�c Grove, CA, USA, July 11-13, 2016. 71–82.

Stefan K. Muller, Umut A. Acar, and Robert Harper. 2017. Responsive Parallel Computation: Bridging Competitive and

Cooperative Threading. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA, 677–692.

Stefan K. Muller, Umut A. Acar, and Robert Harper. 2018. Types and Cost Models for Responsive Parallelism. In Proceedings

of the 14th ACM SIGPLAN International Conference on Functional Programming (ICFP ’18).

Stefan K. Muller, Kyle Singer, Devyn Terra Keeney, Andrew Neth, Kunal Agrawal, I-Ting Angelina Lee, and Umut A. Acar.

2023. Responsive Parallelism with Synchronization. Proc. ACM Program. Lang. 7, PLDI (2023), 712–735.

Stefan K. Muller, Sam Westrick, and Umut A. Acar. 2019. Fairness in Responsive Parallelism. In Proceedings of the 24th ACM

SIGPLAN International Conference on Functional Programming (ICFP 2019).

Robert H. B. Netzer and Barton P. Miller. 1992. What are Race Conditions? ACM Letters on Programming Languages and

Systems 1, 1 (March 1992), 74–88.

Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid dynamic data race detection. In Proceedings of the ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPOPP 2003, June 11-13, 2003, San Diego, CA, USA, Rudolf

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

https://github.com/ocsigen/lwt

53:30 Jatin Arora, Stefan K. Muller, and Umut A. Acar

Eigenmann and Martin C. Rinard (Eds.). ACM, 167–178.

Atsushi Ohori, Kenjiro Taura, and Katsuhiro Ueno. 2018. Making SML# a General-purpose High-performance Language.

Unpublished Manuscript.

Wolfgang Paul, Uzi Vishkin, and Hubert Wagener. 1983. Parallel dictionaries on 2–3 trees. In International Colloquium on

Automata, Languages, and Programming. Springer, 597–609.

Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T. Chakravarty. 2008. Harnessing the Multicores:

Nested Data Parallelism in Haskell. In FSTTCS. 383–414.

Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch. 2016. Hierarchical Memory Management for Parallel

Programs. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (Nara, Japan)

(ICFP 2016). ACM, New York, NY, USA, 392–406.

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. 2010. E�cient Data Race Detection for

Async-Finish Parallelism. In Runtime Veri�cation, Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus Havelund,

Insup Lee, Gordon Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann (Eds.). Lecture Notes in Computer Science,

Vol. 6418. Springer Berlin / Heidelberg, 368–383.

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. 2012. Scalable and Precise Dynamic Datarace

Detection for Structured Parallelism. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’12). 531–542.

Rust Team. 2019. Rust Language. https://www.rust-lang.org/

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser: A Dynamic Race

Detector for Multi-Threaded Programs. In Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles

(SOSP).

Kyle Singer, Kunal Agrawal, and I-Ting Angelina Lee. 2020a. Scheduling I/O Latency-Hiding Futures in Task-Parallel

Platforms. In 1st Symposium on Algorithmic Principles of Computer Systems, APOCS 2020, Salt Lake City, UT, USA, January

8, 2020, Bruce M. Maggs (Ed.). SIAM, 147–161. https://doi.org/10.1137/1.9781611976021.11

Kyle Singer, Noah Goldstein, Stefan K. Muller, Kunal Agrawal, I-Ting Angelina Lee, and Umut A. Acar. 2020b. Priority

Scheduling for Interactive Applications. In SPAA ’20: 32nd ACM Symposium on Parallelism in Algorithms and Architectures,

Virtual Event, USA, July 15-17, 2020, Christian Scheideler and Michael Spear (Eds.). 465–477.

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. 2019a. Proactive Work Stealing for Futures. In Proceedings of the 24th

Symposium on Principles and Practice of Parallel Programming (Washington, District of Columbia) (PPoPP ’19). ACM, New

York, NY, USA, 257–271. https://doi.org/10.1145/3293883.3295735

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. 2019b. Proactive Work Stealing for Futures. In Proceedings of the 24th

Symposium on Principles and Practice of Parallel Programming (Washington, District of Columbia) (PPoPP ’19). Association

for Computing Machinery, New York, NY, USA, 257–271. https://doi.org/10.1145/3293883.3295735

K. C. Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. 2014. MultiMLton: A multicore-aware runtime for standard

ML. Journal of Functional Programming FirstView (6 2014), 1–62.

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan. 2012. Sound predictive race detection

in polynomial time. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 387–400.

Daniel Spoonhower. 2009a. Scheduling Deterministic Parallel Programs. Ph. D. Dissertation. Carnegie Mellon University.

https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf

Daniel Spoonhower. 2009b. Scheduling Deterministic Parallel Programs. Ph. D. Dissertation. Carnegie Mellon University,

Pittsburgh, PA, USA.

Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper. 2009. Beyond Nested Parallelism: Tight Bounds

on Work-stealing Overheads for Parallel Futures. In Proceedings of the Twenty-�rst Annual Symposium on Parallelism in

Algorithms and Architectures (Calgary, AB, Canada) (SPAA ’09). ACM, New York, NY, USA, 91–100.

Guy L. Steele Jr. 1990. Making Asynchronous Parallelism Safe for the World. In Proceedings of the Seventeenth Annual ACM

Symposium on Principles of Programming Languages (POPL). ACM Press, 218–231.

Robert Utterback, Kunal Agrawal, Jeremy T. Fineman, and I-Ting Angelina Lee. 2016. Provably Good and Practically E�cient

Parallel Race Detection for Fork-Join Programs. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms

and Architectures, SPAA 2016, Asilomar State Beach/Paci�c Grove, CA, USA, July 11-13, 2016. 83–94.

Caleb Voss, Tiago Cogumbreiro, and Vivek Sarkar. 2019. Transitive joins: a sound and e�cient online deadlock-avoidance

policy. In Proceedings of the 24th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

2019, Washington, DC, USA, February 16-20, 2019, Je�rey K. Hollingsworth and Idit Keidar (Eds.). 378–390.

Sam Westrick, Jatin Arora, and Umut A. Acar. 2022. Entanglement Detection With Near-Zero Cost. In Proceedings of the

24th ACM SIGPLAN International Conference on Functional Programming (ICFP 2022).

Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. 2020. Disentanglement in Nested-Parallel Programs. In

Proceedings of the 47th Annual ACM Symposium on Principles of Programming Languages (POPL)".

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

https://www.rust-lang.org/
https://doi.org/10.1137/1.9781611976021.11
https://doi.org/10.1145/3293883.3295735
https://doi.org/10.1145/3293883.3295735
https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf

Disentanglement with Futures, State, and Interaction 53:31

Michael Wilkins, Sam Westrick, Vijay Kandiah, Alex Bernat, Brian Suchy, Enrico Armenio Deiana, Simone Campanoni,

Umut A. Acar, Peter Dinda, and Nikos Hardavellas. 2023. WARDen: Specializing Cache Coherence for High-Level

Parallel Languages. In Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization

(Montréal, QC, Canada) (CGO 2023). Association for Computing Machinery, New York, NY, USA, 122–135. https:

//doi.org/10.1145/3579990.3580013

Yifan Xu, Kyle Singer, and I-Ting Angelina Lee. 2020. Parallel determinacy race detection for futures. In PPoPP ’20: 25th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego, California, USA, February 22-26,

2020, Rajiv Gupta and Xipeng Shen (Eds.). ACM, 217–231. https://doi.org/10.1145/3332466.3374536

Yuan Yu, Tom Rodehe�er, and Wei Chen. 2005. RaceTrack: e�cient detection of data race conditions via adaptive tracking.

In Proceedings of the 20th ACM Symposium on Operating Systems Principles 2005, SOSP 2005, Brighton, UK, October 23-26,

2005, Andrew Herbert and Kenneth P. Birman (Eds.). ACM, 221–234.

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 53. Publication date: January 2024.

https://doi.org/10.1145/3579990.3580013
https://doi.org/10.1145/3579990.3580013
https://doi.org/10.1145/3332466.3374536

	Abstract
	1 Introduction
	2 Disentanglement with Futures
	2.1 Syntax
	2.2 Computation Trees
	2.3 Disentanglement
	2.4 Joins
	2.5 Language Semantics

	3 Disentanglement in Pure and Purely Interactive Programs
	3.1 Pipelining with Futures
	3.2 Disentanglement for Futures and Interaction

	4 Stateful programs with Disentanglement
	4.1 PDF Viewer with Disentanglement
	4.2 Determinacy Race Freedom implies Disentanglement
	4.3 Weakly Race-Free Programs are Disentangled

	5 Disentanglement guarantees deadlock free futures
	6 Applications
	6.1 Web Server
	6.2 Futures and References for Dynamic Programming

	7 Related Work
	8 Conclusion
	References

