
Pipelines and Beyond: Graph Types for ADTs with Futures
FRANCIS RINALDI, Illinois Institute of Technology, USA
JUNE WUNDER, Boston University, USA

ARTHUR AZEVEDO DE AMORIM, Rochester Institute of Technology, USA
STEFAN K. MULLER, Illinois Institute of Technology, USA

Parallel programs are frequently modeled as dependency or cost graphs, which can be used to detect various

bugs, or simply to visualize the parallel structure of the code. However, such graphs reflect just one particular

execution and are typically constructed in a post-hoc manner. Graph types, which were introduced recently to

mitigate this problem, can be assigned statically to a program by a type system and compactly represent the

family of all graphs that could result from the program.

Unfortunately, prior work is restricted in its treatment of futures, an increasingly common and especially

dynamic form of parallelism. In short, each instance of a future must be statically paired with a vertex name.

Previously, this led to the restriction that futures could not be placed in collections or be used to construct

data structures. Doing so is not a niche exercise: such structures form the basis of numerous algorithms that

use forms of pipelining to achieve performance not attainable without futures. All but the most limited of

these examples are out of reach of prior graph type systems.

In this paper, we propose a graph type system that allows for almost arbitrary combinations of futures and

recursive data types. We do so by indexing datatypes with a type-level vertex structure, a codata structure that
supplies unique vertex names to the futures in a data structure. We prove the soundness of the system in a

parallel core calculus annotated with vertex structures and associated operations. Although the calculus is

annotated, this is merely for convenience in defining the type system. We prove that it is possible to annotate

arbitrary recursive types with vertex structures, and show using a prototype inference engine that these

annotations can be inferred from OCaml-like source code for several complex parallel algorithms.

CCS Concepts: • Software and its engineering → Parallel programming languages; Automated static

analysis; • Theory of computation→ Linear logic.

Additional Key Words and Phrases: parallel programs, graph types, cost graphs, computation graphs, futures,

pipelining, affine type system

ACM Reference Format:
Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller. 2024. Pipelines and Beyond:

Graph Types for ADTs with Futures. Proc. ACM Program. Lang. 8, POPL, Article 17 (January 2024), 30 pages.

https://doi.org/10.1145/3632859

1 INTRODUCTION
Decades of work on reasoning about parallel programs have focused on computation or cost
graphs, directed graphs that represent the dependencies of threads. Computation graphs are a

convenient target for analysis because they abstract away details of the program, language, and

even the parallelism features that were used, while still capturing enough information about the

Authors’ addresses: Francis Rinaldi, frinaldi@hawk.iit.edu, Illinois Institute of Technology, Chicago, Illinois, USA; june

wunder, jwunder@bu.edu, Boston University, Boston, Massachusetts, USA; Arthur Azevedo de Amorim, aaavcs@rit.edu,

Rochester Institute of Technology, Rochester, New York, USA; Stefan K. Muller, smuller2@iit.edu, Illinois Institute of

Technology, Chicago, Illinois, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART17

https://doi.org/10.1145/3632859

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

https://doi.org/10.1145/3632859
https://doi.org/10.1145/3632859

17:2 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

relationships between threads to perform many useful analyses. For example, computation graphs

have been used to study deadlock [Cogumbreiro et al. 2018], data races [Banerjee et al. 2006],

priority inversions [Babaoğlu et al. 1993] and evaluation cost [Blelloch and Greiner 1995, 1996].

To analyze such properties, it is desirable to calculate the computation graph of a program stati-

cally, at compile time or analysis time. Doing so is often possible in languages and threading libraries

for coarse-grained parallelism, such as pthreads, where thread creation and synchronization are

expensive and rare. Much recent interest in parallel programming, however, has been in the area of

fine-grained parallelism, in which threads are created cheaply and eagerly, often based on runtime

conditions. For example, a program might fork at each level of a divide-and-conquer algorithm,

or a web server might spawn a new thread to handle every incoming request asynchronously.

Reasoning statically about the dependency structure of fine-grained parallel programs is difficult

because of the highly dynamic nature of thread creation and synchronization in these programs.

This difficulty is compoundedwhen programs use futures and related abstractions for fine-grained
parallelism, which are becoming increasingly popular and have been made available in Python,

Scala, Rust, and the most recent release of OCaml [Sivaramakrishnan et al. 2020], among other

languages. Essentially, a future is a first-class handle to an asynchronous computation. The result

of the computation can be demanded via a force or touch operation, which blocks if the result is not

yet available. Because futures run in separate threads, we can model each future as its own vertex 𝑢

in the computation graph of a program. Edges leading into 𝑢 track the intermediate results used to

compute the future, and when we touch the future, we add an edge from 𝑢 to the thread where the

touch happened. Futures may be passed around a program arbitrarily and end up being touched

in a very different part of the program from where it was spawned, leading to great power and

flexibility but also complex computation graphs which are difficult to reason about.

To address the difficulty of predicting parallel dependences in fine-grained parallel programs,

especially those with futures, Muller [2022] introduced the notion of graph types, which statically

overapproximate the set of computation graphs that might result from running a program. A graph
type system statically assigns graph types to programs, and its soundness theorem ensures that the

actual computation graph resulting from any execution of a well-typed program is described by

the program’s graph type.

Much of the complexity of the graph type system centers around futures. Because futures can

be touched in an entirely different part of the program from where they are created, each future

type is annotated with a distinguished vertex name, so that the graph type system can refer to

the correct vertex when tracking the dependencies of touch operations. (Explicit vertex names

are not needed in simpler parallelism models such as fork-join, because it is clear what thread is

being synchronized.) To avoid tracking spurious dependencies, the graph type system ensures that

each vertex name is associated with at most one future during execution. More precisely, when

spawning a new future, the graph type system annotates the type of the result with a fresh vertex

name, which is tracked in a separate affine context to prevent reuse.

This treatment of futures leads to a significant limitation in prior work: it is difficult or im-

possible to build useful data structures containing futures. Even an expression as simple as

[future e1; future e2] (a list containing two new futures) cannot be assigned a type. The rea-

son is that the two elements of this list must have types 𝜏 future[𝑢1] and 𝜏 future[𝑢2], respectively,
where 𝑢1 and 𝑢2 are distinct vertex names and 𝜏 future[𝑢] is the type of a future returning a value

of type 𝜏 with the vertex named 𝑢—these two elements can’t be placed in a list because prior

work supports only homogeneous lists. Although this example is simple and artificial, much of

the power of futures, as opposed to more limited parallelism models such as fork-join, comes from

the ability to program with data structures that contain an unbounded number of futures, such as

lists and trees. As examples, Blelloch and Reid-Miller [1997] describe a number of algorithms and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:3

data structures that use futures in complex ways to pipeline computations, resulting in asymptotic

improvements over the best known fork-join implementations. These programming idioms exercise

the full complexity of futures, motivating the need for techniques to reason statically about the

computation graphs of these programs.

In this paper, we develop a graph type system, and accompanying inference algorithm, that can

handle complex data structures using futures. As a motivating example, consider a function that

produces a pipeline of increasingly precise approximations of 𝜋 . This could be, for example, the first

stage in a graphics or simulation pipeline. We wish to compute the approximations asynchronously

so that earlier approximations can be used while later ones are still being computed. Figure 1 shows

two possible implementations of such a function. The implementation on the left produces a list of

futures with the intermediate results. The function list_pi takes a number k and a future a, which
computes the (𝑘 − 1)st approximation. Each iteration of list_pi spawns a new future to compute

the kth term of the Gregory series multiplied by 4, adds it to the running total being computed by a,
and adds the new future (which is completing the new running total) to a list, then calls list_pi
recursively to compute the remaining terms. To illustrate a use of this structure, the main function

takes the second approximation from the list. Note that list_pi, as written, doesn’t terminate.

Because the function list_pi produces a list of futures, it cannot be given a graph type under

prior work [Muller 2022].
1
This is a shame, because its computation graph would have revealed a

subtle but fatal bug: despite the futures, there is no real asynchrony or pipelining because almost

the entire list of approximations (which, in this example, is infinite) must be constructed before

the program proceeds. This can be seen in the visualization on the left side of Figure 2, which is

produced automatically by our implementation from the inferred graph type. In the figure, vertices

in the graph, notated with either a text label or a small circle, represent pieces of computation. The

vertices with labels like 𝑛1• 1 are the final vertices of a future, and these labels are the vertex names

assigned to the future. The reason for these particular labels will become clear later in the paper.

Edges represent dependences: an edge out of a labeled vertex indicates a touch of the corresponding

future, and other edges represent sequential dependences within a thread or the spawning of a

future. A path of edges in the graph therefore represents a chain of sequential dependences and

two vertices with no path between them indicate opportunities for parallelism. Long paths indicate

a lack of parallelism.

The figure shows a visualization of the graph type of the program, with the recursion of list_pi

unrolled a fixed number of times to make the recursive structure visually clear. A vertex labeled . . .

indicates a recursive call that has been elided because of the cutoff on number of unrollings. The

vertex representing the touch operation in main is circled in red: we can see that there is a long chain

of dependences on the critical path to reach this operation, which means the operation will be

significantly delayed when running the program. Indeed, the topmost . . . appears on the critical

path, indicating a potentially (and, in this case, actually) infinite critical path.

The second implementation in Figure 1 instead uses a new data structure 'a pipewhich resembles

a lazy list: the head of the list is computed eagerly and may be used immediately but the tail of the

list is computed asynchronously in a future. The function pipeline_pi takes the running total a (now

as an actual float, rather than a future) and k. It adds the kth approximation to the running total,

then returns the new running total as well as a future to call pipeline_pi recursively to compute the

remainder of the pipeline. This is reminiscent of the “producer” example of Blelloch and Reid-Miller

[1997]. As we can see from the visualization on the right side of Figure 2, the graphs corresponding

to pipeline_pi exhibit much more parallelism than the previous version. Here, the touch operation

1
Actually, Muller [2022] does discuss a similar pipelining example in his system; cf. Figure 10 and Section 6. However, that

example is expressible precisely because it does not accumulate the intermediate results in a list.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:4 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

1 let rec list_pi (a, k) : float future list =

2 let a' =

3 future ((-1.0) ** (k +. 1.0)

4 *. 4.0 /. (2. *. k -. 1.0)

5 +. touch a)

6 in

7 a'::(list_pi (a', k +. 1))

8

9 let main () =

10 touch (hd (tl (list_pi (0.0, 1.0))))

1 type 'a pipe = Pipe of 'a * 'a pipe future

2

3 let rec pipeline_pi (a, k) : float pipe =

4 let a' = a +. (-1.0) ** (k +. 1.0)

5 *. 4.0 /. (2. *. k -. 1.0)

6 in

7 Pipe (a', future (pipeline_pi (a', k +. 1.)))

8

9 let main () =

10 let Pipe (_, f1) = pipeline_pi (0.0, 1.0) in

11 let Pipe (pi2, _) = touch f1 in pi2

Fig. 1. Two implementations of a function that iteratively computes 𝜋 with futures.

in main (again circled in red) occurs in parallel with the computation of the remainder of the list

and there are only a small, finite number of operations on its critical path.

Fig. 2. Visualizations for list_pi (left) and
pipeline_pi (right) showing the differences in
parallelization strategies. In both figures, the node
corresponding to the touch operation in main is
circled in red for emphasis.

In this paper, we present a graph type system that

can statically compute graph types for the above

pipelining examples (and many more), thus allow-

ing us to detect and repair the parallelism bugs we

discussed. We present the type system in 𝜆𝐺𝜇
, a core

calculus containing both futures and recursive types.

The key to our approach is parameterizing recursive

data structures involving futures with a source of

fresh vertex names called a vertex structure (or VS, for
short). Conceptually, one can think of a VS as a sep-

arate structure of the same shape as the program’s

recursive data structure, containing unique vertex

names. For example, both the float future list and

the float pipe of Figure 1 would be parameterized

by a stream of vertices. The two functions list_pi

and pipeline_pi would take this vertex stream, let’s

call it𝑈 , as an implicit parameter and, at each iter-

ation, use the next vertex in the stream (fst 𝑈) to

spawn the new future and pass the rest of the stream

(snd𝑈) to the recursive call. As a result, the returned

list (resp., pipe) will be “zipped” together with the vertex stream in the sense that the first future

in the list (resp., pipe) will use the first vertex of the stream, and so on. In this way, we need not

“unroll” the vertex structure at compile time: the types will refer to projections of a VS parameter.
2

Vertex structures are not limited to streams: in general, a VS can be an infinite (corecursive) tree

with arbitrary branching patterns. We show that this allows us to construct a VS corresponding to

arbitrary recursive data structures.

Recall that we require vertex names to be unique. The vertices contained by a vertex structure are

all unique, but ensuring that each vertex is used at most once is non-trivial and requires numerous

extensions to the graph type system. One source of complexity is that types can perform significant

2
We do, however, unroll a VS when unrolling the corresponding graph types, e.g., to create the visualizations in Figure 2. In

the figure, 𝑛1 is the “root” of a VS and the notations that follow are projections of this VS.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:5

computation on vertex structures. As an example, as we discussed above, the same vertex 𝑢 cannot

be used as a name for two futures. In the presence of computation on VSs, this is not a simple

restriction to enforce syntactically: if𝑈 is a vertex structure, then under a reasonable semantics for

vertex structures, fst (fst 𝑈 , snd 𝑈) and fst 𝑈 refer to the same vertex name and therefore cannot

both be used to spawn futures.

The 𝜆𝐺𝜇
calculus assumes that data structures are annotated with vertex structures and makes

explicit many of the manipulations of VSs described above. However, 𝜆𝐺𝜇
should be seen as an

intermediate representation—an inference algorithm can infer all necessary annotations from unan-

notated code in a high-level source language. As a proof of concept, we extend GML [Muller 2022],

a graph type checker for a subset of OCaml (but which did not previously support lists containing

futures, or any sort of user-defined algebraic data types) with support for user-defined algebraic

data types containing futures. Our graph type checker is able to infer annotations and produce

graph types from the examples in Figure 1, as well as all of the other examples contained in this

paper, with no additional annotations or programmer burden, as well as to produce visualizations

of their graph types. As shown in the example above, such visualizations can allow programmers

to identify errors in the parallelization of their code, and can also be used to reason about parallel

complexity and other features. Prior work [Muller 2022] also explains how graph types can be used

to aid other analyses, such as deadlock detection. A formal presentation of the inference algorithm

is out of the scope of this paper, but much of the challenge in our extension is constructing the

vertex structure corresponding to an arbitrary user-defined algebraic data type. We describe this

process formally and prove some metatheoretic results about it.

In sum, our contributions are:

• 𝜆𝐺𝜇
, a parallel calculus with a graph type system supporting recursive data types (Section 3).

• A soundness result for 𝜆𝐺𝜇
, guaranteeing that the graph type of a program correctly describes

the computation graph that arises when running the program (Section 4).

• An algorithm for inferring the shape of a vertex structure that will provide the necessary

vertex names for an arbitrary recursive data structure, and results showing (among other

things) that such a VS exists for any valid recursive data type (Section 5).

• A prototype implementation
3
of graph type inference for an OCaml-like source language,

including OCaml-style user-defined algebraic data types mixed with futures (Section 6).

Due to space limitations, we defer some of the technical details and many of the proofs to the

full version of the paper [Rinaldi et al. 2024]. We begin with an overview of graph types as well as

a high-level description of our extensions.

2 OVERVIEW
Webeginwith an overview of graph types but refer the interested reader to the original paper [Muller

2022] for a more thorough presentation; we indicate using footnotes where we diverge from that

paper’s presentation. Our motivating example is a parallel implementation of Quicksort using

futures (Figure 3). The code is supplemented with annotations in gray that are inserted during

type inference and used in the formal presentation of 𝜆𝐺𝜇
, but are not written in actual code; these

annotations will be explained later, in Section 3. The implementation returns immediately in the

case of an empty list. On a non-empty list, the first element is selected as a pivot and used to

partition the list using a sequential function partition, whose implementation we omit. A future is

spawned to sort the first list recursively while the second list is sorted in the main thread. When

the second list is sorted, we touch the future to retrieve the sorted first list, and append the lists.

3
source available at https://github.com/junewunder/gml-popl24/

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:6 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

The type of the function in 𝜆𝐺𝜇
is given below the code; the type indicates that qsort accepts

and returns an 'a list. As is common in presentations of type-and-effect systems, we write an

annotation over the arrow indicating the effects performed by running the function. In this case, the

“effect” is the graph type of the function; that is, a graph type describing the family of computation

graphs which might arise from executing qsort. The prefix 𝜇𝛾 . indicates that 𝐺 binds a recursive

instance of itself as 𝛾—this notation is taken from standard presentations of recursive types. The

body of 𝐺 is a disjunction of two families of graphs, indicated by the ∨ symbol. This notation

appears when the code executes a conditional or pattern match and indicates two possible families

of graphs: 𝐺1 ∨𝐺2 indicates that the graph can take a form indicated by either 𝐺1 or 𝐺2. In the

example, the first graph type, •, indicates a sequential computation and corresponds to executing

the base case. The second graph type corresponds to the recursive case, and indicates that a future

is spawned. In order to refer to this future later in the graph type, futures are assigned unique

names. By convention, these names are assumed to refer to a vertex “attached” to the computation

graph of a future as a final vertex. We will refer to this vertex as the “sink” vertex of the future,

borrowing a term from graph theory because, until the future is touched, it has no outgoing edges.

The notation new 𝑢 :♦., which appears in corresponding locations in the graph type 𝐺 and as an

annotation in the code, indicates binding a new vertex variable 𝑢 which locally refers to a new, fresh

vertex name; ♦ is the type of this variable and means that 𝑢 refers to a single vertex.
4
When the

annotated program is evaluated (we do this only to prove soundness; the vertex name annotations

have no runtime meaning in the actual program) or the graph type is unrolled (e.g., to produce the

visualizations of Figure 2), 𝑢 will be instantiated with a new, fresh vertex name.
5

1 let rec qsort (l: 'a list) : 'a list =

2 match l with

3 | [] -> []

4 | p::t ->

5 let (lt, ge) = partition p t in

6 new 𝑢 :♦.

7 let future_sort_lt = future[𝑢] (qsort lt) in

8 let sort_ge = qsort ge in

9 let sort_lt = touch future_sort_lt in

10 sort_lt @ [p] @ sort_ge

qsort :
′a list

𝐺−→ ′a list
where

𝐺 = 𝜇𝛾 .[• ∨ (new 𝑢 :♦.𝛾 $𝑢 ⊕𝛾 ⊕ 𝑢 %)]

Fig. 3. Code and types for parallel-recursive Quicksort
using futures. Code annotations in gray are shown for
convenience; these are not written by the programmer.

The sequential composition of two

graph types is denoted 𝐺1 ⊕ 𝐺2, indicat-

ing that the program performs a computa-

tion described by 𝐺1 followed by one de-

scribed by 𝐺2. In our example graph type,

the graph type corresponding to the recur-

sive case is the sequential composition of

three operations. The graph type 𝛾 $𝑢 in-

dicates that 𝑢 is the sink of a future whose

graph is described by the graph type 𝛾

(which, recall, is a recursive instance of𝐺

corresponding to a recursive call to qsort).
In general, 𝐺 $𝑢 indicates a future whose

computation graph can be described by𝐺

and whose sink vertex is given the name𝑢.

In 𝜆𝐺𝜇
, spawns using the future keyword

are also annotated with the vertex that is

used; this annotation is shown in gray in

the code. The spawn in the graph type is

then sequentially composed with another

instance of 𝛾 for the other recursive call, and finally a touch of the future whose sink is 𝑢 (a touch

of vertex 𝑢 is denoted
𝑢 %).

4
This type annotation is not used or needed in prior work, where only single vertices are bound. We introduce it here for

consistency with the syntax used in the rest of this paper.

5
In the terminology of this paper, it will actually be instantiated with a new vertex structure of type ♦.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:7

1 let pipeline_pi2[𝑢 :♦ × ♦; _ : 1] () =

2 future[fst 𝑢]
3 (3.1, future[snd 𝑢] 3.14)

4

5 let use_pi () =

6 new 𝑢 :♦ × ♦.
7 let (pi1, pi2_fut) =

8 touch (pipeline_pi2 ())

9 in touch pi2_fut

pipeline_pi2 : Π[𝑢 :♦ × ♦; _ :1] .unit 𝐺−→ 𝜏 future[fst 𝑢]
use_pi : unit

𝐺′
−−→ float

where

𝜏 = float × float future[snd 𝑢]
𝐺 = (•$snd 𝑢)$fst 𝑢

𝐺 ′ = new 𝑢 ′
:♦ × ♦.𝐺 [𝑢 ′/𝑢] ⊕ fst 𝑢 % ⊕ snd 𝑢 %

Fig. 4. A function that iteratively approximates 𝜋 twice in a pipelined manner

Note that the vertex 𝑢 in the Quicksort example exists only within the scope of the binding

and so, in particular, cannot be allowed to escape the scope. If futures are, e.g., returned from a

function, the vertices for those futures must be created outside and passed as parameters to the

function. As an example, take the pipeline_pi2 function in Figure 4, which returns a future. This

function is similar to the analogous function of Section 1, but limited to two approximations of 𝜋 .

The vertex parameter is made explicit in the 𝜆𝐺𝜇
annotations, and also appears in the type of the

function (shown on the right side of the figure) as a Π binding. This construct in a graph type binds

two parameters. Both parameters stand for vertex structures (VSs), type-level (co)data structures
containing vertices, and both are annotated with vertex structure types indicating their shapes. The

first parameter, 𝑢, will contain the vertices the function may use to spawn futures. In the case

of pipeline_pi2, it is annotated with VS type ♦ × ♦, indicating a pair of vertices (recall that ♦ is a VS
type representing a single vertex).

6
The second parameter contains the vertices the function may

touch; in the case of pipeline_pi2, it is empty as indicated by the unit VS type 1.
7

The function pipeline_pi2 returns a future (spawned using the first component of the vertex

structure 𝑢) that produces a pair of a float and another future, spawned with the second component.

Note that the types of futures explicitly indicate the vertices with which the future was spawned.

As in the Quicksort code, these vertices also appear as annotations on the future keyword which

are inferred during type checking. Finally, the graph type 𝐺 of the function body shows that the

function spawns a future using the vertex fst𝑢, which in turn spawns a future using the vertex snd𝑢,
which finally does not spawn further threads.

The code in Figure 4 also shows a function that calls pipeline_pi2 and touches the two futures.

The graph type of this function binds a new vertex structure for the two futures, which no longer

need to escape the function. As in Quicksort, the new vertex structure is bound using a binding

of the form new 𝑢 :U .𝐺 , where the vertex structure type is now the product ♦ × ♦ instead of ♦.
The call to pipeline_pi2 instantiating the bound vertex structure variable 𝑢 with the new VS 𝑢 ′

is

indicated by substituting 𝑢 ′
for 𝑢 in 𝐺 .

Before proceeding, we make one additional note about the graph type system. We have referred

to 𝑢 and similar as unique vertex names—each vertex name can be used to spawn a future at most

once, otherwise the resulting graph will be ambiguous (if two futures have 𝑢 as a sink vertex, there

is no way to know to which future a touch
𝑢 % refers). The graph type system (both ours and that

of prior work) enforce this using an affine type system that restricts the use of vertex names.

6
Note that prior work had similar notation for vertex parameters but, as it did not have vertex structures, allowed Πs to
bind arbitrary-length vectors of vertex parameters. The introduction of vertex structures in the present work, which we will

use later to more substantial effect, also simplifies this notation and makes it more uniform.

7
The theory of 𝜆𝐺𝜇

does not include the VS type 1 to keep the calculus minimal, but it is included in our implementation

and would be a straightforward addition to the calculus.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:8 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

1 type 'a pipe = Pipe of 'a * 'a pipe future

2

3 let rec pipeline_pi[𝑢 :vstream; _ : 1] (a, k) =

4 let a' = a +. (-1.0) ** (k +. 1.0)

5 *. 4.0 /. (2. *. k -. 1.0)

6 in

7 Pipe (a', future[fst 𝑢]
8 (pipeline_pi[snd 𝑢] (a', k +. 1.)))

9

10 let rec nth[_ : 1;𝑢 :vstream]
11 ((pipe, n) : 'a pipe[𝑢] * int) =

12 let Pipe (a, f) = pipe in

13 if n <= 0 then a

14 else nth[snd 𝑢] (touch f, n - 1)

15

16 let main () =

17 new 𝑢 :vstream.

18 nth[𝑢] (pipeline_pi[𝑢] (0.0, 1.0)) 1000

pipeline_pi : Π[𝑢 :vstream; _ :1] .
float × float

𝐺−→ float pipe[𝑢]
nth : Π[_ :1;𝑢 :vstream] .

float pipe[𝑢] × int
𝐺′
−−→ float

main : unit
𝐺′′
−−→ float

where

𝐺 = 𝜇𝛾 .Π[𝑢 :vstream; _ :1] .(𝛾 [snd 𝑢])$fst 𝑢

𝐺 ′ = 𝜇𝛾 .Π[_ :1;𝑢 :vstream] . • ∨ fst 𝑢 % ⊕𝛾 [snd 𝑢]
𝐺 ′′ = new 𝑢 :vstream.𝐺 [𝑢; ⟨⟩] ⊕ 𝐺 ′[⟨⟩;𝑢]
vstream = 𝜈𝑡 .♦ × 𝑡

Fig. 5. Code and types for a function that iteratively approximates 𝜋 indefinitely in a pipelined manner.

Thus far, we have discussed examples that are within the capabilities of prior work. Now suppose

we wish to generalize pipeline_pi2 to continue producing iterative approximations indefinitely.

The code in Figure 5 does this, producing a value of type float pipe, also defined in the figure,

which is a recursive type containing an approximation and a future to continue the pipeline. This

is reminiscent of the “producer” example of Blelloch and Reid-Miller [1997], who use futures in

this general pattern to construct a wide variety of pipelined data structures. As in the Introduction,

each iteration computes the kth term in the approximation, adds it to a running total a, and returns
the new running total as well as a future to call pipeline_pi recursively to compute the k + 1st term.

Useful instances of the recursive data type
′a pipe cannot be typed with the existing graph

type system, because doing so would require an infinite sequence of new vertex names and a

way of associating each future in the pipeline with successive vertex names. One (incorrect but

illustrative) approach would be to instantiate each future in the type with a fresh vertex name

using, for example, an existential. The pipe type would then be annotated as follows:

type 'a pipe = Pipe of 'a * pipe future[∃𝑢 : ♦.𝑢]

This is still not useful, however, because it doesn’t allow any vertex name to escape the scope of

the single future type, just as the vertex in the qsort function was confined to the qsort function.
The type 𝜏 future[∃𝑢 : ♦.𝑢] tells us that the future is spawned with some vertex, but gives no
information about which, an untenable loss of precision when we try to touch this future and add

an edge to its vertex. As an illustration of this loss of precision, consider the following program,

and suppose we wish to use its graph type to check for deadlocks (simply put, a program may

deadlock if its graph type can unroll to a cyclic graph):

let rec f n =

if n <= 0 then [future (fun () -> 0)]

else

let l' = f (n - 1) in

(future (fun () -> touch (List.hd l')))::l'

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:9

Each future in the list contains a function that touches the following future in the list. This is a

fairly clear structure and a visualization or suitable analysis of the graph type produced by our

system could show that the program is deadlock-free. However, if the type of the output list were

given as (unit
∃𝑢.𝑢

%
−−−−→ int) future[∃𝑢.𝑢], the most precise thing that could be said about this list is

that it is a list of thunks under futures, each of which touches any future in the list (or, indeed,

without further information, any future in the program), including itself. Thus, a sound deadlock

detector would have to conclude that the program might deadlock.

As a more precise solution to the problem of generating unique vertex names for elements in a

data structure, we introduce vertex structures, mentioned above, which we allow to be (co)recursive

and thus serve as the source or collection of vertex names we need. In the code annotations

and the type of pipeline_pi on the right side of the figure, the function takes a vertex structure

parameter of vertex structure type vstream, which is defined in the lower right side of the figure

to be a corecursive type of an infinite list or stream of vertices. The return type of the function

is float pipe[𝑢], where the recursive pipe type is now parameterized by a vertex structure. This

vertex structure is threaded through the recursive structure of the pipeline data type such that

successive futures in the data type are associated with corresponding vertices from 𝑢. The details of

this are technical and so we defer them, as well as the formal presentation of recursive data types

in 𝜆𝐺𝜇
, to the next section. As in pipeline_pi2, the first future uses the vertex fst 𝑢, which appears

as an annotation in the code and on the graph type (𝐺 contains$fst 𝑢 , indicating a spawn of fst 𝑢).8

However, now the function calls itself recursively to generate the rest of the pipeline. Because

the function takes a vertex parameter, this recursive call must instantiate the vertex parameter

with a vstream, and it does so with the tail of the stream, snd 𝑢. This appears in the graph type

as 𝛾 [snd 𝑢].
We complete this overview with a demonstration of how the pipeline can be consumed, which

shows how vertex structures link individual futures to their touches. The nth function in Figure 5

consumes a pipeline recursively, returning the n𝑡ℎ value. It also takes a parameter 𝑢 of vertex

structure type vstream, but this time as the second parameter, because the function uses these

vertices to touch futures and does not spawn futures. The use of 𝑢 as the parameter to the pipe
data type indicates that vertices for futures in the pipeline will be drawn from the stream 𝑢, which

is enough information to infer in the graph type 𝐺 ′
that the touch

fst 𝑢 % targets the first vertex

of 𝑢. The function then calls itself recursively with the tail of the vertex stream, which also appears

in the recursive instantiation of 𝛾 in the graph type. Finally, main calls nth with the 𝜋 pipeline. As

we have seen before, the vertex structure 𝑢 is bound here so that its scope covers its uses both for

spawns (in pipeline_pi) and for touches (in nth). The calls to both functions instantiate the vertex

structure parameter with the same vertex structure 𝑢, linking the spawns and touches in the graph

types. The graph type for main composes the graph types of the producer and the consumer and

links the spawns and touches by instantiating both graph types with the same vertex structure.

3 GRAPH TYPES WITH VERTEX STRUCTURES
This section provides a formal presentation of 𝜆𝐺𝜇

, whose syntax is given in Figure 6. In the

remainder of this section, we describe the features of the language in detail, focusing on the main

novelties of 𝜆𝐺𝜇
compared to prior work: vertex structures (VSs) and recursive types.

8
We treat corecursive vertex structure types as equi(co)recursive, so no unrolling is needed.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:10 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

Vertex Structures 𝑈 ::= 𝑢 | (𝑈 ,𝑈) | fst𝑈 | snd𝑈
Vertex Structure Types U ::= ♦ | U𝑎 ×U𝑎 | 𝑡 | 𝜈𝑡 .U
Availability 𝑎 ::= ■ | □
Graph Types 𝐺 ::= 𝛾 | • | 𝐺 ⊕ 𝐺 | 𝐺 ∨𝐺 | 𝜇𝛾 .𝐺 | 𝐺 $𝑈 |

𝑈 % |
Π[𝑢 :U;𝑢 :U] .𝐺 | 𝐺 [𝑈 ;𝑈] | new 𝑢 :U .𝐺

Graph Kinds 𝜅𝐺 ::= ∗ | Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝜅𝐺
Kinds 𝜅 ::= Ty | U → Ty

Type Constructors 𝑐 ::= unit | Π[𝑢 :U;𝑢 :U] .𝑐 𝐺−→ 𝑐 | 𝑐 × 𝑐 | 𝑐 + 𝑐 | 𝑐 future[𝑈] | 𝛼 |
𝜇 (𝛼 ;𝑢 :U .𝑐;𝑈) | 𝜆𝑢 :U .𝑐 | 𝑐 𝑈

Expressions 𝑒 ::= 𝑥 | ⟨⟩ | fun[𝑢;𝑢] 𝑓 𝑥 = 𝑒 | 𝑒 [𝑈 ;𝑈] 𝑒 | (𝑒, 𝑒) | fst 𝑒 | snd 𝑒 |
inl 𝑒 | inr 𝑒 | case 𝑒 {𝑥 .𝑒 ;𝑦.𝑒} | roll 𝑒 | unroll 𝑒 |
future[𝑈] 𝑒 | touch 𝑒 | new 𝑢 :U .𝑒

Fig. 6. Syntax of 𝜆𝐺𝜇 .

3.1 Vertex Structures and Their Types
Vertex Structures (𝑈) contain vertices that represent futures in computation graphs. As shown in

Figure 6, VSs appear in annotations within expressions, type constructors, and graph types; these

annotations are not inserted into real code by programmers, but are filled in during type inference.

Vertex structures are classified with VS types (U). The VS type ♦ represents a single vertex, and
only VSs of type ♦ can be used to name futures. The product type U𝑎1

1
× U𝑎2

2
represents pairs

of VSs inU1 andU2. The availability annotations 𝑎1 and 𝑎2 indicate whether the corresponding

component is available (■) or unavailable (□) for spawning new futures; their use is inspired by

record types in the Cogent language [O’Connor et al. 2021]. The need for availability will become

clearer later, when we discuss the type system. Finally, we can also form corecursive VS types 𝜈𝑡 .U,

which we will use to generate graph types that require a potentially unbounded number of vertices.

Figure 7 presents the rules for assigning VS types to VSs. The judgment Ω;Ψ ⊢ 𝑈 : U denotes

that the VS 𝑈 has VS type U, where Ω and Ψ are contexts that map VS variables to their types.

Vertices, and thus VSs, are treated in an affine manner to ensure that any vertex is used at most once

to spawn a future—this affine treatment leads to the use of two contexts. The first, Ω, is an affine

context storing vertices that may be used to spawn futures and the second, Ψ, is an unrestricted

context for vertices that may be used to touch futures (we may touch a vertex any number of times).

Because we wish to be able to touch any vertex we spawn, the set of variables in Ω will always be

a subset of that in Ψ. A VS variable is well-typed if it is in either Ω or Ψ, and we assume that Ω
does not contain multiple mappings for the same variable.

VSs can be variables (𝑢),9 pairs, and projections. As seen in the rules U:Fst and U:Snd, only

available components can be projected. For example, if 𝑢 has VS typeU■
1
×U□

2
, then fst 𝑢 is safe to

use, but snd 𝑢 is not. Rule U:Subtype is a subsumption rule for the subtyping relation on VS types,

denoted U ′ ⊑ U and defined in Figure 8. We allow three forms of subtyping: first (UT:Corec1

and UT:Corec2), we can freely roll and unroll corecursive VS types. Second (UT:ProdLeft and

UT:ProdRight), it is safe to take an available component and treat it as unavailable. Third, the

types of unavailable components of VSs may be changed at will, which is safe since those sides can

never be used.

9
Unlike the original presentation [Muller 2022], 𝑢 refers to a variable instead of a vertex.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:11

(U:OmegaVar)

Ω, 𝑢 : U;Ψ ⊢ 𝑢 : U

(U:PsiVar)

Ω;Ψ, 𝑢 : U ⊢ 𝑢 : U

(U:Pair)

Ω⇝ Ω1 ⊞ Ω2 Ω1;Ψ ⊢ 𝑈1 : U1 Ω2;Ψ ⊢ 𝑈2 : U2

Ω;Ψ ⊢ (𝑈1,𝑈2) : U■1 ×U■
2

(U:OnlyLeftPair)

Ω;Ψ ⊢ 𝑈1 : U1 ·;Ψ′ ⊢ 𝑈2 : U2

Ω;Ψ ⊢ (𝑈1,𝑈2) : U■1 ×U□
2

(U:OnlyRightPair)

·;Ψ′ ⊢ 𝑈1 : U1 Ω;Ψ ⊢ 𝑈2 : U2

Ω;Ψ ⊢ (𝑈1,𝑈2) : U□1 ×U■
2

(U:Fst)

Ω;Ψ ⊢ 𝑈 : U■
1
×U𝑎

2

Ω;Ψ ⊢ fst𝑈 : U1

(U:Snd)

Ω;Ψ ⊢ 𝑈 : U𝑎
1
×U■

2

Ω;Ψ ⊢ snd𝑈 : U2

(U:Subtype)

Ω;Ψ ⊢ 𝑈 : U ′ U ′ ⊑ U
Ω;Ψ ⊢ 𝑈 : U

Fig. 7. Vertex structure type system for 𝜆𝐺𝜇 .

(UT:ProdLeft)

U𝑎1
1

×U𝑎2
2

⊑ U□
3
×U𝑎2

2

(UT:ProdRight)

U𝑎1
1

×U𝑎2
2

⊑ U𝑎1
1

×U□
3

(UT:Prod)

U1 ⊑ U ′
1

U2 ⊑ U ′
2

U𝑎1
1

×U𝑎2
2

⊑ U ′𝑎1
1

×U ′𝑎2
2

(UT:Corec1)

𝜈𝑡 .U ⊑ U[𝜈𝑡 .U/𝑡]

(UT:Corec2)

U[𝜈𝑡 .U/𝑡] ⊑ 𝜈𝑡 .U

(UT:Reflexive)

U ⊑ U

(UT:Transitive)

U ⊑ U ′′ U ′′ ⊑ U ′

U ⊑ U ′

Fig. 8. VS subtyping.

(US:Prod)

U■
1
×U■

2
⇝ U■

1
×U□

2
⊞U□

1
×U■

2

(US:SplitBoth)

U1 ⇝ U ′
1
⊞U ′′

1
U2 ⇝ U ′

2
⊞U ′′

2

U■
1
×U■

2
⇝ U ′■

1
×U ′■

2
⊞U ′′■

1
×U ′′■

2

(US:SplitLeft)

U1 ⇝ U ′
1
⊞U ′′

1

U■
1
×U𝑎

2
⇝ U ′■

1
×U𝑎

2
⊞U ′′■

1
×U□

2

(US:SplitRight)

U2 ⇝ U ′
2
⊞U ′′

2

U𝑎
1
×U■

2
⇝ U𝑎

1
×U ′■

2
⊞U□

1
×U ′′■

2

(US:Corecursive)

U[𝜈𝑡 .U/𝑡] ⇝ U1 ⊞U2

𝜈𝑡 .U ⇝ U1 ⊞U2

(US:Subtype)

U ⇝ U ′
1
⊞U2 U ′

1
⊑ U1

U ⇝ U1 ⊞U2

(US:Commutative)

U ⇝ U2 ⊞U1

U ⇝ U1 ⊞U2

Fig. 9. Vertex structure type splitting.

(OM:Empty)

·⇝ · ⊞ ·

(OM:Commutative)

Ω⇝ Ω2 ⊞ Ω1

Ω⇝ Ω1 ⊞ Ω2

(OM:Var)

Ω⇝ Ω1 ⊞ Ω2

Ω, 𝑢 : U ⇝ Ω1, 𝑢 : U ⊞ Ω2

(OM:VarTypeSplit)

Ω⇝ Ω1 ⊞ Ω2 U ⇝ U1 ⊞U2

Ω, 𝑢 : U ⇝ Ω1, 𝑢 : U1 ⊞ Ω2, 𝑢 : U2

Fig. 10. Ω context splitting.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:12 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

(DW:Spawn)

Ω⇝ Ω1 ⊞ Ω2 Δ;Ω1;Ψ ⊢ 𝐺 : ∗ Ω2; · ⊢ 𝑈 : ♦

Δ;Ω;Ψ ⊢ 𝐺 $𝑈 : ∗

(DW:Touch)

·;Ψ ⊢ 𝑈 : ♦

Δ;Ω;Ψ ⊢ 𝑈 % : ∗

(DW:New)

Δ;Ω, 𝑢 : U;Ψ, 𝑢 : U ⊢ 𝐺 : ∗
Δ;Ω;Ψ ⊢ new 𝑢 :U .𝐺 : ∗

(DW:RecPi)

Δ, 𝛾 : Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .∗;𝑢𝑓 : U𝑓 ;Ψ, 𝑢𝑓 : U𝑓 , 𝑢𝑡 : U𝑡 ⊢ 𝐺 : ∗
Δ;Ω;Ψ ⊢ 𝜇𝛾 .Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝐺 : Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .∗

(DW:App)

Ω⇝ Ω1 ⊞ Ω2

Δ;Ω1;Ψ ⊢ 𝐺 : Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .∗ Ω2; · ⊢ 𝑈𝑓 : U𝑓 ·;Ψ ⊢ 𝑈𝑓 : U𝑓 ·;Ψ ⊢ 𝑈𝑡 : U𝑡

Δ;Ω;Ψ ⊢ 𝐺 [𝑈𝑓 ;𝑈𝑡] : ∗

Fig. 11. Selected rules for graph type formation.

The VS typing rule U:Pair uses an auxiliary splitting relation •⇝ • ⊞ • [O’Connor et al. 2021],

which is described in Figure 10. This relation is responsible for enforcing the affine treatment of

Ω contexts. The judgment Ω ⇝ Ω1 ⊞ Ω2 states that Ω splits into the disjoint contexts Ω1 and

Ω2. It is important that Ω1 and Ω2 be disjoint so that futures spawned under Ω1 and under Ω2

have distinct vertices. However, we allow a variable with a product VS type to appear in both

contexts, as long as the availability of the products is in turn split between the two. This is allowed

by OM:VarTypeSplit: Ω, 𝑢 : U may split to Ω1, 𝑢 : U1 and Ω, 𝑢 : U2 if U ⇝ U1 ⊞U2 holds.

Intuitively, U, U1, and U2 are the same types but with different availabilities: if a component of a

product VS type is available inU, then that component is available inU1 orU2 or neither, but not

both. For example, if 𝑢 :U■
1
×U■

2
appears in Ω, we may have 𝑢 :U■

1
×U□

2
in Ω1 and 𝑢 :U□1 ×U■

2

in Ω2, but we cannot have 𝑢 :U■1 ×U■
2
appear in either Ω1 and Ω2.

The VS type splitting judgmentU ⇝ U1 ⊞U2 is defined in Figure 9. The core mechanism of VS

type splitting is US:Prod, which states a VS typeU■
1
×U■

2
may split intoU■

1
×U□

2
andU□

1
×U■

2
.

Most of the other rules are “search” rules allowing applications of US:Prod in nested VS types. The

other significant VS type splitting rule is US:Subtype, which allows for “weakening” the VS types

resulting from a split (by turning available sides of product VS types to unavailable).

3.2 Graph Types and Type Constructors
There are two kinding judgments to characterize well-formed types: one for graph types, and

another one for type constructors. For graph types, the judgment Δ;Ω;Ψ ⊢ 𝐺 : 𝜅𝐺 states that the

graph type𝐺 has graph kind 𝜅𝐺 (Figure 11). The context Δmaps graph type variables to their kinds,

and is used to check that recursive graph types are well-formed (see DW:RecPi). We show selected

graph type formation rules for space reasons; others are similar and are given in the full version of

the paper [Rinaldi et al. 2024].

For type constructors, the judgment Δ;Ψ; Υ ⊢ 𝑐 :: 𝜅 states that the type constructor 𝑐 is well-

formed and has kind 𝜅 (Figure 12). The context Υ maps type variables to their kinds. Type con-

structors can be ordinary types, which are given the kind Ty (and for which we sometimes use the

metavariable 𝜏). Types may also be parameterized by vertex structures. This allows, for example, a

type of lists of futures which is parameterized by the VS providing the vertices for the futures.
10
The

10
We could use the same type parameter mechanism to allow types to be parameterized by other types, as in the ML type

’a list, but this is orthogonal and we do not consider it in the formalism to streamline the presentation.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:13

(K:Unit)

Δ;Ψ; Υ ⊢ unit :: Ty

(K:Var)

Δ;Ψ; Υ, 𝛼 :: 𝜅 ⊢ 𝛼 :: 𝜅

(K:Fun)

Δ;Ψ, 𝑢𝑓 : U𝑓 , 𝑢𝑡 : U𝑡 ; Υ ⊢ 𝑐1 :: Ty
Δ;Ψ, 𝑢𝑓 : U𝑓 , 𝑢𝑡 : U𝑡 ; Υ ⊢ 𝑐2 :: Ty Δ; ·;Ψ ⊢ 𝐺 : Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .∗

Δ;Ψ; Υ ⊢ Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝑐1
𝐺 [𝑢𝑓 ;𝑢𝑡]
−−−−−−−−→ 𝑐2 :: Ty

(K:Sum)

Δ;Ψ; Υ ⊢ 𝑐1 :: Ty Δ;Ψ; Υ ⊢ 𝑐2 :: Ty
Δ;Ψ; Υ ⊢ 𝑐1 + 𝑐2 :: Ty

(K:Prod)

Δ;Ψ; Υ ⊢ 𝑐1 :: Ty Δ;Ψ; Υ ⊢ 𝑐2 :: Ty
Δ;Ψ; Υ ⊢ 𝑐1 × 𝑐2 :: Ty

(K:Fut)

Δ;Ψ; Υ ⊢ 𝑐 :: Ty ·;Ψ ⊢ 𝑈 : ♦

Δ;Ψ; Υ ⊢ 𝑐 future[𝑈] :: Ty

(K:Rec)

Δ;Ψ, 𝑢 : U; Υ, 𝛼 :: U → Ty ⊢ 𝑐 :: Ty ·;Ψ ⊢ 𝑈 : U
Δ;Ψ; Υ ⊢ 𝜇 (𝛼 ;𝑢 :U .𝑐;𝑈) :: Ty

(K:Lambda)

Δ;Ψ, 𝑢 : U; Υ ⊢ 𝑐 :: Ty
Δ;Ψ; Υ ⊢ 𝜆𝑢 :U .𝑐 :: U → Ty

(K:App)

Δ;Ψ; Υ ⊢ 𝑐 :: U → Ty ·;Ψ ⊢ 𝑈 : U
Δ;Ψ; Υ ⊢ 𝑐 𝑈 :: Ty

Fig. 12. Type constructor kinding rules.

(UE:FstPair)

Ψ ⊢ 𝑈 ≡ (𝑈1,𝑈2) : U■1 ×U𝑎
2

Ψ ⊢ fst𝑈 ≡ 𝑈1 : U1

(UE:SndPair)

Ψ ⊢ 𝑈 ≡ (𝑈1,𝑈2) : U𝑎
1
×U■

2

Ψ ⊢ snd𝑈 ≡ 𝑈2 : U2

Fig. 13. Selected rules for vertex structure equivalence.

kindU → Ty classifies type-level functions that take a VS of typeU and return a type constructor

of kind Ty. Rule K:Lambda describes how to assign the kind U → Ty to such functions.

As mentioned earlier, the motivation behind 𝜆𝐺𝜇
is to allow recursive types containing futures.

We achieve this by parameterizing recursive types by VSs containing the vertices for these futures.

The syntax for a parameterized recursive data type is 𝜇 (𝛼 ;𝑢 :U .𝑐;𝑈), where 𝑢 :U .𝑐 is a type level

VS function (equivalent to 𝜆𝑢 :U .𝑐), 𝛼 is a recursive binding of 𝑢 :U .𝑐 , and 𝑈 is the argument

applied to 𝑢 :U .𝑐 when the recursive type is unrolled. The formation of parameterized recursive

types is performed by K:Rec, in which 𝛼 has kind U → Ty within 𝑐 since it represents a type-level

function that passes a VS argument to the VS argument of the recursive instance (seen in more

detail below). By applying a sub-VS of𝑈 to an instance of 𝛼 in 𝑐 , the type 𝜇 (𝛼 ;𝑢 :U .𝑐 ;𝑈) is able to
recur over𝑈 . (Note that non-parameterized recursive types do not require special syntax because

we can parameterize them in a trivial way by using a dummy VS as the parameter.) We can now

implement the type constructor for a list of integer futures as

𝜆𝑢 ′
:vstream.𝜇 (𝛼 ;𝑢 :vstream.(unit + (int future[fst 𝑢] × 𝛼 (snd 𝑢)));𝑢 ′).

Because VSs can occur in types, type checking 𝜆𝐺𝜇
programs may require performing some type-

level computation, notably when projecting vertices out of a VS. To address this, we introduce two

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:14 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

(CE:Fut)

Δ;Ψ; Υ ⊢ 𝑐 ≡ 𝑐 ′ :: Ty Ψ ⊢ 𝑈 ≡ 𝑈 ′
: ♦

Δ;Ψ; Υ ⊢ 𝑐 future[𝑈] ≡ 𝑐 ′ future[𝑈 ′] :: Ty

(CE:BetaEq)

Δ;Ψ, 𝑢 : U; Υ ⊢ 𝑐 :: Ty ·;Ψ ⊢ 𝑈 : U
Δ;Ψ; Υ ⊢ (𝜆𝑢 :U .𝑐) 𝑈 ≡ 𝑐 [𝑈 /𝑢] :: Ty

Fig. 14. Selected rules for type constructor equivalence.

judgments: an equivalence judgment on VSs, Ψ ⊢ 𝑈 ≡ 𝑈 ′
: U (see Figure 13), and an equivalence

judgment on type constructors, Δ;Ψ; Υ ⊢ 𝑐1 ≡ 𝑐2 :: 𝜅 (see Figure 14). Regarding VSs, the most notable

rules are UE:FstPair and UE:SndPair, which extract (available) components of a pair. For type

constructors, equivalence has two purposes: performing a type-level VS function application, which

is performed by CE:BetaEq; and changing VSs within types to equivalent VSs according to the VS

equivalence rules (CE:Future is given as an example). Other rules are relatively straightforward

and are deferred to the full version of the paper [Rinaldi et al. 2024] for space reasons.

3.3 Graph Type System
Figure 15 presents the type system for 𝜆𝐺𝜇

, which assigns graph types (and types) to expressions.

The judgment Δ;Ω;Ψ; Γ ⊢ 𝑒 : 𝜏 | 𝐺 states that the expression 𝑒 has type 𝜏 and graph type 𝐺 . In

addition to the graph type context Δ and VS contexts Ω and Ψ, this judgment uses the context Γ
which, as usual, maps expression variables to their types.

We give a quick overview of the graph type system: • represents expressions that execute purely
sequentially;𝐺1⊕𝐺2 represents expressions that execute an expression with graph type𝐺1 followed

by an expression with graph type𝐺2;𝐺1∨𝐺2 represents expressions that execute an expression with

graph type𝐺1 or an expression with graph type𝐺2; 𝜇𝛾 .𝐺 is a recursive graph type;𝐺 $𝑈 represents

spawning a future at vertex 𝑈 that executes an expression with graph type 𝐺 in parallel; and

𝑈 % represents touching the future at vertex𝑈 . A parameterized graph type Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝐺
accepts two VSs as arguments (𝑢𝑓 has VS typeU𝑓 and is added to Ω and Ψ while 𝑢𝑡 has VS type

U𝑡 and is only added to Ψ). Such graph type functions are applied with the syntax𝐺 [𝑈 ;𝑈]. Finally,
new 𝑢 :U .𝐺 binds a new VS variable of VS typeU and represents expressions that do the same.

Rule S:Fun types function expressions fun[𝑢𝑓 ;𝑢𝑡] 𝑓 𝑥 = 𝑒 where 𝑓 is the name of the function,

𝑥 is an expression parameter, 𝑢𝑓 and 𝑢𝑡 are two VS parameters, and 𝑒 is the body of the function.

Excluding bindings of new VS variables within 𝑒 , the only VS variable that can be used for spawning

futures in 𝑒 is 𝑢𝑓 , while future touches can use any VS variable within the context (including 𝑢𝑓

and 𝑢𝑡), hence the function having two VS parameters. The type of functions is

Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝜏1
(𝜇𝛾 .Π [𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝐺) [𝑢𝑓 ;𝑢𝑡]−−−−−−−−−−−−−−−−−−−−−−−−→ 𝜏2

where 𝜏1 is the type of the parameter 𝑥 , 𝜏2 is the type of the function body, 𝐺 is the graph type

of the function body, and (𝜇𝛾 .Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝐺) [𝑢𝑓 ;𝑢𝑡] is the graph type representing graphs

produced by applying the function. The function type is parameterized by the VS parameters 𝑢𝑓

and 𝑢𝑡 (the same ones from the function expression), which have VS typesU𝑓 andU𝑡 respectively.

The graph type (𝜇𝛾 .Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝐺) [𝑢𝑓 ;𝑢𝑡] contains a recursive binding to a graph type

function whose body is 𝐺 (note that this function binds a new, separate 𝑢𝑓 and 𝑢𝑡 within 𝐺), and

this recursive binding is applied to the 𝑢𝑓 and 𝑢𝑡 bound within the type. This allows 𝐺 to pass

different VS arguments to recursive instances of itself (this is useful, for example, when recursive

instances access deeper levels of a vertex stream). In addition to adding the function expression’s

parameters to the context when typing the function body, we add 𝑓 , the recursive binding of the

function; and 𝛾 , the recursive binding of the graph type function whose body is 𝐺 .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:15

(S:Var)

Δ;Ω;Ψ; Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏 | •

(S:Unit)

Δ;Ω;Ψ; Γ ⊢ ⟨⟩ : unit | •

(S:Fun)

Δ′ = Δ, 𝛾 : Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .∗ Γ′ = Γ, 𝑓 : Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝜏1
𝛾 [𝑢𝑓 ;𝑢𝑡]
−−−−−−−→ 𝜏2, 𝑥 : 𝜏1 𝛾 fresh

Ψ′ = Ψ, 𝑢𝑓 : U𝑓 , 𝑢𝑡 : U𝑡 Δ′
;𝑢𝑓 : U𝑓 ;Ψ

′
; Γ′ ⊢ 𝑒 : 𝜏2 | 𝐺 Δ;Ψ′

; · ⊢ 𝜏1 :: Ty Δ;Ψ′
; · ⊢ 𝜏2 :: Ty

Δ;Ω;Ψ; Γ ⊢ fun[𝑢𝑓 ;𝑢𝑡] 𝑓 𝑥 = 𝑒 : Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝜏1
(𝜇𝛾 .Π [𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝐺) [𝑢𝑓 ;𝑢𝑡]
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝜏2 | •

(S:App)

Ω⇝ Ω1 ⊞ Ω
′ Ω′⇝ Ω2 ⊞ Ω3 Δ;Ω1;Ψ; Γ ⊢ 𝑒1 : Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝜏1

𝐺3 [𝑢𝑓 ;𝑢𝑡]
−−−−−−−−→ 𝜏2 | 𝐺1

Δ;Ω2;Ψ; Γ ⊢ 𝑒2 : 𝜏1 [𝑈𝑓 /𝑢𝑓] [𝑈𝑡/𝑢𝑡] | 𝐺2 Ω3; · ⊢ 𝑈𝑓 : U𝑓 ·;Ψ ⊢ 𝑈𝑓 : U𝑓 ·;Ψ ⊢ 𝑈𝑡 : U𝑡

Δ;Ω;Ψ; Γ ⊢ 𝑒1 [𝑈𝑓 ;𝑈𝑡] 𝑒2 : 𝜏2 [𝑈𝑓 /𝑢𝑓] [𝑈𝑡/𝑢𝑡] | 𝐺1 ⊕ 𝐺2 ⊕ 𝐺3 [𝑈𝑓 ;𝑈𝑡]

(S:Pair)

Ω⇝ Ω1 ⊞ Ω2 Δ;Ω1;Ψ; Γ ⊢ 𝑒1 : 𝜏1 | 𝐺1 Δ;Ω2;Ψ; Γ ⊢ 𝑒2 : 𝜏2 | 𝐺2

Δ;Ω;Ψ; Γ ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2 | 𝐺1 ⊕ 𝐺2

(S:Fst)

Δ;Ω;Ψ; Γ ⊢ 𝑒 : 𝜏1 × 𝜏2 | 𝐺
Δ;Ω;Ψ; Γ ⊢ fst 𝑒 : 𝜏1 | 𝐺

(S:Snd)

Δ;Ω;Ψ; Γ ⊢ 𝑒 : 𝜏1 × 𝜏2 | 𝐺
Δ;Ω;Ψ; Γ ⊢ snd 𝑒 : 𝜏2 | 𝐺

(S:InL)

Δ;Ω;Ψ; Γ ⊢ 𝑒 : 𝜏1 | 𝐺
Δ;Ψ; · ⊢ 𝜏2 :: Ty

Δ;Ω;Ψ; Γ ⊢ inl 𝑒 : 𝜏1 + 𝜏2 | 𝐺

(S:InR)

Δ;Ω;Ψ; Γ ⊢ 𝑒 : 𝜏2 | 𝐺
Δ;Ψ; · ⊢ 𝜏1 :: Ty

Δ;Ω;Ψ; Γ ⊢ inr 𝑒 : 𝜏1 + 𝜏2 | 𝐺

(S:Case)

Ω⇝ Ω1 ⊞ Ω2

Δ;Ω1;Ψ; Γ ⊢ 𝑒1 : 𝜏1 + 𝜏2 | 𝐺1 Δ;Ω2;Ψ; Γ, 𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏 ′ | 𝐺2 Δ;Ω2;Ψ; Γ, 𝑦 : 𝜏2 ⊢ 𝑒3 : 𝜏 ′ | 𝐺3

Δ;Ω;Ψ; Γ ⊢ case 𝑒1 {𝑥 .𝑒2;𝑦.𝑒3} : 𝜏 ′ | 𝐺1 ⊕ (𝐺2 ∨𝐺3)

(S:Roll)

Δ;Ω;Ψ; Γ ⊢ 𝑒 : 𝜏 [𝑈 /𝑢] [𝜆𝑢 ′ :U .𝜇 (𝛼 ;𝑢 :U .𝜏 ;𝑢 ′)/𝛼] | 𝐺 Δ;Ψ; · ⊢ 𝜇 (𝛼 ;𝑢 :U .𝜏 ;𝑈) :: Ty
Δ;Ω;Ψ; Γ ⊢ roll 𝑒 : 𝜇 (𝛼 ;𝑢 :U .𝜏 ;𝑈) | 𝐺

(S:Unroll)

Δ;Ω;Ψ; Γ ⊢ 𝑒 : 𝜇 (𝛼 ;𝑢 :U .𝜏 ;𝑈) | 𝐺
Δ;Ω;Ψ; Γ ⊢ unroll 𝑒 : 𝜏 [𝑈 /𝑢] [𝜆𝑢 ′ :U .𝜇 (𝛼 ;𝑢 :U .𝜏 ;𝑢 ′)/𝛼] | 𝐺

(S:Future)

Ω⇝ Ω1 ⊞ Ω2

Δ;Ω1;Ψ; Γ ⊢ 𝑒 : 𝜏 | 𝐺 Ω2; · ⊢ 𝑈 : ♦ ·;Ψ ⊢ 𝑈 : ♦

Δ;Ω;Ψ; Γ ⊢ future[𝑈] 𝑒 : 𝜏 future[𝑈] | 𝐺 $𝑈

(S:Touch)

Δ;Ω;Ψ; Γ ⊢ 𝑒 : 𝜏 future[𝑈] | 𝐺

Δ;Ω;Ψ; Γ ⊢ touch 𝑒 : 𝜏 | 𝐺 ⊕ 𝑈 %

(S:New)

Δ;Ω, 𝑢 : U;Ψ, 𝑢 : U; Γ ⊢ 𝑒 : 𝜏 | 𝐺 Δ;Ψ; · ⊢ 𝜏 :: Ty

Δ;Ω;Ψ; Γ ⊢ new 𝑢 :U .𝑒 : 𝜏 | new 𝑢 :U .𝐺

(S:Type-Eq)

Δ;Ψ; · ⊢ 𝜏1 ≡ 𝜏2 :: Ty Δ;Ω;Ψ; Γ ⊢ 𝑒 : 𝜏1 | 𝐺
Δ;Ω;Ψ; Γ ⊢ 𝑒 : 𝜏2 | 𝐺

Fig. 15. Graph type system for 𝜆𝐺𝜇 .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:16 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

(UV:Var)

𝑢 ⇓ 𝑢

(UV:Path)

gen(®𝑢) ⇓ gen(®𝑢)

(UV:Pair)

𝑈1 ⇓ 𝑈 ′
1

𝑈2 ⇓ 𝑈 ′
2

(𝑈1,𝑈2) ⇓ (𝑈 ′
1
,𝑈 ′

2
)

(UV:FstPair)

𝑈 ⇓ (𝑈1,𝑈2)
fst𝑈 ⇓ 𝑈1

(UV:FstNotPair)

𝑈 ⇓ 𝑈 ′ 𝑈 ′ ≠ (𝑈1,𝑈2)
fst𝑈 ⇓ fst𝑈 ′

Fig. 16. Selected rules for vertex structure normalization.

Rule S:Type-Eq ensures that typing respects type constructor equivalence. Rules S:Roll and

S:Unroll roll and unroll parameterized recursive data types: 𝜇 (𝛼 ;𝑢 :U .𝜏 ;𝑈) unrolls to 𝜏 [𝑈 /𝑢] [𝜆𝑢 ′
:

U .𝜇 (𝛼 ;𝑢 : U .𝜏 ;𝑢 ′)/𝛼] by applying 𝑈 to 𝑢 : U .𝜏 (hence 𝜏 [𝑈 /𝑢]) and then substituting itself re-

cursively. Instead of replacing the 𝛼 with an instance of the recursive type, we replace it with a

type-level VS function that passes its argument to the recursive type.

4 SOUNDNESS
The goal of this section is to prove the soundness of the graph type system for 𝜆𝐺𝜇

; that is, that the

computation graph of a program is described by its graph type. In order to prove this theorem, we

must first formalize 1) the notion of a computation graph being “described by” a graph type and

2) the operational semantics by which a program evaluates to produce a computation graph. The

first notion is one of normalization [Muller 2022], a process for constructing the set of computation

graphs corresponding to a given graph type. The second is a cost semantics, which we present as a

big-step semantics that evaluates an expression to a value and a computation graph.

The rest of this section is structured as follows. In Section 4.1, we discuss how we represent the

creation of new vertices (which occurs during both normalization, as new bindings are normalized,

and during evaluation, as they are evaluated). We then formalize normalization (Section 4.2), and

finally present the cost semantics and prove soundness (Section 4.3).

4.1 Generation of Runtime Vertex Names
Recall that the constructs new 𝑢 :U .𝐺 in graph types and new 𝑢 :U .𝑒 in expressions bind “fresh”

vertex structure (VS) variables to be used in the graph type and the expression, respectively. Because

VSs can be infinite and of arbitrary type, some care must be taken in how to represent them at

“runtime”, i.e., in normalization and the cost semantics. The key insight is that VSs are (possibly

infinite) trees with unique vertices at each leaf. It is thus possible to uniquely identify a vertex

by the VS it comes from, and the path taken to reach it from the root of the VS. Paths in a vertex

structure𝑈 are already represented in our syntax as sequences of projections, e.g., fst snd𝑈 , so

most of the new conceptual work is in representing the roots of the vertex structures.

We use the syntax ®𝑢 and variants to represent a unique vertex name, called a generator, which
serves as the root of a VS gen(®𝑢). Generators are included in the contexts Ω and Ψ like VS variables,

but are meaningful runtime symbols representing unique VSs. We will use the notation Ω◦
and Ψ◦

to refer to contexts that contain only generators, and no variables. These are the only contexts that

will exist at runtime for typing top-level terms and graph types, as such terms and graph types

contain no free variables. We refer to these terms and graph types as closed even though they may

contain free vertex names in the form of generators. The judgments for VS typing and Ω context

splitting are extended with rules for generators that resemble the rules for variables.

Equipped with a way to represent the roots of new vertex structures, we turn our attention again

to paths from the root to a vertex. Currently, the same path can be represented in multiple ways,

for example Ψ ⊢ fst (fst 𝑈 , snd 𝑈) ≡ fst 𝑈 : U. It will be useful to have a normal form for paths,

so we introduce a normalization operation on VSs with the judgment𝑈 ⇓ 𝑈 , defined in Figure 16

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:17

VSs 𝑈 ::= . . . | VP
Vertex Path VP ::= gen(®𝑢) | fst VP | snd VP
Expressions 𝑒 ::= . . . | 𝑣
Values 𝑣 ::= ⟨⟩ | fun[𝑢;𝑢] 𝑓 𝑥 = 𝑒 | (𝑣, 𝑣) | inl 𝑣 | inr 𝑣 | roll 𝑣 | handle[VP] 𝑣

Fig. 17. Extended syntax for generators, vertex paths, and values

(S:Handle)

Δ; ·;Ψ; Γ ⊢ 𝑣 : 𝜏 | • ·;Ψ ⊢ VP : ♦

Δ;Ω;Ψ; Γ ⊢ handle[VP] 𝑣 : 𝜏 future[VP] | •

Fig. 18. Rule for typing handles.

(UR:Seq1)

𝐺1 ↩→ 𝐺 ′
1

𝐺1 ⊕ 𝐺2 ↩→ 𝐺 ′
1
⊕ 𝐺2

(UR:Seq2)

𝐺2 ↩→ 𝐺 ′
2

𝐺1 ⊕ 𝐺2 ↩→ 𝐺1 ⊕ 𝐺 ′
2

(UR:Rec)

𝜇𝛾 .𝐺 ↩→ 𝐺 [𝜇𝛾 .𝐺/𝛾]

Fig. 19. Selected rules for graph type unrolling.

NBNF(•) ≜ •
NBNF(𝐺1 ⊕ 𝐺2) ≜ NBNF(𝐺1) ⊕ NBNF(𝐺2)
NBNF(𝐺1 ∨𝐺2) ≜ NBNF(𝐺1) ∨ NBNF(𝐺2)

NBNF(𝜇𝛾 .𝐺) ≜ 𝜇𝛾 .𝐺

NBNF(𝐺 $𝑈) ≜ NBNF(𝐺)$𝑈 ′ 𝑈 ⇓ 𝑈 ′

NBNF(𝑈 %) ≜
𝑈 ′

% 𝑈 ⇓ 𝑈 ′

NBNF(new 𝑢 :U .𝐺) ≜ NBNF(𝐺 [gen(®𝑢)/𝑢]) ®𝑢 fresh
NBNF(Π[𝑢𝑓 : U𝑓 ;𝑢𝑡 : U𝑡] .𝐺) ≜ Π[𝑢𝑓 : U𝑓 ;𝑢𝑡 : U𝑡] .𝐺

NBNF(𝐺 [𝑈𝑓 ;𝑈𝑡]) ≜ NBNF(𝐺 ′[𝑈𝑓 ,𝑈𝑡/𝑢𝑓 , 𝑢𝑡]) NBNF(𝐺) = Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝐺 ′

NBNF(𝐺 [𝑈𝑓 ;𝑈𝑡]) ≜ 𝐺 [𝑈𝑓 ;𝑈𝑡] o.w.

Fig. 20. New-𝛽 normal form.

(rules symmetric to these are omitted). Intuitively, the operation 𝛽-reduces any projections of pairs

(but leaves alone projections of vertex structures that are not syntactically pairs, e.g. fst gen(®𝑢)).
We use the term vertex paths, and the notation VP , to refer to closed, normal VSs. Figure 17

extends the syntax for VSs with generators and gives the syntax for vertex paths. We now have a

way of producing references to unique vertices: generators give rise to unique, non-intersecting

VSs, and unique vertex paths in a given VS refer to unique vertices. When evaluating a new binding,

we will simply create a fresh generator. The remainder of the vertices in the VS are then created

implicitly, and will be accessed by the program as it traverses the VS.

4.2 Normalization
Figures 19–21 present the machinery for normalization. Because a recursive graph type represents

an infinite set of graphs (as it can be unrolled any number of times), we stage the construction

of these sets so that every set constructed is finite. Constructing a set of graphs consists of three

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:18 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

Exp(•) ≜ {•}
Exp(𝐺1 ⊕ 𝐺2) ≜ {𝑔′

1
⊕ 𝑔′

2
| 𝑔′

1
∈ Exp(𝐺1), 𝑔′2 ∈ Exp(𝐺2)}

Exp(𝐺1 ∨𝐺2) ≜ Exp(𝐺1) ∪ Exp(𝐺2)
Exp(𝜇𝛾 .𝐺) ≜ ∅

Exp(𝐺 [𝑈𝑓 ;𝑈𝑡]) ≜ ∅
Exp(𝐺 $𝑈) ≜ {𝑔′$𝑈 | 𝑔′ ∈ Exp(𝐺)}
Exp(𝑈 %) ≜ {𝑈 %}

Fig. 21. Graph type expansion.

operations, each of which performs some of the required tasks. First, recursive graph types are

unrolled a desired number of times, yielding another graph type that is equivalent up to unrollings

of recursive 𝜇 bindings. Next, the graph type is reduced to “New-𝛽 normal form” (NBNF), which

“evaluates” any exposed “new” bindings by generating and substituting fresh vertex structures.

This process also performs any applicable 𝛽 reductions on exposed applications. At this point, we

are left with a valid graph type, but one with no exposed “new” bindings or applications. Finally,

the resulting graph type is expanded into the set of graphs; because there are no exposed “new”

bindings, this process does not involve generating any new vertex names or structures. We will

now discuss each of these steps in more detail.

Figure 19 gives a small-step semantics for unrolling recursive bindings in graph types. The bulk

of the work is done by rule UR:Rec, which steps a binding 𝜇𝛾 .𝐺 to𝐺 [𝜇𝛾 .𝐺/𝛾]. The remaining rules

“search” the graph type for recursive bindings, so we defer most of these rules to the full version

of the paper [Rinaldi et al. 2024]. Note that, unlike in a standard left-to-right (or right-to-left)

operational semantics, the rules UR:Seq1 and UR:Seq2 allow any instance of recursion in the type

to be unrolled at any time in a nondeterministic fashion. For example, both steps below are valid:

(𝜇𝛾 .𝛾 ⊕ 𝛾) ⊕ (𝜇𝛾 .𝛾 ∨ 𝛾) ↩→ ((𝜇𝛾 .𝛾 ⊕ 𝛾) ⊕ (𝜇𝛾 .𝛾 ⊕ 𝛾)) ⊕ (𝜇𝛾 .𝛾 ∨ 𝛾)
(𝜇𝛾 .𝛾 ⊕ 𝛾) ⊕ (𝜇𝛾 .𝛾 ∨ 𝛾) ↩→ (𝜇𝛾 .𝛾 ⊕ 𝛾) ⊕ ((𝜇𝛾 .𝛾 ∨ 𝛾) ⊕ (𝜇𝛾 .𝛾 ∨ 𝛾))

The rules for reducing to NBNF, given in Figure 20, eliminate “new” bindings by substituting

fresh vertex structure generators, and perform any exposed applications. Evaluation proceeds

recursively through sequential compositions and alternatives, but not under binders. As a result,

closed sub-graph-types of NBNF graph types are themselves NBNF.

Finally, Figure 21 gives the rules for expanding a graph type into the set of graphs it represents.

We represent a graph 𝑔 formally as a 4-tuple (𝑉 , 𝐸, 𝑠, 𝑡) containing the sets of vertices𝑉 and edges 𝐸,

as well as a designated “start” vertex 𝑠 and “end” vertex 𝑡 . We use shorthands for combining

graphs sequentially and in parallel; these shorthands use many of the same operators as graph type

composition, but should not be confused. Figure 22 gives formal definitions for these shorthands;

for more description of them, the reader is referred to prior work [Muller 2022]. In brief, sequential

composition ⊕ joins the end vertex of the first graph to the start vertex of the second graph. The

“left composition” operator [Spoonhower 2009], written 𝑔$𝑢 , adds a subgraph 𝑔 corresponding to a

future to the graph, with an edge representing the spawn. It also adds the vertex 𝑢 as the sink of

the future’s graph. The “touch” operator
𝑢 % adds an edge from 𝑢.

Sequential compositions are expanded by expanding both subgraphs, and then sequentially

composing the resulting graphs. Alternation simply takes the union of the two sets of graphs.

Expansion does not perform any additional unrolling, so the expansion of a recursive graph type

is the empty set of graphs. Expansion of the future 𝐺 $𝑈 is performed by left-composing all of

the resulting graphs with the vertex 𝑈 , and touches
𝑈 % simply expand to the singleton graph

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:19

• ≜ ({𝑢}, ∅, 𝑢,𝑢) 𝑢 fresh
(𝑉1, 𝐸1, 𝑠1, 𝑡1) ⊕ (𝑉2, 𝐸2, 𝑠2, 𝑡2) ≜ (𝑉1 ∪𝑉2, 𝐸1 ∪ 𝐸2 ∪ {(𝑡1, 𝑠2)}, 𝑠1, 𝑡2) 𝑉1 ∩𝑉2 = ∅
(𝑉 , 𝐸, 𝑠, 𝑡)$𝑢 ≜ (𝑉 ∪ {𝑢,𝑢 ′}, 𝐸 ∪ {(𝑢 ′, 𝑠), (𝑡,𝑢)}, 𝑢 ′, 𝑢 ′) 𝑢 ′ fresh, 𝑢 ∉ 𝑉
𝑢 % ≜ ({𝑢 ′}, {(𝑢,𝑢 ′)}, 𝑢 ′, 𝑢 ′) 𝑢 ′ fresh

Fig. 22. Shorthands for combining graphs.

(C:Value)

𝑣 ⇓ 𝑣 | •

(C:App)

𝑒1 ⇓ fun[𝑢𝑓 ;𝑢𝑡] 𝑓 𝑥 = 𝑒 | 𝑔1 𝑒2 ⇓ 𝑣 ′ | 𝑔2
𝑒 [fun[𝑢𝑓 ;𝑢𝑡] 𝑓 𝑥 = 𝑒/𝑓] [𝑈𝑓 /𝑢𝑓] [𝑈𝑡/𝑢𝑡] [𝑣 ′/𝑥] ⇓ 𝑣 | 𝑔3

𝑒1 [𝑈𝑓 ;𝑈𝑡] 𝑒2 ⇓ 𝑣 | 𝑔1 ⊕ 𝑔2 ⊕ 𝑔3

(C:Pair)

𝑒1 ⇓ 𝑣1 | 𝑔1 𝑒2 ⇓ 𝑣2 | 𝑔2
(𝑒1, 𝑒2) ⇓ (𝑣1, 𝑣2) | 𝑔1 ⊕ 𝑔2

(C:Fst)

𝑒 ⇓ (𝑣1, 𝑣2) | 𝑔
fst 𝑒 ⇓ 𝑣1 | 𝑔

(C:InL)

𝑒 ⇓ 𝑣 | 𝑔
inl 𝑒 ⇓ inl 𝑣 | 𝑔

(C:CaseL)

𝑒 ⇓ inl 𝑣 | 𝑔1 𝑒1 [𝑣/𝑥] ⇓ 𝑣 ′ | 𝑔2
case 𝑒 {𝑥 .𝑒1;𝑦.𝑒2} ⇓ 𝑣 ′ | 𝑔1 ⊕ 𝑔2

(C:Roll)

𝑒 ⇓ 𝑣 | 𝑔
roll 𝑒 ⇓ roll 𝑣 | 𝑔

(C:Unroll)

𝑒 ⇓ roll 𝑣 | 𝑔
unroll 𝑒 ⇓ 𝑣 | 𝑔

(C:Future)

𝑒 ⇓ 𝑣 | 𝑔 𝑈 ⇓ VP

future[𝑈] 𝑒 ⇓ handle[VP] 𝑣 | 𝑔$VP

(C:Touch)

𝑒 ⇓ handle[VP] 𝑣 | 𝑔

touch 𝑒 ⇓ 𝑣 | 𝑔 ⊕ VP %

(C:New)

®𝑢 fresh
𝑒 [gen(®𝑢)/𝑢] ⇓ 𝑣 | 𝑔
new 𝑢 :U .𝑒 ⇓ 𝑣 | 𝑔

Fig. 23. Cost Semantics for 𝜆𝐺𝜇 (selected). Rules symmetric to these are omitted.

consisting of the touch. Note that because NBNF has already expanded all “new” bindings, there is

no rule for expanding these, and expansion does not generate new vertex names. The latter is a

key property in guaranteeing that expansion results in well-formed graphs.

These three operations combine to form a normalization process that is correct: any set of graphs

that results from unrolling, normalizing, and expanding a well-formed graph type is well-formed.

This result is formalized by Theorem 1, which is proven in the full version of the paper alongside

several necessary technical lemmas.

Theorem 1. If ·;Ω;Ψ ⊢ 𝐺 : 𝜅𝐺 and 𝐺 ↩→∗ 𝐺 ′, then NBNF(𝐺 ′) exists and if 𝑔 ∈ Exp(NBNF(𝐺 ′)),
then 𝑔 is a well-formed graph.

4.3 Cost Semantics and Soundness
We equip 𝜆𝐺𝜇

with a cost semantics, a big-step operational semantics that evaluates an expression

and also produces the computation graph that represents the execution. The judgment is 𝑒 ⇓ 𝑣 | 𝑔,
meaning that expression 𝑒 evaluates to value 𝑣 , producing the cost graph 𝑔. The rules for this

judgment are in Figure 23, and the syntax for values are in Figure 17. In C:Future, the body of the

future is evaluated (in a real execution, the body of the future will be evaluated in parallel, but the

big-step cost semantics deliberately abstracts away evaluation order) and the future evaluates to a

handle, a new syntactic form which records the result of the future. In addition, we evaluate the

vertex structure𝑈 used to spawn the future to a vertex path VP , which is recorded by the handle.

The C:Touch rule extracts both the vertex path and future result from the handle. In C:New, a new

generator ®𝑢 is created and used to generate a vertex structure which instantiates the variable 𝑢.

The soundness theorem for the graph type system of 𝜆𝐺𝜇
is that if a program 𝑒 has a graph

type 𝐺 and evaluates to produce a graph 𝑔, then 𝑔 is described by 𝐺 (that is, 𝑔 should be in the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:20 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

set of graphs obtained by normalizing 𝐺 using the machinery in the previous subsection). This

is stated formally as Theorem 2. The formal statement of the theorem also includes a context Ψ◦

containing generators created during execution which may be captured in the result value 𝑣 .

Theorem 2. If ·;Ω;Ψ; · ⊢ 𝑒 : 𝜏 | 𝐺 and 𝑒 ⇓ 𝑣 | 𝑔, then there exists a Ψ◦ such that ®𝑢 ∈ Ψ◦ implies
®𝑢 fresh and ·; ·;Ψ,Ψ◦

; · ⊢ 𝑣 : 𝜏 | • and there exists a 𝐺 ′ such that 𝐺 ↩→∗ 𝐺 ′ and 𝑔 ∈ Exp(NBNF(𝐺 ′)).

The proof of the theorem, as well as statements and proofs of several necessary technical lemmas,

appears in the full version of the paper [Rinaldi et al. 2024]. These lemmas include:

• A number of substitution results for expressions, types, vertex structures, etc.

• If Δ;Ω;Ψ; Γ ⊢ 𝑒 : 𝜏 | 𝐺 then Δ;Ψ; · ⊢ 𝜏 :: Ty and Δ;Ω;Ψ ⊢ 𝐺 : ∗ (assuming Γ contains only

well-kinded types).

• A “framing” property that allows us to repeatedly unroll a sub-graph type while keeping the

rest of the graph type the same, for example, if 𝐺1 ↩→∗ 𝐺 ′
1
then 𝐺1 ⊕ 𝐺2 ↩→∗ 𝐺 ′

1
⊕ 𝐺2.

5 ELABORATION OF RECURSIVE TYPES WITH VERTEX STRUCTURES
Thus far, we have presented the annotated language 𝜆𝐺𝜇

containing recursive data types 𝜇 (𝛼 ;𝑢 :
U .𝑐 ;VP), annotated with a vertex path VP of typeU that provides vertex names for data structures

of the recursive type. We have motivated that VP should have a structure that in some sense “maps

on” to the recursive structure of the list so that any futures in the structure have a corresponding

vertex name. As examples, a list data type corresponds to an infinite stream of vertices, and a

binary tree data type corresponds to an infinite binary tree of vertices. As discussed, the annotated

language is provided merely as a core calculus for expressing the ideas of the graph type system;

the annotations can be inferred from unannotated code by our implementation.

Other than the addition of vertex structures, the general structure of the algorithm for inferring

these annotations is similar to that of GML [Muller 2022], and the details of the algorithm are

largely outside the scope of this paper. However, one important and non-obvious fact for inferring

annotations for 𝜆𝐺𝜇
is that it is indeed possible to annotate any recursive data structure with a

corresponding vertex path. Showing this fact is the goal of this section. We do so by defining a set of

rules for annotating unannotated types and values with vertex structure annotations. For simplicity,

the system we present in this section is declarative and not algorithmic, so it still abstracts away

many of the complexities of our inference algorithm, but we show that the rules are complete and

thus that any recursive type may be so annotated.

We first define a syntax for unannotated types 𝜎 and unannotated values 𝜖 .

𝜎 ::= 𝛼 | unit | Π[𝑢𝑡 :U𝑡 ;𝑢𝑓 :U𝑓] .𝑐1 −→ 𝑐2 | 𝜎 × 𝜎 | 𝜎 + 𝜎 | 𝜎 future | 𝜇𝛼.𝜎
𝜖 ::= ⟨⟩ | fun[𝑢;𝑢] 𝑓 𝑥 = 𝑒 | (𝜖, 𝜖) | inl 𝜖 | inr 𝜖 | roll 𝜖 | handle 𝜖

Unannotated types consist of the unit type, functions, products, and sums, as well as an unannotated

future type and an unannotated recursive type. Note that the annotation of functions is orthogonal

to the annotation of recursive data types; we assume that function types and function values have

already been annotated and include annotated function types and annotated function values as

unannotated types and unannotated values, respectively. The unannotated future type 𝜎 future
is similar to the annotated future type 𝑐 future[𝑈] but is not annotated with a VS. Similarly, the

unannotated recursive type 𝜇𝛼.𝜎 binds a type variable but does not bind a VS variable and does

not take a VS as an argument. Because unannotated types do not interact with vertex structures,

there is no type-level lambda and all unannotated types have kind Ty (and so we do not distinguish

between “unannotated types” and “unannotated type constructors”). Unannotated values differ

from values 𝑣 only in that future handles are not annotated with vertex paths.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:21

Figure 24 defines the judgment Υ ⊢𝑈 𝜎 { 𝑐;U. This indicates that 𝜎 may be annotated to the

type constructor 𝑐 (which will, by construction, have kind Ty). It also returns a vertex structure

typeU that “corresponds” to the type 𝜎 . For recursive types 𝜇𝛼.𝜎 , the VS typeU is the type of the

VS annotation for the recursive type (that is, 𝜇𝛼.𝜎 will be annotated to be 𝜇 (𝛼 ;𝑢 :U .𝑐 ;𝑈) for some 𝑐

and some𝑈). As an example, if 𝜎 is the type of int future lists, thenU will be (equivalent to) the type

of vertex streams, 𝜈𝑡 .♦■ × 𝑡■. The judgment takes a type variable context Υ mapping type variables

to kinds (these will be annotated types and so their kinds will not be Ty). It is also parameterized

by a vertex structure 𝑈 to use for annotations. When annotating a closed unannotated type 𝜎 , this

parameter will simply be instantiated with a fresh vertex path gen(®𝑢) to derive · ⊢gen(®𝑢) 𝜎 { 𝜏 ;U.

The returned type 𝜏 would be annotated with projections of gen(®𝑢). The returned VS typeU would

be the type that ®𝑢 should be assigned in order for 𝜏 to be well-kinded.

Rule F:TyVar looks up the type variable 𝛼 in the context. By construction, its kind will be of the

formU → Ty, indicating that to properly annotate the use of the variable 𝛼 , it must be applied to a

VS of typeU. We use the VS𝑈 for the annotation and return the typeU as the required type of𝑈 .

The unit and function types do not require additional annotations, and so are simply returned.
11

Rule F:Prod takes a VS𝑈 and annotates the first component 𝜎1 with the left projection of𝑈 and

the second component 𝜎2 with the right projection. The type required for 𝑈 is thus the product

of the two returned types. Rule F:Sum, somewhat counterintuitively, also returns a product of the

two VS types. This is because if a data structure can take one of two forms, the corresponding

VS must offer either possibility.
12
Rule F:Fut takes 𝑈 to be a product whose second component is

a single vertex, which it uses to annotate the future; the first component is used to annotate the

future’s return type. Finally, rule F:Rec annotates a recursive type 𝜇𝛼.𝜎 . It begins by adding 𝛼 to

the context with kind 𝜈𝑡 .U → Ty (this is the only truly non-algorithmic feature of these rules; we

do not discuss how to construct U). With this context, it annotates 𝜎 . The resulting VS type is

rolled back into the corecursive type 𝜈𝑡 .U, which is the type required for𝑈 .

Example. We can represent the type of a list of integer futures as an unannotated type 𝜎 :

𝜎 = 𝜇𝛼.unit + (int future × 𝛼)
Using the rules of Figure 24, we can infer the following annotation for 𝜎 :

· ⊢𝑈 𝜎 { 𝜇 (𝛼 ;𝑢 :U .unit + (int future[fst snd 𝑢] × 𝛼 (snd snd 𝑢));𝑈);U
whereU = 𝜈𝑡 .♦■ × (♦■ × 𝑡■)■.

The VS corresponding to 𝜎 is a stream of vertices (note that because we treat VS types equi-

corecursively, the VS type above is equivalent to 𝜈𝑡 .♦■ × 𝑡■ but unrolled slightly). In the body of the

recursive annotated type, which is unit + (int future[fst snd 𝑢] × 𝛼 (snd snd 𝑢)), the first vertex of
the stream is discarded (this is an effect of mapping the type unit to the VS type ♦ even though it

does not need a vertex), the second vertex of the stream (the first vertex of the tail) is used for the

future and the remainder (the tail of the tail) is passed to the recursive instance of the type.

The judgment described above declaratively shows a correspondence between unannotated

types and the vertex structure types required to annotate them. Later in this section, we show that

this relation is complete with respect to well-kinded unannotated types, and thus that any type has

a corresponding VS type. We next wish to show that a VS of the returned VS type actually does

suffice to provide all necessary vertices for a data structure of the given type. We do this using

11
The returned VS type is ♦, which will result in the addition of unnecessary vertices to the final VS; it would be straightfor-

ward to add a multiplicative unit to VS types, which would be the most appropriate VS type to return here, but we have not

done so this far to keep the VS type language as simple as possible.

12
As an optimization, we could take a “maximum” over the two VS types. For example, in a 2-3 tree, where each node may

have two or three children, the corresponding VS could always offer three branches and a 2-node would use the first two.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:22 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

(F:TyVar)

Υ, 𝛼 :: U → Ty ⊢𝑈 𝛼 { 𝛼 𝑈 ;U

(F:Unit)

Υ ⊢𝑈 unit { unit; ♦

(F:Fun)

Υ ⊢𝑈 Π[𝑢𝑓 :U𝑓 ;𝑢𝑡 :U𝑡] .𝑐1
𝐺−→ 𝑐2 { Π[𝑢𝑓 :U𝑓 :𝑢𝑡U𝑡 ; 𝑐1

𝐺−→ 𝑐2] .; ♦

(F:Prod)

Υ ⊢fst 𝑈 𝜎1 { 𝑐1;U1 Υ ⊢snd 𝑈 𝜎2 { 𝑐2;U2

Υ ⊢𝑈 𝜎1 × 𝜎2 { 𝑐1 × 𝑐2;U■1 ×U■
2

(F:Sum)

Υ ⊢fst 𝑈 𝜎1 { 𝑐1;U1 Υ ⊢snd 𝑈 𝜎2 { 𝑐2;U2

Υ ⊢𝑈 𝜎1 + 𝜎2 { 𝑐1 + 𝑐2;U■1 ×U■
2

(F:Fut)

Υ ⊢fst 𝑈 𝜎 { 𝑐;U
Υ ⊢𝑈 𝜎 future { 𝑐 future[snd𝑈];U■ × ♦■

(F:Rec)

Υ, 𝛼 :: 𝜈𝑡 .U → Ty ⊢𝑢 𝜎 { 𝑐;U[𝜈𝑡 .U/𝑡]
Υ ⊢𝑈 𝜇𝛼.𝜎 { 𝜇 (𝛼 ;𝑢 : 𝜈𝑡 .U .𝑐;𝑈);𝜈𝑡 .U

Fig. 24. Annotating types with vertex structures.

(FE:Unit)

⊢VP ⟨⟩ { ⟨⟩

(FE:Fun)

⊢VP fun[𝑢𝑓 ;𝑢𝑡] 𝑓 𝑥 = 𝑒 { fun[𝑢𝑓 ;𝑢𝑡] 𝑓 𝑥 = 𝑒

(FE:Pair)

⊢fst VP 𝜖1 { 𝑣1 ⊢snd VP 𝜖2 { 𝑣2

⊢VP (𝜖1, 𝜖2) { (𝑣1, 𝑣2)

(FE:InL)

⊢fst VP 𝜖 { 𝑣

⊢VP inl 𝜖 { inl 𝑣

(FE:InR)

⊢snd VP 𝜖 { 𝑣

⊢VP inr 𝜖 { inr 𝑣

(FE:Roll)

⊢VP 𝜖 { 𝑣

⊢VP roll 𝜖 { roll 𝑣

(FE:Handle)

⊢fst VP 𝜖 { 𝑣

⊢VP handle 𝜖 { handle[snd VP] 𝑣

Fig. 25. Annotating values with vertex structures.

another judgment that annotates unannotated values. This judgment is defined in Figure 25 and

takes the form ⊢VP 𝜖 { 𝑣 , where VP is a vertex path to use for annotation (similar to the type

annotation judgment above), 𝜖 is an unannotated value, and 𝑣 is the annotated value. We restrict

annotations of values to vertex paths since the value handle[VP] 𝑣 may only use vertex paths VP as

the handle. Otherwise, annotation of values proceeds in much the same way as annotation of types.

Rule FE:Pair uses the two components of VP to annotate the components of the pair. Rules FE:InL

and FE:InR use the first and second components, respectively, of VP to annotate left and right

injections (recall that, for a sum type, VP is given a product type so that the two components

of VP may be used for the two injections). Finally, just as F:Fut uses the first component of𝑈 to

annotate the type of the future’s payload and the second component as the vertex for the future,

rule FE:Handle uses fst VP to annotate the payload and snd VP to annotate the handle itself.

Example. Consider the list of integer futures from above. We claimed that the correct VS type

for this type is U = 𝜈𝑡 .♦■ × 𝑡■. The rules of Figure 25 provide a “recipe” for constructing a future

list using a vertex path of VS type U. As an example, consider the unannotated value

roll inr (handle 1, roll inr (handle 2, roll inl ⟨⟩))

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:23

(SV:Handle)

Ω⇝ Ω1 ⊞ Ω2

Ω1 ⊢𝐴 𝑣 : 𝜏 Ω2; · ⊢ VP : ♦

Ω ⊢𝐴 handle[VP] 𝑣 : 𝜏 future[VP]

Fig. 26. Affine typing rule for handle values.

Unann(·) ≜ ·
Unann(Υ, 𝛼 :: 𝜅) ≜ Unann(Υ), 𝛼 :: Ty

Ann(·) ≜ ·
Ann(Υ, 𝛼 :: Ty) ≜ Ann(Υ), 𝛼 :: 𝑡 → Ty 𝑡 fresh

Fig. 27. Annotating and unannotating kinds in Υ.

which represents the list containing two future handles, one returning 1 and the other returning 2.

Applying the rules, we get the expression

roll inr (handle[fst snd VP] 1, roll inr (handle[fst snd snd snd VP] 2, roll inl ⟨⟩))

As described above, the futures take consecutive odd vertices from the stream VP .
The main result of this section has three components. First, any well-kinded unannotated

type may be matched with an annotated type by the rules of Figure 24. Second, if a well-kinded

unannotated type is annotated with a VS of the VS type returned by the annotation judgment,

then the annotated type is also well-kinded. Third, if an unannotated type 𝜎 is annotated with

a vertex path (that is, if · ⊢VP 𝜎 { 𝜏 ;U), then any well-typed unannotated value of type 𝜎 may

be annotated with VP by the rules of Figure 25, and the annotated value is well-typed when VP
has type U. Moreover, to show that VP has “enough” vertices to fully annotate the value with

unique vertices, we show that the annotated value is well-typed under a new typing judgment

that uses only an affine context for vertices. Usually, values would be typed with the unrestricted

context Ψ, because a data structure is allowed to contain multiple handles to the same future, but in

this case, we wish to show that we can restrict data structures to use new vertices for each handle.

We write the new judgment Ω ⊢𝐴 𝑣 : 𝜏 . The rules are similar to the standard typing rules, but use

the affine context Ω for typing handles. This rule for typing handle values is given in Figure 26.

Values always have the graph type •, so we omit the graph type from the judgment. The remaining

rules are straightforward and are deferred to the full version of the paper [Rinaldi et al. 2024].

Theorem 3 formalizes the main result of this section, that is, that 1) type annotation is complete

with respect to well-kinded unannotated types, 2) type annotation annotates well-kinded unanno-

tated types into well-kinded types, and 3) annotating values with vertex structures of the returned

VS type results in well-typed values. In order to show this, we introduce a kinding judgment for

unannotated types, Υ ⊢ 𝜎 :: Ty, and a typing judgment for unannotated values, ⊢ 𝜖 : 𝜎 . The rules

for these judgments are similar to those for annotated types and expressions, so we defer them

to the full version of the paper [Rinaldi et al. 2024]. Since the kinds of type variables bound by

unannotated and annotated recursive types are different (Ty andU → Ty respectively), we need

some way to change the kinds that these type variables are bound to. We address this with the

functions Unann and Ann. Unann(Υ) takes a context Υ suitable for annotating types and kinding

annotated types (where type variables can, and will always, have kind U → Ty), and return an

unannotated context, one suitable for kinding unannotated types (where every type variable has

kind Ty). Ann(Υ) performs this process in reverse, where the VS type expected by every type

variable in Υ is a fresh VS type variable unique to that type variable (each which can be substituted

with the desired VS type).

The proof of Theorem 3, as well as statements and proofs of several necessary technical lemmas,

appears in the full version of the paper [Rinaldi et al. 2024].

Theorem 3.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:24 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

(1) For an unannotated context Υ, if Υ ⊢ 𝜎 :: Ty, then for any 𝑈 , there exist 𝜏 and U such
that Ann(Υ) ⊢𝑈 𝜎 { 𝜏 ;U.

(2) If Υ ⊢𝑈 𝜎 { 𝜏 ;U and Unann(Υ) ⊢ 𝜎 :: Ty and ·;Ψ ⊢ 𝑈 : U, then ·;Ψ; Υ ⊢ 𝜏 :: Ty.
(3) If · ⊢VP 𝜎 { 𝜏 ;U and ⊢ 𝜖 : 𝜎 and · ⊢ 𝜎 :: Ty, then there exists 𝑣 such that ⊢VP 𝜖 { 𝑣 and for

any Ω such that Ω; · ⊢ VP : U. we have Ω ⊢𝐴 𝑣 : 𝜏 .

6 IMPLEMENTATION AND EXAMPLES
We have implemented a prototype graph inference algorithm for 𝜆𝐺𝜇

on top of GML [Muller 2022],

an existing graph type inference algorithm. The goal of the implementation, which we call GML
𝜇
, is

to infer vertex structure annotations and graph types from ordinary, unannotated OCaml programs.

GML extends OCaml syntax with the keywords future for spawning expressions into a future, touch

for joining a future handle’s value to the current thread, and a type 'a future. Additionally, GML
𝜇

supports OCaml’s user-definable recursive datatypes, which were not previously supported by

GML (there are some limitations, which we discuss at the end of this section). For example, we can

define the 'a pipe type from Sections 1 and 2 using standard OCaml syntax:

1 type 'a pipe = Pipe of 'a * 'a pipe future ;;

Our extension of GML successfully infers the corresponding vertex structure annotations, for the

type itself and for all of its uses in the code in Figure 5.

In addition, we implemented (by extending facilities existing in GML) a visualizer that uses

several heuristics to generate a visualization of a representative graph corresponding to each

inferred graph type.
13
This allows developers to see at a glance how their program will parallelize.

We have used GML
𝜇
to infer graph types for all example programs in this paper.

The details of the implementation are out of the scope of the paper. However, the main challenge

in extending GML with support for algebraic data types is generating the VS type corresponding to

an ADT. Our algorithm for this closely follows the presentation of Section 5.
14
When processing

a type declaration, GML generates the associated VS type, and also generates a constructor and

deconstructor function for each constructor. Constructor applications are desugared to ordinary

applications of the constructor function and the deconstructor function is used during pattern

matching. Anothermajor challenge is implementing unification on vertex structures. At themoment,

our implementation uses a set of heuristics that are not guaranteed to be complete (i.e., unification

may fail for VSs that could be unified, resulting in a spurious type error) but work well in practice

on the large examples tested.

In addition to extending the subset of OCaml supported by GML, we have also substantially

re-architected the code. In GML
𝜇
, the graph type checker is completely separate from the type

checker. This simplifies the implementation and has a number of other benefits. First, all futures in

a program are known by the time graph checking begins. This allows the implementation to infer

graph types in several instances where type annotations would previously have been required (one

such instance is noted in prior work [Muller 2022] as a limitation of GML, which is not a limitation

of GML
𝜇
). Additionally, this architecture would simplify the process of integrating graph checking

as an extension of the OCaml compiler, as an additional pass on type-checked ASTs.

13
Once the graph type is unrolled to generate the representative graph, we output a file that can be turned into a visualization

using GraphViz [Gansner and North 2000].

14
As discussed in that section, the only non-algorithmic detail of the presentation was constructing U in F:Rec; in the

implementation, we add 𝑡 → Ty to the context instead of 𝜈𝑡 .U → Ty. This means the context contains non-well-formed

VS types, which makes the theory more unwieldy but yields a convenient implementation.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:25

1 type 'a flist =

2 | FNil

3 | FCons of 'a * ('a flist future);;

4

5 let rec produce n =

6 if n < 0 then FNil

7 else FCons (n, future (produce (n - 1)));;

8

9 let rec consume sumxs =

10 let (sum, xs) = sumxs in

11 match xs with

12 | FNil -> sum

13 | FCons (x, xs) -> consume (x + sum, touch xs);;

14

15 consume (0, (produce n));;

n0•1

n0•0•1

n0•0•0•1 ...

n0•0•0•0•1 ...

Fig. 28. Blelloch-Reid-Miller produce-consume example

6.1 Examples
To show the utility of GML

𝜇
, we discuss several example programs for which it can infer and

visualize graph types.

Produce-consume. The producer-consumer example of Blelloch and Reid-Miller [1997], shown

in Figure 28, is similar to the pi_pipeline function of Figure 5, but allows the pipelined list to be

finite (ending with FNil). As in the pipeline example, the FCons constructor allows the tail of the

flist to continue being computed in a future. We compose produce, which (for the sake of a simple

example) outputs a list of the numbers 1–n, with the consume function which calculates the sum of

the list. In the graph of the composed functions (right side of the figure), the touches of consume

happen in parallel with the production of the list.

Tree Sum. In Figure 29, we present operations on a pipelined tree data structure [Blelloch and

Reid-Miller 1997]. As with flist, the two subtrees of an ftree are futures, so they may be computed

asynchronously while the value at the node is used. The function bst generates a tree of numbers

0 to 10, then tree_sum calculates the sum of elements in the generated tree. While the particular

application of summing a binary tree is fairly simple, one can imagine using the same structure for

more complicated use-cases. Because of the design of the data structure, bst immediately returns a

future and then tree_sum can perform its calculation as later recursive steps of bst are still executing.

Tree Reverse. The function in Figure 30 reverses a pipelined tree of the type defined in Figure 29.

Here, the interesting feature of the output was not the visualization of the function’s graph type,

which shows a similar structure to tree_sum and bst, but the function type, which is

reverse : Π[𝑢𝑓 :vtree;𝑢𝑡 :vtree] .ftree 𝑢𝑡
𝐺−→ ftree 𝑢𝑓

where vtree = 𝜈𝑡 .𝑡 × ♦ × 𝑡 × ♦. We omit the graph type 𝐺 for clarity. The function takes two VS

parameters and a tree indexed by 𝑢𝑡 and returns a tree indexed by 𝑢𝑓 . At first glance, this may

seem imprecise because one might expect the VSs parameterizing the input and output tree to be

related (after all, the output tree is the reverse of the input). However, this is not correct: reverse

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:26 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

1 type ftree =

2 | Empty

3 | Node of int * ftree future * ftree future;;

4

5 let rec bst lohi =

6 let (lo, hi) = lohi in

7 if lo >= hi then Empty

8 else

9 let mid = (lo + hi) / 2 in

10 Node (mid, future (bst (lo, mid)),

11 future (bst (mid, hi)));;

12

13 let rec tree_sum tree =

14 match tree with

15 | Empty -> 0

16 | Node (x, l, r) ->

17 let left_sum_fut = future (tree_sum (touch l)) in

18 let right_sum = tree_sum (touch r) in

19 let left_sum = touch left_sum_fut in

20 x + left_sum + right_sum;;

21

22 tree_sum (bst (0, 10));;

u15•1

...

u15•0•1 ...

u15•0•3 u15•3

...

u15•2•1...

u15•2•3

n3

n5

......

n4

......

Fig. 29. Sum over elements in a pipelined tree.

1 let rec reverse tree =

2 match tree with

3 | Empty -> Empty

4 | Node (x, l, r) -> Node (x, future (reverse (touch r)), future (reverse (touch l)))

Fig. 30. Reverse a pipelined tree.

touches (in a pipelined way) all of the futures of the input tree and constructs a new tree with the

reversed values but new futures from the VS 𝑢𝑓 . Here, not just the graph type but the return type

parameterized by its VS can correct a misunderstanding about the parallel behavior of a program.

6.2 Limitations
Though our inference algorithm checks most useful programs, there are some limitations. First,

polymorphic types cannot be instantiated with types that include futures. For example, a list of

futures would have to be explicitly defined as a new type 'a futlist rather than by instantiating

built-in lists to form the type 'a future list. This represents a design trade-off; graph types are not

currently expressive enough to represent, say, a reverse function on lists of futures. If the standard

list type could be instantiated with a future, the polymorphic reverse function would need to be

assigned a general enough type to cover all instantiations of 'a, which wouldn’t be possible. A

limitation we inherit from GML is that functional arguments of higher order functions cannot

spawn futures. This is possible in 𝜆𝐺𝜇
, but cannot be inferred without annotations.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

Pipelines and Beyond: Graph Types for ADTs with Futures 17:27

7 RELATEDWORK
Graph Types and Related Analyses. The use of graphs to represent the parallel programs dates

back to at least the late 1960s [Karp and Miller 1966; Rodriguez Bezos 1969]. Our notation is most

directly inspired by the work of Blelloch and Greiner [1995, 1996] and Spoonhower [2009], who

extended these graphs with notations for futures. In this work, graphs were produced dynamically

from programs using a cost semantics, which abstractly evaluates the program to form the graph

(or a family of graphs if execution is nondeterministically). The first work we are aware of on

statically approximating such graphs for fine-grained parallel programs was the prior work of

one of us [Muller 2022], which developed a calculus 𝜆𝐺 and corresponding graph type system

for inferring graph types of parallel programs with futures. Our work builds on 𝜆𝐺 , including the

use of an affine type system to ensure that vertex names are unique and therefore do not appear

twice in a graph, which would result in an invalid graph. However, the main thrust of this paper is

overcoming the significant limitation in 𝜆𝐺 that affine treatment of vertex names prevents building

collections of futures.

Dependency graphs are frequently used to represent control dependencies in coarse-grained

parallel programs and these have been the target of several static analyses (e.g., [Chen et al. 2002;

Cheng 1993; Kasahara et al. 1995]) but such tools do not contend with the substantial dynamicity

inherent in fine-grained parallel programs, especially those with futures. Dependency graphs are

also used to represent other dependencies in a program, including data dependencies; analyzing

the structure of such dependencies is a form of program slicing (e.g., [Korel 1987; Weiser 1984]).

As observed in prior work [Muller 2022], graph type systems draw on ideas from region type
systems [Tofte and Talpin 1997], where assigning a vertex to a future corresponds to allocating an

object within a region of memory, in order to aid in memory management and/or ensure safety

(e.g. [Fluet et al. 2006]), including in the presence of concurrency and complex, dynamic data

structures [Milano et al. 2022]. It is not possible to list all of the related work on regions and related

systems, so we refer the interested reader to the chapter by Henglein et al. [2005]. Two major

differences with region systems are that vertex assignments must be unique (whereas typically

many objects are allocated within a single region) and that, to generate useful graphs, we wish for

vertex assignments to be visible at a global scope (see the example from the Introduction of why

locally allocated vertices are not suitable for graph types of data structures).

Heterogeneous and Indexed Data Structures. Indexed types [Xi and Pfenning 1999; Zenger 1997], a
limited form of dependent types in which a type is indexed by a value from a specified domain, have

long been used to add expressiveness to types—a classic example is a type of vectors indexed with a

natural number giving the vector’s length. We index recursive data types with a vertex structure to

assign unique vertices to futures in recursive data structures. Vertex structures have a non-trivial

semantics of their own but are not first-class objects at the expression level, so computation on

VSs may be seen as an instance of type-level computation. A similar indexing idea and type-level

computation have been previously combined to achieve heterogeneity in HList [Kiselyov et al.

2004], a Haskell library that expresses heterogeneous lists by indexing the list type constructor

with a type-level list. Their work does not appear to generalize beyond lists or to infinite indices.

Richer forms of type-level computation have been explored, and could be used to further general-

ize the theory of vertex structures. Yorgey et al. [2012] extend Haskell’s kind system with features

for expressing a variety of type-level data structures. As another example, we have considered

extending vertex structures with sums (so a vertex structure could, e.g., represent a finite list) and

using type-level matching [Blanvillain et al. 2022] to constrain the lengths of lists by the length of

the vertex structure parameter. While this would expand the expressiveness of vertex structures,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

17:28 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

extending VSs beyond tree-like corecursive structures causes a problem for inference and so it

seems likely that such an extension would require programmer annotations in some cases.

We note that this paper enters a rich design space of combining data and codata (e.g. [Thibodeau

et al. 2016]). We have shown in Section 5 that any data type can be “overapproximated by” a codata

type in the sense that there is a straightforward, local mapping from nodes in the data type’s AST

to those of the codata type (the vertex structure in our case). Whether this has a deeper meaning in

the theory of data and codata is left to future work.

Affine Type Systems. We use an affine type system to handle vertex structures and ensure that ver-

tex names in output graphs are unique. Affine type systems have been used in a number of languages

to ensure safe usage of resources (broadly construed), notably including Cyclone [Jim et al. 2002]

and Rust [Rus [n.d.]]. Our notation for splitting and availability is inspired by Cogent [O’Connor

et al. 2021], which uses these ideas for an affine treatment of record types.

Encoding in Rust. As a memory safety focused language, Rust’s type system would likely benefit

from the features GML. Though Rust is able to encode other type systems such as session types [Jes-

persen et al. 2015; Lagaillardie et al. 2020], we do not believe GML could be usefully or at least

conveniently encoded in Rust as is. The main limiting factor we foresee is that we believe each

vertex name would need its own lifetime. This is a problem because Rust requires all lifetimes to be

declared statically, and each piece of code can only refer to finitely many lifetimes. However, in

GML, vertex names are generated dynamically, therefore a function might manipulate infinitely

many vertices.

8 CONCLUSION
We have presented a type system for annotating parallel programs with futures with graph types,
which compactly represent the parallel structure of the program. Unlike prior work, we support

complex data structures containing futures. As evidenced by our prototype implementation, it is

possible to infer these graph types automatically for examples that use this feature for efficient

pipelined algorithms. Our implementation is also able to generate visualizations of the resulting

graph types, which can aid in understanding the structure of parallel code and finding bugs.

In the future, we hope to expand on the types of program analysis and bug-finding that can be

done with these graph types. For example, we could build on the prototype analyses of Muller

[2022] to study deadlock and asymptotic complexity in the complex, pipelined graphs that arise

from programs with data structures of futures. We also plan to scale the implementation up to

support a larger subset of OCaml, with the goal of integrating the analysis into the OCaml compiler.

Finally, because the graph type system itself does not depend on a particular source language, we

plan to explore implementing the graph type system in front-ends for a variety of languages, so

that more programmers can benefit from graph types as an analysis tool and reasoning aid.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their helpful feedback. This paper was

based on work partially supported by the National Science Foundation under awards CCF-2107289,

CCF-2007784, and CNS-2314323.

DATA AVAILABILITY STATEMENT
The artifact associated with this paper, consisting of the implementation of GML

𝜇
and the examples

described in Section 6, is available at https://zenodo.org/record/8424018.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

https://zenodo.org/record/8424018

Pipelines and Beyond: Graph Types for ADTs with Futures 17:29

REFERENCES
[n.d.]. The Rust language. https://www.rust-lang.org. Accessed: 2023-07-07.

Özalp Babaoğlu, Keith Marzullo, and Fred B. Schneider. 1993. A Formalization of Priority Inversion. Real-Time Systems 5, 4
(1993), 285–303. https://doi.org/10.1007/BF01088832

Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and Paul Petersen. 2006. A Theory of Data Race Detection. In Proceedings of
the 2006 Workshop on Parallel and Distributed Systems: Testing and Debugging (Portland, Maine, USA) (PADTAD ’06).
Association for Computing Machinery, New York, NY, USA, 69–78. https://doi.org/10.1145/1147403.1147416

Olivier Blanvillain, Jonathan Immanuel Brachthäuser, Maxime Kjaer, and Martin Odersky. 2022. Type-level programming

with match types. Proceedings of the ACM on Programming Languages 6 (1 2022). Issue POPL. https://doi.org/10.1145/
3498698 We could use something like this to give stronger guarantees with VSs, e.g., have some finite VSs.

Guy Blelloch and John Greiner. 1995. Parallelism in Sequential Functional Languages. In Proceedings of the Seventh
International Conference on Functional Programming Languages and Computer Architecture (La Jolla, California, USA)
(FPCA ’95). Association for Computing Machinery, New York, NY, USA, 226–237. https://doi.org/10.1145/224164.224210

Guy E. Blelloch and John Greiner. 1996. A Provable Time and Space Efficient Implementation of NESL. In Proceedings of the
First ACM SIGPLAN International Conference on Functional Programming (Philadelphia, Pennsylvania, USA) (ICFP ’96).
Association for Computing Machinery, New York, NY, USA, 213–225. https://doi.org/10.1145/232627.232650

Guy E. Blelloch and Margaret Reid-Miller. 1997. Pipelining with Futures. In Proceedings of the Ninth Annual ACM Symposium
on Parallel Algorithms and Architectures (Newport, Rhode Island, USA) (SPAA ’97). Association for Computing Machinery,

New York, NY, USA, 249–259. https://doi.org/10.1145/258492.258517

Zhenqiang Chen, Baowen Xu, Jianjun Zhao, and Hongji Yang. 2002. Static Dependency Analysis for Concurrent Ada 95

Programs. In Reliable Software Technologies — Ada-Europe 2002, Johann Blieberger and Alfred Strohmeier (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 219–230. https://doi.org/10.1007/3-540-48046-3_17

Jingde Cheng. 1993. Process dependence net of distributed programs and its applications in development of distributed

systems. In Proceedings of 1993 IEEE 17th International Computer Software and Applications Conference COMPSAC ’93.
231–240. https://doi.org/10.1109/CMPSAC.1993.404187

Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida. 2018. Dynamic Deadlock Verification for

General Barrier Synchronisation. ACM Trans. Program. Lang. Syst. 41, 1, Article 1 (Dec. 2018), 38 pages. https:

//doi.org/10.1145/3229060

Matthew Fluet, Greg Morrisett, and Amal Ahmed. 2006. Linear Regions Are All You Need. In Proceedings of the 15th European
Conference on Programming Languages and Systems (Vienna, Austria) (ESOP’06). Springer-Verlag, Berlin, Heidelberg,
7–21. https://doi.org/10.1007/11693024_2

Emden R. Gansner and Stephen C. North. 2000. An Open Graph Visualization System and Its Applications to Software

Engineering. Softw. Pract. Exper. 30, 11 (Sept. 2000), 1203–1233. https://doi.org/10.1002/1097-024X(200009)30:11<1203::

AID-SPE338>3.0.CO;2-N

Fritz Henglein, Henning Makholm, and Henning Niss. 2005. Effect Types and Region-Based Memory Management. In

Advanced Topics in Types and Programming Languages, Benjamin C. Pierce (Ed.). MIT Press, Cambridge, Massachusetts,

Chapter 3, 87–135.

Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. 2015. Session Types for Rust. In Proceedings
of the 11th ACM SIGPLAN Workshop on Generic Programming (Vancouver, BC, Canada) (WGP 2015). Association for

Computing Machinery, New York, NY, USA, 13–22. https://doi.org/10.1145/2808098.2808100

Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yanling Wang. 2002. Cyclone: A Safe

Dialect of C. In Proceedings of the General Track of the Annual Conference on USENIX Annual Technical Conference (ATEC
’02). USENIX Association, USA, 275–288.

Richard M. Karp and Rayamond E. Miller. 1966. Properties of a Model for Parallel Computations: Determinacy, Termination,

Queueing. SIAM J. Appl. Math. 14, 6 (1966), 1390–1411. https://doi.org/10.1137/0114108

Y. Kasahara, Y. Nomura, M. Kamachi, J. Cheng, and K. Ushijima. 1995. An integrated support environment for distributed

software development based on unified program representations. In Proceedings 1995 Asia Pacific Software Engineering
Conference. 254–263. https://doi.org/10.1109/APSEC.1995.496974

Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. 2004. Strongly typed heterogeneous collections. Proceedings of the ACM
SIGPLAN 2004 Haskell Workshop, Haskell’04 (2004), 96–107. https://doi.org/10.1145/1017472.1017488

Bogdan Korel. 1987. The program dependence graph in static program testing. Inform. Process. Lett. 24, 2 (1987), 103–108.
https://doi.org/10.1016/0020-0190(87)90102-5

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. 2020. Implementing Multiparty Session Types in Rust. In

Coordination Models and Languages: 22nd IFIP WG 6.1 International Conference, COORDINATION 2020, Held as Part of
the 15th International Federated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June
15–19, 2020, Proceedings (Valletta, Malta). Springer-Verlag, Berlin, Heidelberg, 127–136. https://doi.org/10.1007/978-3-

030-50029-0_8

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

https://www.rust-lang.org
https://doi.org/10.1007/BF01088832
https://doi.org/10.1145/1147403.1147416
https://doi.org/10.1145/3498698
https://doi.org/10.1145/3498698
https://doi.org/10.1145/224164.224210
https://doi.org/10.1145/232627.232650
https://doi.org/10.1145/258492.258517
https://doi.org/10.1007/3-540-48046-3_17
https://doi.org/10.1109/CMPSAC.1993.404187
https://doi.org/10.1145/3229060
https://doi.org/10.1145/3229060
https://doi.org/10.1007/11693024_2
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1137/0114108
https://doi.org/10.1109/APSEC.1995.496974
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1016/0020-0190(87)90102-5
https://doi.org/10.1007/978-3-030-50029-0_8
https://doi.org/10.1007/978-3-030-50029-0_8

17:30 Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller

Mae Milano, Joshua Turcotti, and Andrew C. Myers. 2022. A Flexible Type System for Fearless Concurrency. In Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (San Diego,

CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 458–473. https://doi.org/10.1145/

3519939.3523443

Stefan K. Muller. 2022. Static Prediction of Parallel Computation Graphs. Proc. ACM Program. Lang. 6, POPL, Article 46 (jan
2022), 31 pages. https://doi.org/10.1145/3498708

Liam O’Connor, Zilin Chen, Christine Rizkallah, Vincent Jackson, Sidney Amani, Gerwin Klein, Toby Murray, Thomas

Sewell, and Gabriele Keller. 2021. Cogent: uniqueness types and certifying compilation. J. Funct. Program. 31 (2021), e25.
https://doi.org/10.1017/S095679682100023X

Francis Rinaldi, june wunder, Arthur Azevedo de Amorim, and Stefan K. Muller. 2024. Pipelines and Beyond: Graph Types

for ADTs with Futures. TODO XXX FIXME: ArXiV citation.

Jorge E Rodriguez Bezos. 1969. A Graph Model for Parallel Computations. Ph.D. Dissertation. Massachusetts Institute of

Technology, Cambridge, Massachusetts.

K. C. Sivaramakrishnan, Stephen Dolan, LeoWhite, Sadiq Jaffer, Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman, and

Anil Madhavapeddy. 2020. Retrofitting parallelism onto OCaml. Proc. ACM Program. Lang. 4, ICFP (2020), 113:1–113:30.

https://doi.org/10.1145/3408995

Daniel Spoonhower. 2009. Scheduling Deterministic Parallel Programs. Ph.D. Dissertation. Carnegie Mellon University,

Pittsburgh, PA, USA.

David Thibodeau, Andrew Cave, and Brigitte Pientka. 2016. Indexed Codata Types. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming (Nara, Japan) (ICFP 2016). Association for Computing Machinery,

New York, NY, USA, 351–363. https://doi.org/10.1145/2951913.2951929

Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Management. Information and Computation 132, 2 (1997),

109–176. https://doi.org/10.1006/inco.1996.2613

Mark Weiser. 1984. Program Slicing. IEEE Transactions on Software Engineering SE-10, 4 (1984), 352–357. https://doi.org/10.

1109/TSE.1984.5010248

Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical Programming. In Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Antonio, Texas, USA) (POPL ’99). Association
for Computing Machinery, New York, NY, USA, 214–227. https://doi.org/10.1145/292540.292560

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães.

2012. Giving Haskell a Promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design and
Implementation (Philadelphia, Pennsylvania, USA) (TLDI ’12). Association for Computing Machinery, New York, NY,

USA, 53–66. https://doi.org/10.1145/2103786.2103795

Christoph Zenger. 1997. Indexed types. Theoretical Computer Science 187, 1 (1997), 147–165. https://doi.org/10.1016/S0304-

3975(97)00062-5

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 17. Publication date: January 2024.

https://doi.org/10.1145/3519939.3523443
https://doi.org/10.1145/3519939.3523443
https://doi.org/10.1145/3498708
https://doi.org/10.1017/S095679682100023X
https://doi.org/10.1145/3408995
https://doi.org/10.1145/2951913.2951929
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/292540.292560
https://doi.org/10.1145/2103786.2103795
https://doi.org/10.1016/S0304-3975(97)00062-5
https://doi.org/10.1016/S0304-3975(97)00062-5

	Abstract
	1 Introduction
	2 Overview
	3 Graph Types with Vertex Structures
	3.1 Vertex Structures and Their Types
	3.2 Graph Types and Type Constructors
	3.3 Graph Type System

	4 Soundness
	4.1 Generation of Runtime Vertex Names
	4.2 Normalization
	4.3 Cost Semantics and Soundness

	5 Elaboration of Recursive Types with Vertex Structures
	6 Implementation and Examples
	6.1 Examples
	6.2 Limitations

	7 Related Work
	8 Conclusion
	References

