
46

Static Prediction of Parallel Computation Graphs
STEFAN K. MULLER, Illinois Institute of Technology, USA

Many algorithms for analyzing parallel programs, for example to detect deadlocks or data races or to calculate

the execution cost, are based on a model variously known as a cost graph, computation graph or dependency
graph, which captures the parallel structure of threads in a program. In modern parallel programs, computation

graphs are highly dynamic and depend greatly on the program inputs and execution details. As such, most

analyses that use these graphs are either dynamic analyses or are specialized static analyses that gather a

subset of dependency information for a specific purpose.

This paper introduces graph types, which compactly represent all of the graphs that could arise from

program execution. Graph types are inferred from a parallel program using a graph type system and inference

algorithm, which we present drawing on ideas from Hindley-Milner type inference, affine logic and region

type systems. We have implemented the inference algorithm over a subset of OCaml, extended with parallelism

primitives, and we demonstrate how graph types can be used to accelerate the development of new graph-based

static analyses by presenting proof-of-concept analyses for deadlock detection and cost analysis.

CCS Concepts: • Software and its engineering → Parallel programming languages; Automated static

analysis; • Theory of computation→ Linear logic.

Additional Key Words and Phrases: parallel programs, graph types, cost graphs, computation graphs, type

systems, type inference

ACM Reference Format:
Stefan K. Muller. 2022. Static Prediction of Parallel Computation Graphs. Proc. ACM Program. Lang. 6, POPL,
Article 46 (January 2022), 36 pages. https://doi.org/10.1145/3498708

1 INTRODUCTION
Recent trends in hardware have led to increased interest in reasoning about and developing parallel

software. On the reasoning side, many techniques for studying parallel programs center around an

idea variously called a dependency graph, computation graph or cost graph, which abstracts away

details of program semantics to show the parallel structure of the program at a high level: in the

model we consider in this paper, vertices in a graph represent threads in a program and edges

between vertices signify control dependencies between threads. In work spanning several decades,

these graphs have been used as a basis for studies of, to name a few examples, deadlock [Cogumbreiro

et al. 2018], data races [Banerjee et al. 2006], priority inversions [Babaoğlu et al. 1993] and runtime

cost [Blelloch and Greiner 1995, 1996]. In many cases, these properties can be easily “read off” of a

suitable representation the graph (for example, a deadlock corresponds to a cycle in the graph). On

the development side, most newer languages and systems for developing parallel programs have

built on the paradigm of implicit parallelism, in which a programmer specifies opportunities for

parallelism using high-level abstractions and the language runtime does the work of scheduling.

Implicit parallelism is hardly a new idea—it dates back to systems like Id [Arvind and Gostelow 1978]

and Multilisp [Halstead 1985]—but is now present in some form in many mainstream languages.

Author’s address: Stefan K. Muller, smuller2@iit.edu, Illinois Institute of Technology, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART46

https://doi.org/10.1145/3498708

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

https://doi.org/10.1145/3498708
https://doi.org/10.1145/3498708

46:2 Stefan K. Muller

In implicitly parallel programs, parallelism is dynamic: new threads are created and synchronized

at runtime based on the execution of the program. As a result, the number and structure of threads

are not fixed ahead of time but can and generally do change in response to program inputs.

Because computation graphs for implicit parallel programs are inherently dynamic, many graph-

based analyses for properties like the ones mentioned above are also dynamic. These analyses

track information about dependencies between threads as a program executes. To keep overhead

manageable, they will generally track only a subset of the available dependency information,

sometimes sacrificing precision for speed. Of course, these dynamic analyses also suffer from the

same theoretical issues as dynamic analyses in general: for example, a dynamic deadlock detector

will generally only be able to determine if a deadlock can or will occur for a particular execution

and can say little or nothing about the behavior of the program in general, on any set of inputs.

Graph-based static analyses for the same properties, which can be sound and do not suffer from

runtime overhead, exist as well, but are tricky to implement because of the dynamic nature of

computation graphs. The designer of a dynamic analysis can take the simple, idealized graph-based

algorithm (e.g., look for a cycle in the graph to detect a deadlock), track enough dependency

information to be able to detect the required property and check the graph dynamically as it’s built.

Static analyses, on the other hand, traverse a program and construct approximations of the relevant

dependency information; the algorithm designer must decide what information to track, and adapt

the simple graph-based algorithm to operate over this information.

In this paper, we take a step toward combining the best of both approaches by constructing

compact, static representations of the set of computation graphs that may arise from a program at

runtime. We call these representations graph types by analogy to static types, which may be thought

of as compact static approximations of the set of values a program might produce at runtime.

Graph types capture the dependency information required for a wide range of graph-based parallel

program analyses, and so one can design a new static analysis by taking the simple graph-based

formulation of the desired algorithm (e.g. look for a cycle in the graph to detect a deadlock) and

adapt it to “read off” the property from the graph type rather than an actual graph. The analysis

designer no longer needs to build a static analysis to traverse the program and collect dependency

information, as long as the graph type of the program is available.

In order to produce graph types from parallel programs, this paper presents a graph type system
for a simple parallel calculus, as well as an implementation of an inference algorithm for graph

types that operates over a sizable subset of OCaml. Inferring graph types is made difficult by more

general forms of implicit parallelism, notably futures, which allow asynchronous computations to

be treated as first-class values in a program. As an example, Figure 1a shows a graph for a program

that applies an expensive function 𝑓 to every element in a list in a parallel pipelined fashion. In

the graph, 𝑢1 through 𝑢4 represent futures created at runtime; these vertices must be given unique

names when the future is created and these names must be available later when the futures are

used, possibly far away in the program. To track vertex names, we adapt notions from region type

systems [Tofte and Talpin 1997]. Graph types face an additional problem not handled by region type

systems: well-formed graphs cannot reuse vertex names. We ensure unicity of names by placing an

affine restriction on vertex names. All of this is done with no additional burden on the programmer:
all required annotations are automatically inferred by our implementation.

In addition to accelerating the development of new static analyses, the graph types inferred by our

implementation can provide the programmer with insight into a program. Figure 1b shows an almost

imperceptibly different implementation of the pipeline program which results in substantially less

parallelism. Noticing this implementation error in the code would require a great deal of experience

and domain knowledge. However, the difference is quite striking in the visualizations of the two

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:3

let rec pipe (fut, l) =

...pipe (future (f h + (touch fut)), t)

f
u2

f
u3

f u4

u1

a

let rec pipe (fut, l) =

...pipe (future ((touch fut) + f h), t)

u2f u3f u4fu1

b

Fig. 1. Partial code and graph visualization for a pipelined program (left) and an incorrect implementation of

it (right). The visualizations are produced automatically by our implementation.

graph types, which can be produced automatically by our implementation: the graph on the right

shows all three invocations of 𝑓 occurring sequentially.

This work subsumes and concretizes techniques already used in the parallelism theory community,

where it is common to see dynamic semantics that build a graph as they evaluate a program. These

are particularly common in the cost models community, where they are known as cost semantics. It
is common to use these models to do a sort of static meta-reasoning over the set of graphs that can

be produced by any execution of the program. For example, to assure ourselves that a program

cannot have a deadlock, we can use meta-level techniques to prove that all possible evaluations of a

cost semantic-like model result in acyclic graphs. These reasoning techniques are formalized anew

for every property of interest (deadlock, cost, etc.). We note that this is exactly the sort of reasoning

that is reified, once and for all properties, by graph types: if, under the kind of cost semantics

described above, program 𝑒 could execute to produce a graph 𝑔, then 𝑔 is described by the graph

type of 𝑒 . The formal version of this statement is, in fact, the soundness theorem of our graph type

system, and we state and prove it using a traditional cost semantics of the form described above.

In summary, the contributions of this paper include

• Graph types, a compact representation for sets of possible computation graphs.

• A graph type system for a simple parallel calculus _𝐺 , which computes graph types from

annotated parallel programs.

• A proof, using a more traditional cost semantics, that any graph arising from execution of a

_𝐺 program is described by its graph type.

• An algorithm for inferring the annotations required for the graph type system of _𝐺 from

unannotated input programs.

• An implementation of the inference algorithm in a compiler front-end that accepts unanno-
tated OCaml-like parallel programs and infers, and optionally visualizes, graph types.

• Proof-of-concept implementations of several applications of graph types, including deadlock

detection, cost analysis and program optimization.

The remainder of the paper is organized as follows. In Section 2, we introduce the notations

used throughout the paper. Section 3 overviews our methodology on a restricted set of parallelism

constructs, to introduce the techniques without their full complexity. In Sections 4 and Section 5, we

introduce the full syntax and semantics for graph types, the _𝐺 calculus and the graph type system.

Section 6 presents the graph type inference algorithm, which we implement and evaluate, including

by developing new graph-based static analyses over graph types, in Section 7. Finally, Sections 8–10

discuss related and future work, and conclude. An appendix available as supplementary material

on the ACM Digital Library contains proofs and additional details.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:4 Stefan K. Muller

• ≜ ({𝑢}, ∅, 𝑢,𝑢) 𝑢 fresh

(𝑉1, 𝐸1, 𝑠1, 𝑡1) ⊕ (𝑉2, 𝐸2, 𝑠2, 𝑡2) ≜ (𝑉1 ∪𝑉2, 𝐸1 ∪ 𝐸2 ∪ {(𝑡1, 𝑠2)}, 𝑠1, 𝑡2) 𝑉1 ∩𝑉2 = ∅
(𝑉1, 𝐸1, 𝑠1, 𝑡1) ⊗ (𝑉2, 𝐸2, 𝑠2, 𝑡2) ≜ (𝑉1 ∪𝑉2 ∪ {𝑢1, 𝑢2}, 𝑢1, 𝑢2 fresh,

𝐸1 ∪ 𝐸2 ∪ {(𝑢1, 𝑠1), (𝑢1, 𝑠2), (𝑡1, 𝑢2), (𝑡2, 𝑢2)}, 𝑢1, 𝑢2) 𝑉1 ∩𝑉2 = ∅
(𝑉 , 𝐸, 𝑠, 𝑡)$𝑢 ≜ (𝑉 ∪ {𝑢,𝑢 ′}, 𝐸 ∪ {(𝑢 ′, 𝑠), (𝑡,𝑢)}, 𝑢 ′, 𝑢 ′) 𝑢 ′ fresh, 𝑢 ∉ 𝑉
𝑢 % ≜ ({𝑢 ′}, {(𝑢,𝑢 ′)}, 𝑢 ′, 𝑢 ′) 𝑢 ′ fresh

Fig. 2. Shorthands for combining graphs.

2 PRELIMINARIES
We first review the notations and parallelism mechanisms used in the remainder of the paper.

2.1 Graph Notation
A computation graph or simply graph is used to represent the parallel structure of a program.

Vertices of a graph (for which we will use metavariables 𝑢 and variants) represent sequential

computations, and (directed) edges between vertices represent dependences. If there is a path from

a vertex 𝑢1 to a vertex 𝑢2, then 𝑢1 must complete before 𝑢2 begins. If there is no path between two

vertices, then the computations represented by those two vertices may be executed in parallel.

We represent a graph as a quadruple (𝑉 , 𝐸, 𝑠, 𝑡) containing the sets of vertices𝑉 and edges 𝐸. We

will represent a directed edge from 𝑢1 to 𝑢2 as the pair (𝑢1, 𝑢2). The graph quadruple also contains a

designated “source” vertex 𝑠 which has no ancestors in the graph, and a designated “sink” vertex 𝑡

which has no descendants in the graph. The vertices 𝑠 and 𝑡 represent the start and end of the

“main” thread of the graph. Note that a graph may have sink vertices other than 𝑡 (as a program

may spawn parallel threads with which it never synchronizes), but 𝑠 will be its only source vertex.

We write a graph consisting of a single vertex (which corresponds to a fully sequential com-

putation) as •, and use conventional shorthands [Blelloch and Greiner 1995, 1996] for combining

subgraphs into larger graphs. These shorthands are defined in Figure 2. For two graphs 𝑔1 and 𝑔2,

𝑔1 ⊕ 𝑔2 denotes the sequential composition 𝑔1 followed by 𝑔2 and 𝑔1 ⊗ 𝑔2 denotes the parallel compo-
sition allowing the computations represented by the two graphs to occur in parallel. Sequential

composition adds an edge from the sink of 𝑔1 to the source of 𝑔2, thus composing the two “main”

threads. One special case is not listed in the figure: because we are primarily interested in the

parallel structure of a program, we will treat • ⊕ • (which is still a sequential computation) as

equivalent to •. Parallel composition results in a graph whose “main” thread consists of two newly

created vertices: 𝑢1 has the sources of 𝑔1 and 𝑔2 as children and 𝑢2 has the sinks as parents. Left

composition [Spoonhower 2009] 𝑔$𝑢 indicates that the graph 𝑔 should run asynchronously with

the “main” thread of the graph. The “main” thread of the resulting graph consists of only a new

vertex 𝑢 ′
, with an edge to the source of 𝑔. The indicated vertex 𝑢 is installed as the sink of 𝑔, so that

another thread can easily locate and synchronize with 𝑔. This is done with the operation
𝑢 %, which

again creates a new vertex 𝑢 ′
in the “main” thread and installs a synchronization edge (𝑢,𝑢 ′).

It is important to note that all vertices in a graph must have unique identifiers. This is enforced

by the operations in Figure 2 by requiring that vertex sets of combined graphs be disjoint and

that the vertex of a left composition not already appear in the graph. Both requirements cause

no loss of generality, as vertices of a graph can be freely renamed, but this renaming must be

done consistently (e.g., all uses of 𝑢 in the graph must be updated if 𝑢 is renamed). In most related

treatments of graph notation, such renamings are performed implicitly, and so it may seem that we

are belaboring this point. However, as we will see, much of the complexity of graph types and of

the techniques in the paper arises out of the necessity to keep vertex names distinct.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:5

1 let rec fib n =

2 if n <= 1 then 1

3 else

4 let (a, b) = par (fib (n - 1), fib (n - 2))

5 in a + b

1 let rec fib n =

2 if n <= 1 then 1

3 else

4 let fut = future (fib (n - 1)) in

5 let b = fib (n - 2)

6 in (touch fut) + b

7

Fig. 3. Two versions of the Fibonacci program.

2.2 Parallelism Mechanisms
In this paper, we will consider two mechanisms of expressing parallelism. The first is called fork-
join or nested parallelism. In the syntax of our paper, fork-join parallelism is introduced with the

construct par (e1, e2) where e1 and e2 are arbitrary expressions. This operation spawns two

threads to execute e1 and e2 in parallel. When both expressions evaluate to values, a pair of the two

values is returned. Many common parallel algorithms, such as the broad and useful class of divide
and conquer algorithms, can be expressed using fork-join parallelism. One example of a fork-join

parallel algorithm, which has become the “Hello World” of parallel programs, is the inefficient

recursive Fibonacci function, in which the two recursive calls are performed in parallel. The code

for this example is in the left side of Figure 3.

Another common parallelism mechanism is futures. The operation future e spawns a thread,

or future, to compute e, which runs in parallel with the current thread, and returns a handle

to this future. The handle can be used to touch or force the future. For this, we will use the

syntax touch e, which evaluates e down to a future handle, waits for the corresponding future

to complete, and returns the value returned by the future. Futures are a very useful and general

parallelism mechanism, and indeed are powerful enough to encode fork-join parallelism in a

straightforward way. For example, on the right side of Figure 3, we rewrite the above Fibonacci

program using a future to compute fib (n - 1). The other recursive call is performed in parallel in

the main thread. The main thread then uses the construct touch to get the result of the asynchronous

computation before adding the two results.

3 GRAPH TYPES FOR FORK-JOIN PROGRAMS
Before introducing the full complexity of our language and analysis, we present an overview of

the approach by working through the approach of the paper on a simple calculus _𝐺
𝐹 𝐽

that allows

only fork-join programs. This section will thus demonstrate several of the important concepts and

contributions we introduce in the paper, particularly graph types and the type-and-effect system

for assigning graph types to programs, without the additional complexity necessary to support

more general forms of parallelism. Because what is presented in this section is a strict subset of the

full presentation to come in the following sections, we will not prove any metatheoretic results in

this section, but defer these to the presentation of the full systems.

3.1 Graph Types
The first contribution of this paper is a compact notation for representing families of graphs that

could arise from a cost semantics. We call these representations graph types, by analogy to how

types represent families of values that could arise from execution of a program. The syntax for

graph types for _𝐺
𝐹 𝐽
, shown in Figure 4, reuses much of the notation for graphs introduced in

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:6 Stefan K. Muller

𝐺 ::= 𝛾 | • | 𝐺 ⊕ 𝐺 | 𝐺 ⊗ 𝐺 | 𝐺 ∨𝐺 | `𝛾 .𝐺

Fig. 4. Partial syntax for graph types.

fib 1

fib 2

fib 1 fib 0

fib 3

fib 2

fib 1

fib 1 fib 0

Fig. 5. Graphs for the Fibonacci program for𝑛 = 0

through 𝑛 = 3 (left to right).

Section 2, with the same meaning. The syntax also includes two new notations, 𝐺 ∨𝐺 to denote

two alternative possible graph types, and the notation `𝛾 .𝐺 for recursive graph types.

We illustrate the use of both of these connectives using the fork-join Fibonacci example of

Section 2. Figure 5 shows the graphs for 𝑛 = 1 through 𝑛 = 3. For readability, some vertices are

labeled with the call to fib they represent. The progression of graphs shows a pattern that matches

the recursive structure of the code: the graph for fib n consists of either a single vertex (if the

“then” branch of the conditional is taken) or two parallel recursive instances of the graph for fib n.

If we wish to compactly represent all of the graphs that could result from a call to fib, we will

need some sort of recursion. Abusing notation liberally, we could define the set of graphs that

could result from calls to fib with the following recursive definition:

Graphs(fib) ≜ {•} ∪ {𝑔1 ⊗ 𝑔2 | 𝑔1, 𝑔2 ∈ Graphs(fib)}
We introduce the connective ∨ to indicate two possible graphs (in the above example, we could

write • ∨𝐺1 ⊗𝐺2 to indicate that the graph is either a singleton or a parallel composition). We also

introduce recursive graph types, borrowing notation from recursive types. The graph type `𝛾 .𝐺

denotes a recursive graph type. It binds the graph type variable 𝛾 inside𝐺 ; occurrences of 𝛾 inside𝐺

indicate a recursive occurrence of the whole graph. Using this new notation, we could define the

graph type for the Fibonacci program as follows:

𝐺fib ≜ `𝛾 .(• ∨ (𝛾 ⊗ 𝛾))

3.2 Normalization: From Graph Types to Graphs
We define a procedure for enumerating sets of graphs that belong to a graph type. We call this

procedure normalization, and will use it, among other purposes, to validate the graph type system.

Any recursive graph type will correspond to an infinite set of graphs, because the recursion in the

graph type can be unrolled an unbounded number of times
1
. We avoid infinite sets by introducing

an index parameter, which bounds the number of times recursive graph types will be unrolled.

The normalization procedure for fork-join graph types is shown in Figure 6, and produces a

set of graphs using the notation of Figure 2 (recall that the notations •, ⊕ and ⊗ are used for

both graph types and graphs; on the left hand side of the definitions, they refer to the graph type

operations and on the right hand side, they refer to the graph operations). When the integer index is

1
In terminating programs, these infinite graphs cannot result from actual executions because the runtime recursion will

eventually reach the base case; the graph type notation deliberately abstracts away this detail.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:7

Norm0 (𝐺) ≜ {•}
Norm𝑛 (•) ≜ {•}
Norm𝑛 (𝐺1 ⊗ 𝐺2) ≜ {𝑔′

1
⊗ 𝑔′

2
| 𝑔′

1
∈ Norm𝑛 (𝐺1), 𝑔′2 ∈ Norm𝑛 (𝐺2)

Norm𝑛 (𝐺1 ⊕ 𝐺2) ≜ {𝑔′
1
⊕ 𝑔′

2
| 𝑔′

1
∈ Norm𝑛 (𝐺1), 𝑔′2 ∈ Norm𝑛 (𝐺2)

Norm𝑛 (𝐺1 ∨𝐺2) ≜ Norm𝑛 (𝐺1) ∪ Norm𝑛 (𝐺2)
Norm𝑛 (`𝛾 .𝐺) ≜ Norm𝑛−1 (𝐺 [`𝛾 .𝐺/𝛾]) ∪ Norm𝑛−1 (`𝛾 .𝐺)

Fig. 6. Normalization for fork-join graph types.

0, normalization returns only the singleton graph: this ensures that unrolling recursive graphs will

eventually “bottom out” to a single vertex. Sequential and parallel compositions of graph types 𝐺1

and 𝐺2 are normalized by computing the normalizations of both graph types and then pairwise

composing the resulting sets. The alternation 𝐺1 ∨𝐺2 corresponds to a graph type that could be

either 𝐺1 or 𝐺2, so the normalization of this graph type is the union of the normalizations of 𝐺1

and 𝐺2. The normalization of a recursive graph type at index 𝑛 includes all of the graphs with

the recursion unrolled 1 through 𝑛 times. To normalize a recursive graph type, we substitute the

recursive graph type for the variable 𝛾 in the body, and decrement the index. The normalization

also includes all graphs with fewer than 𝑛 unrollings (e.g., in the 3-way unrolling of 𝐺fib, we allow

some recursive branches to terminate early, which does in fact occur in the program.) To this end,

we include Norm𝑛−1 (`𝛾 .𝐺) in the normalization. As an example, we normalize 𝐺fib from above,

using 𝐴 × 𝐵 as shorthand for {𝑔′
1
⊗ 𝑔′

2
| 𝑔′

1
∈ 𝐴,𝑔′

2
∈ 𝐵}.

Norm1 (𝐺fib) = {•}
Norm2 (𝐺fib) = Norm1 (• ∨𝐺fib ⊗ 𝐺fib) ∪ Norm1 (𝐺fib)

= {•} ∪ (Norm1 (𝐺fib) × Norm1 (𝐺fib)) ∪ Norm1 (𝐺fib) = {•, • ⊗ •}
Norm3 (𝐺fib) = Norm2 (• ∨𝐺fib ⊗ 𝐺fib) ∪ Norm2 (𝐺fib)

= Norm2 (𝐺fib) × Norm2 (𝐺fib) ∪ Norm2 (𝐺fib)
= {•, • ⊗ •} × {•, • ⊗ •} ∪ {•, • ⊗ •}
= {•, • ⊗ •, • ⊗ (• ⊗ •), (• ⊗ •) ⊗ •, (• ⊗ •) ⊗ (• ⊗ •)}

The above set contains the three graphs displayed in Figure 5, as well as others (e.g., (•⊗•) ⊗ (•⊗•))
that are possible according to the graph type but will not arise at runtime.

3.3 Language and Graph Type System
Figure 8 presents the syntax of _𝐺

𝐹 𝐽
. The calculus is essentially a simply-typed lambda calculus with

a base type of unit (with value ⟨⟩), functions, pairs and sum types Function abstractions fun 𝑓 𝑥 = 𝑒

are explicitly named, rather than anonymous, and recursive by default. We will use a type-and-

effect system to assign both standard types and graph types to expressions, and so, as in most

presentations of effect systems, we annotate function types with the “latent effect” of the function,

in this case, a graph type corresponding to the parallelism of the function body itself. For example,

if we extend _𝐺
𝐹 𝐽

with integers, we would express the type of the Fibonacci program described above

as int

`𝛾 .(•∨(𝛾 ⊗𝛾))
−−−−−−−−−−−→ int, indicating that the function accepts and returns an integer, and results in a

graph described by the graph type written over the arrow.

The typing judgment for the type system of _𝐺
𝐹 𝐽

is Γ;Δ ⊢ 𝑒 : 𝜏 | 𝐺 . The typing judgment uses

two contexts: Γ, as usual, maps variables to their types. The second context, Δ, lists graph type

variables 𝛾 . The judgment indicates that the expression 𝑒 has type 𝜏 and executing it will produce a

graph corresponding to 𝐺 .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:8 Stefan K. Muller

(S:Var)

Γ, 𝑥 : 𝜏 ;Δ ⊢ 𝑥 : 𝜏 | •

(S:Unit)

Γ;Δ ⊢ ⟨⟩ : unit | •

(S:Fun)

Γ, 𝑓 : 𝜏1
𝛾
−→ 𝜏2, 𝑥 : 𝜏1;Δ, 𝛾 ⊢ 𝑒 : 𝜏2 | 𝐺 𝛾 fresh

Γ;Δ ⊢ fun 𝑓 𝑥 = 𝑒 : 𝜏1
`𝛾 .𝐺
−−−→ 𝜏2 | •

(S:App)

Γ;Δ ⊢ 𝑒1 : 𝜏1
𝐺3−−→ 𝜏2 | 𝐺1 Γ;Δ ⊢ 𝑒2 : 𝜏1 | 𝐺2

Γ;Δ ⊢ 𝑒1 𝑒2 : 𝜏2 | 𝐺1 ⊕ 𝐺2 ⊕ 𝐺3

(S:Par)

Γ;Δ ⊢ 𝑒1 : 𝜏1 | 𝐺1 Γ;Δ ⊢ 𝑒2 : 𝜏2 | 𝐺2

Γ;Δ ⊢ par(𝑒1, 𝑒2) : 𝜏1 × 𝜏2 | 𝐺1 ⊗ 𝐺2

(S:Case)

Γ;Δ ⊢ 𝑒1 : 𝜏1 + 𝜏2 | 𝐺1 Γ, 𝑥 : 𝜏1;Δ ⊢ 𝑒2 : 𝜏 ′ | 𝐺2 Γ, 𝑦 : 𝜏2;Δ ⊢ 𝑒3 : 𝜏 ′ | 𝐺3

Γ;Δ ⊢ case 𝑒1 {𝑥 .𝑒2;𝑦.𝑒3} : 𝜏 ′ | 𝐺1 ⊕ (𝐺2 ∨𝐺3)

Fig. 7. Selected rules for the graph type system of _𝐺 (fork-join subset only).

𝜏 ::= unit | 𝜏 𝐺−→ 𝜏 | 𝜏 × 𝜏 | 𝜏 + 𝜏
𝑒 ::= 𝑥 | ⟨⟩ | fun 𝑓 𝑥 = 𝑒 | 𝑒 𝑒 | (𝑒, 𝑒) | fst 𝑒 | snd 𝑒 | par(𝑒, 𝑒) | inl 𝑒 | inr 𝑒 | case 𝑒 {𝑥 .𝑒 ;𝑦.𝑒}

Fig. 8. Syntax for _𝐺
𝐹 𝐽
.

The interesting rules for this judgment appear in Figure 7. Variables and unit values result in

singleton cost graphs, and have the usual typing properties. When typing a function fun 𝑓 𝑥 = 𝑒 ,

because functions are recursive, we must add 𝑓 to the context with an appropriate type, which must

also include a graph type. A recursive function will yield a recursive graph type, so we assume the

form `𝛾 .𝐺 for the graph type of the function. Recursive instances of 𝑓 within the body then yield

recursive instances of the function graph, so we assign 𝑓 the graph type 𝛾 . We also add 𝛾 to the

graph type variable context and, as usual, the argument 𝑥 to the context with its type 𝜏1. If, under

this context, the body of the function has the result type 𝜏2 and yields a graph of graph type 𝐺 , we

conclude the final type 𝜏1
`𝛾 .𝐺
−−−→ 𝜏2. Functions are values, and so defining a function yields only a

singleton graph •.
The graph contained in a function type only comes into play when the function is applied. At an

application 𝑒1 𝑒2, the function 𝑒1 is required to have a function type 𝜏1
𝐺3−−→ 𝜏2. Because 𝑒1 might

not be a function literal or variable, we also account for the fact that evaluating 𝑒1 might itself

result in a graph 𝐺1. The argument 𝑒2 must have the argument type 𝜏1; evaluating it results in a

graph 𝐺2. The result has type 𝜏2. The graph type of the application sequences together the graphs

corresponding to evaluating 𝑒1, evaluating 𝑒2, and evaluating the function.

An expression par(𝑒1, 𝑒2) has a type which is the pair of the types of the two subexpressions; as

the two expressions are evaluated in parallel, the resulting graph is the parallel composition of the

two subgraphs. Finally, in a pattern match case 𝑒1 {𝑥 .𝑒2;𝑦.𝑒3}, we first evaluate the expression 𝑒1,

which must have a sum type. The two branches must have the same type 𝜏 ′, which is also the

result type of the entire case expression. After evaluating 𝑒1 and producing a graph corresponding

to 𝐺1, we will execute only one of the two branches (either 𝑒2 with graph 𝐺2 or 𝑒3 with 𝐺3). This is

indicated with the graph type 𝐺2 ∨𝐺3.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:9

(C:App)

𝑒1 ⇓ fun 𝑓 𝑥 = 𝑒 | 𝑔1 𝑒2 ⇓ 𝑣 | 𝑔2
𝑒 [𝑣/𝑥] [fun 𝑓 𝑥 = 𝑒/𝑓] ⇓ 𝑣 ′ | 𝑔′

𝑒1 𝑒2 ⇓ 𝑣 ′ | 𝑔1 ⊕ 𝑔2 ⊕ 𝑔′

(C:Par)

𝑒1 ⇓ 𝑣1 | 𝑔1 𝑒2 ⇓ 𝑣2 | 𝑔2
par(𝑒1, 𝑒2) ⇓ (𝑣1, 𝑣2) | 𝑔1 ⊗ 𝑔2

(C:CaseL)

𝑒1 ⇓ inl 𝑣 | 𝑔1 𝑒2 [𝑣/𝑥] ⇓ 𝑣 ′ | 𝑔2
case 𝑒1 {𝑥 .𝑒2;𝑦.𝑒3} ⇓ 𝑣 ′ | 𝑔1 ⊕ 𝑔2

(C:CaseR)

𝑒1 ⇓ inr 𝑣 | 𝑔1 𝑒3 [𝑣/𝑦] ⇓ 𝑣 ′ | 𝑔2
case 𝑒1 {𝑥 .𝑒2;𝑦.𝑒3} ⇓ 𝑣 ′ | 𝑔1 ⊕ 𝑔2

Fig. 9. Selected cost semantics rules for the fork-join subset of _𝐺 .

3.4 Cost Semantics and Soundness
We validate the graph type system by defining a cost semantics for _𝐺

𝐹 𝐽
, which evaluates the program

to produce both a value and a graph corresponding to the execution. The graph type system is

sound if the produced graph is always in the normalization of the predicted graph type. The cost

semantics judgment 𝑒 ⇓ 𝑣 | 𝑔 states that 𝑒 evaluates to value 𝑣 and produces graph 𝑔. Selected rules

for the cost semantics are shown in Figure 9. The other rules are straightforward and/or result

in singleton cost graphs. Evaluating an application 𝑒1 𝑒2 evaluates 𝑒1 to a function value and 𝑒2
to a value, then substitutes the argument for the formal parameter and the function itself for 𝑓 ,

and composes the three resulting cost graphs. Evaluating a par expression produces a pair of the

resulting values and the parallel composition of the two graphs. When evaluating a case expression,

we evaluate 𝑒1 to either inl 𝑣 or inr 𝑣 , at which point the corresponding rule substitutes 𝑣 into

the correct branch and continues evaluating to obtain the final value. Only the selected branch is

evaluated and contributes to the final cost graph, which is sequentially composed with the graph

that resulted from evaluation of 𝑒1.

Theorem 1 is the key soundness result for the graph type system of _𝐺
𝐹 𝐽
. It states that if an

expression 𝑒 has type 𝜏 and graph type 𝐺 in an empty context and evaluates to value 𝑣 producing

graph 𝑔, then 𝑔 is properly represented by 𝐺 (that is, it is in the normalization of 𝐺 for some

index 𝑛). The theorem also encompasses a more standard preservation result, that the type of the

final result 𝑣 is 𝜏 . Because 𝑣 is a value, its associated graph is trivial.

Theorem 1. If ·; · ⊢ 𝑒 : 𝜏 | 𝐺 and 𝑒 ⇓ 𝑣 | 𝑔, then ·; · ⊢ 𝑣 : 𝜏 | • and 𝑔 ∈ Norm𝑛 (𝐺) for some 𝑛 ∈ N.

This result is encompassed by the equivalent theorem presented later along with the full devel-

opment, so we will not give the proof here.

4 GRAPH TYPES
This section extends the definition and formalisms of graph types to futures. As in the previous

section, we will motivate the additional features using example programs. Recall the future-based

implementation of the Fibonacci function from Section 2. Using the notation for graph types

introduced above, and reusing the notations for sequential composition, left composition and edge

addition, we might be tempted to write the graph type for the future-based Fibonacci program as:

𝐺
wrong
fib ≜ `𝛾 .(• ∨ (𝛾 $𝑢 ⊕𝛾 ⊕ 𝑢 %))

However, this definition has an important problem: if we were to unroll the recursion to generate

sets of actual graphs, the same vertex 𝑢 would be used in each recursive instance, which would

violate the requirement that vertices in a graph be unique. To solve this problem, we introduce the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:10 Stefan K. Muller

1 let rec pipeline (f, fut, l) =

2 match l with

3 | [] -> touch fut

4 | h::t ->

5 let fprefix = future (f h + (touch fut)) in

6 pipeline (f, fprefix, t)

7

Fig. 10. Code for the pipeline program.

pipeline [1;2;3]

pipeline [2;3] f 1

pipeline [3] f 2

pipeline []

f 3

u1

u2

u3

u0

Fig. 11. Graph for the pipeline program

with 𝑙 = [1; 2; 3].

notation a𝑢.𝐺 ; this binds the new vertex name 𝑢, which may be freely renamed by the standard

rules of alpha conversion (the notation goes with the convenient mnemonic “new”). Like other

binding constructs, this also induces a notion of scope: the vertex 𝑢 is not bound, and may not be

used, outside 𝐺 . When unrolling the type definition to give a standard graph during normalization,

we will instantiate 𝑢 with a fresh vertex name, leading to the desired behavior. A correct graph

type for the Fibonacci program is then:

𝐺fib ≜ `𝛾 .a𝑢.(• ∨ (𝛾 $𝑢 ⊕𝛾 ⊕ 𝑢 %))
As another example, consider the program in Figure 10, which takes a function 𝑓 and a list

of integers 𝑙0 . . . 𝑙𝑛 and computes 𝑓 (𝑙0) + · · · + 𝑓 (𝑙𝑛) in a pipelined fashion: all of the 𝑓 (𝑙𝑖) are
computed in parallel, and then the results are added together. The function takes a future as an

additional argument: in the (recursive) call pipeline (f, fut, 𝑙𝑖 . . . 𝑙𝑛), fut is a future that is

computing 𝑓 (𝑙0) + · · · + 𝑓 (𝑙𝑖−1) (that is, the sum of the prefix of the desired list). A top-level call of

the function would simply pass in future 0.

If the list is empty, the function simply touches the provided future (which will, by construction,

return the desired sum). Otherwise, it spawns a new future that, in parallel with the rest of the

computation, applies f to the head of the list before demanding the sum of the prefix and adding

them together. The handle to this future is then (immediately, without blocking) passed to the

recursive invocation of pipeline on the rest of the list. When called on a list, the function runs

down the entire list and generates 𝑛 futures in a tight loop. Each future computes 𝑓 on an element

on the list before touching the previous future. The graph for pipeline (f, fut, [1; 2; 3]) is

shown in Figure 11, where fut is a future with sink vertex 𝑢0 (strictly speaking, this is not valid

as a complete program graph because 𝑢0 is never spawned and is therefore an additional source).

Representing this graph as a graph type requires an additional feature: each recursive instance of

the graph must take as an “argument” the vertex of the future it should touch (for example, the

outermost instance of the graph must know to touch 𝑢0, the next instance must know to touch 𝑢1,

and so on). We therefore allow graph types to abstract over vertices: the graph type Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺
represents a graph that abstracts over two sequences of vertices, ®𝑢𝑓 and ®𝑢𝑡 , and may spawn futures

using the vertices in ®𝑢𝑓 and touch the vertices in ®𝑢𝑡 (the two sequences are permitted to overlap

and, indeed, ®𝑢𝑓 is generally a subset of ®𝑢𝑡 ; the reasoning for keeping them separate will become

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:11

𝐺 ::= 𝛾 | • | 𝐺 ⊕ 𝐺 | 𝐺 ⊗ 𝐺 | 𝐺 ∨𝐺 | `𝛾 .𝐺 | 𝐺 $𝑢 |
𝑢 % | a𝑢.𝐺 | Π®𝑢; ®𝑢.𝐺 | 𝐺 [®𝑢; ®𝑢]

Fig. 12. Full syntax for graph types.

Norm𝑛 (𝐺 $𝑢) ≜ {𝐺 ′$𝑢 | 𝐺 ′ ∈ Norm𝑛 (𝐺)}
Norm𝑛 (

𝑢 %) ≜ {𝑢 %}
Norm𝑛 (a𝑢.𝐺) ≜ Norm𝑛 (𝐺 [𝑢 ′/𝑢]) 𝑢 ′

fresh

Norm𝑛 (𝐺 [®𝑢𝑓 ; ®𝑢𝑡]) ≜ Norm𝑛−𝑘 (𝐺 ′[®𝑢𝑓 /®𝑢 ′
𝑓
] [®𝑢𝑡/®𝑢 ′

𝑡]) unroll𝑘 (𝐺) = Π®𝑢 ′
𝑓
; ®𝑢 ′

𝑡 .𝐺
′

Norm𝑛 (𝐺 [®𝑢𝑓 ; ®𝑢𝑡]) ≜ • unroll𝑛 (𝐺) ≠ Π®𝑢 ′
𝑓
; ®𝑢 ′

𝑡 .𝐺
′

Fig. 13. Additional cases of normalization for futures.

clear in the next section). The graph type 𝐺 [®𝑢 ′
𝑓
; ®𝑢 ′

𝑡] applies 𝐺 to two sequences of vertices. We

treat (Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺) [®𝑢 ′
𝑓
; ®𝑢 ′

𝑡] as equal to 𝐺 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] (that is, 𝐺 with the vertices ®𝑢 ′
𝑓
substituted

pointwise for ®𝑢𝑓 and similar for ®𝑢 ′
𝑡 and ®𝑢𝑡). The graph type for the pipeline program can be written

𝐺pipeline ≜ `𝛾 . Π∅;𝑢. a𝑢 ′. (𝑢 %∨((𝐺 𝑓 ⊕
𝑢 %)$𝑢′ ⊕𝛾 [∅;𝑢 ′]))

where ∅ is an empty sequence of vertices. The graph type indicates that each recursive instance

takes a vertex 𝑢, binds a new vertex 𝑢 ′
, and then touches 𝑢 either immediately or after spawning a

future using 𝑢 ′
to perform 𝑓 (whose graph is represented as𝐺 𝑓). In the recursive case, the recursive

instance of the graph, 𝛾 , is passed the vertex corresponding to the new future, 𝑢 ′
.

4.1 Full Graph Type Syntax and Normalization
Figure 12 shows the full syntax for graph types, with the additions motivated above. Figure 13

gives the additional cases of the definition of normalization. Normalizing graph types of the

forms𝐺 $𝑢 and
𝑢 %, which borrow syntax from their graph notation counterparts, is straightforward.

Normalizing a new vertex binding a𝑢.𝐺 generates a fresh vertex and substitutes it for the bound

vertex. Finally, to normalize an application 𝐺 [®𝑢𝑓 ; ®𝑢𝑡], we first unroll any recursive bindings in 𝐺

using the notation unroll𝑘 (𝐺):
unroll𝑛+1 (`𝛾 .𝐺) ≜ unroll𝑛 (𝐺 [`𝛾 .𝐺/𝛾])
unroll𝑛 (𝐺) ≜ 𝐺 𝑛 = 0 ∨𝐺 ≠ `𝛾 .𝐺 ′

Unrolling is performed until a Π graph type is exposed, at which point the 𝛽-reduction is performed

by substituting the vertex sequences pointwise. If we had to unroll 𝑘 recursive bindings, we only

continue to normalize the remaining graph 𝑛−𝑘 additional steps. Graph types that have a Π binding

as their head cannot be normalized, but we will never need to normalize such a graph type, as they

will always be applied eventually.

Lemma 1 lists several properties of the normalization procedure that will be useful in the

remainder of the paper. The first three allow us to move more easily between graph types and graphs

contained in their normalizations. The fourth states that normalization is preserved by substitution.

The fifth shows that normalization is monotonic: normalizing a graph type for additional steps

only adds graphs to the set.

Lemma 1.

(1) If 𝑔1 ∈ Norm𝑛 (𝐺1) and 𝑔2 ∈ Norm𝑛 (𝐺2), then 𝑔1 ⊕ 𝑔2 ∈ Norm𝑛 (𝐺1 ⊕ 𝐺2).
(2) If 𝑔1 ∈ Norm𝑛 (𝐺1) and 𝑔2 ∈ Norm𝑛 (𝐺2), then 𝑔1 ⊗ 𝑔2 ∈ Norm𝑛 (𝐺1 ⊗ 𝐺2).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:12 Stefan K. Muller

(DW:Empty)

Δ;Ω;Ψ ⊢ • : ∗

(DW:Var)

Δ, 𝛾 : ^;Ω;Ψ ⊢ 𝛾 : ^

(DW:Seq)

Δ;Ω1;Ψ ⊢ 𝐺1 : ∗ Δ;Ω2;Ψ ⊢ 𝐺2 : ∗
Δ;Ω1,Ω2;Ψ ⊢ 𝐺1 ⊕ 𝐺2 : ∗

(DW:Par)

Δ;Ω1;Ψ ⊢ 𝐺1 : ∗ Δ;Ω2;Ψ ⊢ 𝐺2 : ∗
Δ;Ω1,Ω2;Ψ ⊢ 𝐺1 ⊗ 𝐺2 : ∗

(DW:Or)

Δ;Ω;Ψ ⊢ 𝐺1 : ∗ Δ;Ω;Ψ ⊢ 𝐺2 : ∗
Δ;Ω;Ψ ⊢ 𝐺1 ∨𝐺2 : ∗

(DW:RecPi)

Δ, 𝛾 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗; ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝐺 : ∗
Δ;Ω;Ψ ⊢ `𝛾 .Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗

(DW:Spawn)

Δ;Ω;Ψ ⊢ 𝐺 : ∗
Δ;Ω, 𝑢;Ψ ⊢ 𝐺 $𝑢 : ∗

(DW:Touch)

Δ;Ω;Ψ, 𝑢 ⊢ 𝑢 % : ∗

(DW:New)

Δ;Ω, 𝑢;Ψ, 𝑢 ⊢ 𝐺 : ∗ 𝑢 ∉ Ω,Ψ

Δ;Ω;Ψ ⊢ a𝑢.𝐺 : ∗

(DW:Pi)

Δ;Ω, ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝐺 : ∗
Δ;Ω;Ψ ⊢ Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗

(DW:App)

Δ;Ω;Ψ, ®𝑢 ′𝑡 ⊢ 𝐺 : Π®𝑢𝑓 ; ®𝑢𝑡 .^
Δ;Ω, ®𝑢 ′

𝑓
;Ψ, ®𝑢 ′𝑡 ⊢ 𝐺 [®𝑢 ′

𝑓
; ®𝑢 ′𝑡] : ^

Fig. 14. Rules for graph type formation.

(3) If 𝑔 ∈ Norm𝑛 (𝐺) then 𝑔$𝑢∈ Norm𝑛 (𝐺 $𝑢).
(4) If 𝑔 ∈ Norm𝑛 (𝐺) then 𝑔[𝑢 ′/𝑢] ∈ Norm𝑛 (𝐺 [𝑢 ′/𝑢]).
(5) If 𝑔 ∈ Norm𝑛 (𝐺) and𝑚 ≥ 𝑛, then 𝑔 ∈ Norm𝑚 (𝐺).

Cases (1)-(3) are immediate from the definition of normalization. Case (4) is a straightforward

structural induction on 𝐺 . Case (5) is a lexicographic induction on 𝐺 and 𝑚: the key insight is

that Norm𝑚−1 (`𝛾 .𝐺) is contained in Norm𝑚 (`𝛾 .𝐺).

4.2 Graph Type Formation
Adding explicit vertex names to the graph type syntax now opens the possibility of syntactically

valid but problematic graph types. For example, we would want to disallow the graph type •$𝑢

⊕•$𝑢 ⊕ 𝑢 % because its normalization (which, due to the reuse of syntax, is exactly {•$𝑢 ⊕•$𝑢

⊕ 𝑢 %}) contains an ill-formed graph: the vertex 𝑢 is used twice and it is therefore impossible to

determine which instance of 𝑢 should be the source of the edge added by the touch
𝑢 %. To avoid

this, we ensure that vertex names are unique when producing graph types from expressions, and

declare invalid any graph types with duplicate vertex names.

The judgment Δ;Ω;Ψ ⊢ 𝐺 : ^ indicates that a graph type is semantically valid. As before, Δ
contains bound graph type variables. In addition, it now maps these variables to the kind of the
graph. Graph kinds indicate whether a graph type is a Π, and if so, its arities. The graph kind ∗
indicates a graph type that does not have a Π at the outermost level.

Graph Kind ^ ::= ∗ | Π®𝑢𝑓 ; ®𝑢𝑡 .^

In order to restrict the use of vertex names, we assume that vertex names are drawn from a global

“pool” of vertex names (although new vertex names can be added by Π and a bindings). We use

two contexts to store these “available” vertex names. The context Ω includes the vertices that are

available to be used in spawns 𝐺 $𝑢 . In order to ensure that each vertex name is attached to only

one future, this context is affine—we permit weakening (additional vertex names can be added to Ω
and not used to spawn futures) but not contraction. The context Ψ includes vertices that may be

used in touches
𝑢 % and is unrestricted, as vertices can be touched any number of times.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:13

The rules for the graph type formation judgment are presented in Figure 14. Most of the rules are

relatively straightforward. In rules DW:Seq and DW:Par, we explicitly split the affine context Ω so

that vertex names may be used in spawns in at most one of the two subgraphs. It is not necessary to
split the context in ruleDW:Or: because only one of the two subgraphs will actually appear in a nor-

malization of this graph type, it is safe to reuse spawned vertices between the two. Indeed, it is some-

times necessary to do so: consider the expression touch (if e then future e1 else future e2).

We can assign this expression the graph type (𝐺1$𝑢 ∨𝐺2$𝑢) ⊕
𝑢 % whereas if we had to assign the

two branches different vertices, we wouldn’t be able to assign a single graph type to the touch.

For simplicity, we assume that all recursive `𝛾 .𝐺 bindings immediately contain a nestedΠ®𝑢𝑓 ; ®𝑢𝑡 .𝐺 ′

(this does not cause any loss of generality, as ®𝑢𝑓 and ®𝑢𝑡 may both be ∅) and that 𝐺 ′
is then not

immediately a Π or `. All of the graph types used in our graph type system naturally adhere to

this form, so this restriction is not burdensome. Under these assumptions, rule DW:RecPi adds the

variable 𝛾 with the appropriate Π kind to the context Δ and adds the vertex sequence arguments to

the appropriate contexts. The graph 𝐺 may capture names from Ψ but not Ω, as this might allow

them to be duplicated. Vertex bindings Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺 are also permitted to appear on their own without

recursion, provided 𝐺 has kind ∗; these are handled by DW:Pi.

Rules DW:Spawn and DW:Touch require the named vertex to be in the appropriate context.

Rule DW:New adds the new vertex to both contexts provided it is not currently in either context

(which can be ensured through 𝛼-conversion). Finally, DW:App requires the vertex arguments to

be present in the appropriate contexts, and removes the vertices ®𝑢 ′
𝑓
from the affine context.

We now show formally that well-formed graph types (according to the rules of Figure 14) can be

normalized into sets of meaningful graphs. We refer to this notion as “normalizability” and define

it formally below. Recall that graphs of kind Π®𝑢𝑓 ; ®𝑢𝑡 .^ cannot be normalized directly, so we define

such a graph to be normalizable if when unrolled and applied to appropriate arguments, the result

can be normalized. This completes the induction hypothesis for the result we show below.

Definition 1. A graph 𝐺 : ^ is normalizable at 𝑛 if

• ^ = ∗ and for all 𝑔 ∈ Norm𝑛 (𝐺), the graph 𝑔 is well-defined.

• ^ = Π®𝑢𝑓 ; ®𝑢𝑡 .∗ and unroll𝑘 (𝐺) = Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺 ′
for some 𝑘 , and for all ®𝑢 ′

𝑓
, ®𝑢 ′

𝑡 of appropriate arities,

we have that 𝐺 ′[®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] is normalizable at 𝑛.

The proof that well-formed graph types are normalizable relies on the fact, stated in Lemma 2

and proven in the appendix, that any vertices generated by normalization are fresh; otherwise

vertices in normalized graphs are “free” in the graph type. We define FF(𝐺) to be the vertex names

used in spawns (𝐺 ′$𝑢) inside𝐺 which are not bound in𝐺 . We also use the shorthand Verts(g) = 𝑉

when 𝑔 = (𝑉 , 𝐸, 𝑠, 𝑡).

Lemma 2. For all𝐺 and all 𝑛 ≥ 0 and all 𝑔 ∈ Norm𝑛 (𝐺), Verts(g) ⊂ FF(𝐺) ∪𝑉 where𝑉 is a set of
freshly-chosen vertices.

Theorem 2. For all 𝑛 ≥ 0,

(1) If ·;Ω;Ψ ⊢ 𝐺 : ^ then FF(𝐺) ⊂ Ω and 𝐺 is normalizable at 𝑛.
(2) If 𝛾 ;Ω;Ψ ⊢ 𝐺 : ^ then FF(𝐺) ⊂ Ω and 𝐺 [`𝛾 .Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺/𝛾] is normalizable at 𝑛.

The proof is by lexicographic induction on 𝑛 and the appropriate type formation derivation. The

induction hypothesis on 𝑛 is used in the DW:Var case, where we must reason that `𝛾 .Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺 is

normalizable. The full proof is in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:14 Stefan K. Muller

Types 𝜏 ::= unit | Π®𝑢; ®𝑢.𝜏 𝐺−→ 𝜏 | 𝜏 × 𝜏 | 𝜏 + 𝜏 | 𝜏 future[𝑢]
Expressions 𝑒 ::= 𝑥 | ⟨⟩ | fun[®𝑢; ®𝑢] 𝑓 𝑥 = 𝑒 | 𝑒 [®𝑢; ®𝑢] 𝑒 | (𝑒, 𝑒) | fst 𝑒 | snd 𝑒 | par(𝑒, 𝑒) |

inl 𝑒 | inr 𝑒 | case 𝑒 {𝑥 .𝑒 ;𝑦.𝑒} | future[𝑢] 𝑒 | touch 𝑒 | new 𝑢.𝑒

Fig. 15. Syntax of _𝐺 .

5 A GRAPH-ANNOTATED CORE CALCULUS
In this section, we present the full language _𝐺 and its graph type system, which we use to infer

graph types for programs. To aid in the computation of graph types, we annotate _𝐺 programs

with vertex names for futures: spawns of futures are annotated with the vertex to be used to

spawn this future, and the type of futures, 𝜏 future[𝑢], is similarly annotated with the sink vertex

of the future. New vertex names can be bound using a “new” construct analogous to the a𝑢.𝐺

binding for graph types. Additional annotations on function definitions and applications allow for

a form of future-polymorphism, which will be explained below. Note that we do not expect these
annotations to be inserted by programmers: Section 6 will discuss how these annotations can be

automatically inferred and inserted into unannotated source programs. The problem of inferring

these annotations is largely orthogonal to finding a graph type from an annotated program, so we

present the graph type system over the annotated language out of a separation of concerns.

5.1 Syntax and Type Formation
The full syntax of _𝐺 is shown in Figure 15. Types are the same as for _𝐺

𝐹 𝐽
, with the addition of a

type of futures. The type of functions has also been modified to account for a form of polymorphism

which will be explained below. Expressions include the expressions of _𝐺
𝐹 𝐽
, as well as constructs to

spawn and touch futures, and the expression new 𝑢.𝑒 , which binds the new vertex name 𝑢 in 𝑒 .

Functions are now polymorphic over the sets of vertices that the body of the function may spawn

or touch: the function fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒 may spawn futures using vertices in ®𝑢𝑓 and may touch

futures using vertices in ®𝑢𝑡 . This allows functions to accept and return values of future type. For

example, consider the function mytouch, which essentially replicates the functionality of touch.

fun mytouch 𝑓 = touch 𝑓

We could assign the type mytouch : 𝑢 future[𝜏]
𝑢

%
−−→ int. However, this is not general enough: it

only allows mytouch to be applied to the future spawned using vertex 𝑢! Instead, we make mytouch
polymorphic in the vertex 𝑢 and assign it the type

mytouch : Π∅;𝑢.𝑢 future[𝜏]
Π∅;𝑢.

𝑢

%
−−−−−−→ int

Note that the Π binder appears in both the function type and the graph type. We would annotate

the definition of mytouch accordingly, with 𝑢 as a parameter (similar to a type parameter in some

presentations of parametric polymorphism):

fun[∅;𝑢] mytouch 𝑓 = touch 𝑓

If we wish to apply mytouch to the future expression future[𝑢 ′] 𝑒 : 𝜏 future[𝑢 ′], we would do so

by instantiating the parameter 𝑢 to 𝑢 ′
using the syntax

mytouch[∅;𝑢 ′] (future[𝑢 ′] 𝑒)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:15

(S:Fun)

Γ, 𝑓 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝛾
−→ 𝜏2, 𝑥 : 𝜏1;Δ, 𝛾 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗; ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝑒 : 𝜏2 | 𝐺

𝛾 fresh Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏1 ok Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏2 ok

Γ;Δ;Ω;Ψ ⊢ fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
`𝛾 .Π®𝑢𝑓 ;®𝑢𝑡 .𝐺
−−−−−−−−−−−→ 𝜏2 | •

(S:App)

Γ;Δ;Ω1;Ψ, ®𝑢 ′𝑡 ⊢ 𝑒1 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝐺3−−→ 𝜏2 | 𝐺1 Γ;Δ;Ω2;Ψ, ®𝑢 ′𝑡 ⊢ 𝑒2 : 𝜏1 [®𝑢 ′𝑡/®𝑢𝑡] | 𝐺2

Γ;Δ;Ω1,Ω2, ®𝑢 ′𝑓 ;Ψ, ®𝑢
′
𝑡 ⊢ 𝑒1 [®𝑢 ′𝑓 ; ®𝑢

′
𝑡] 𝑒2 : 𝜏2 [®𝑢 ′𝑡/®𝑢𝑡] | 𝐺1 ⊕ 𝐺2 ⊕ unroll (𝐺3) [®𝑢 ′𝑓 ; ®𝑢

′
𝑡]

(S:Pair)

Γ;Δ;Ω1;Ψ ⊢ 𝑒1 : 𝜏1 | 𝐺1 Γ;Δ;Ω2;Ψ ⊢ 𝑒2 : 𝜏2 | 𝐺2

Γ;Δ;Ω1,Ω2;Ψ ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2 | 𝐺1 ⊕ 𝐺2

(S:Fst)

Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏1 × 𝜏2 | 𝐺
Γ;Δ;Ω;Ψ ⊢ fst 𝑒 : 𝜏1 | 𝐺

(S:Snd)

Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏1 × 𝜏2 | 𝐺
Γ;Δ;Ω;Ψ ⊢ snd 𝑒 : 𝜏2 | 𝐺

(S:InL)

Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏1 | 𝐺
Γ;Δ;Ω;Ψ ⊢ inl 𝑒 : 𝜏1 + 𝜏2 | 𝐺

(S:InR)

Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏2 | 𝐺
Γ;Δ;Ω;Ψ ⊢ inr 𝑒 : 𝜏1 + 𝜏2 | 𝐺

(S:Case)

Γ;Δ;Ω1;Ψ ⊢ 𝑒1 : 𝜏1 + 𝜏2 | 𝐺1 Γ, 𝑥 : 𝜏1;Δ;Ω2;Ψ ⊢ 𝑒2 : 𝜏 ′ | 𝐺2 Γ, 𝑦 : 𝜏2;Δ;Ω2;Ψ ⊢ 𝑒3 : 𝜏 ′ | 𝐺3

Γ;Δ;Ω1,Ω2;Ψ ⊢ case 𝑒1 {𝑥 .𝑒2;𝑦.𝑒3} : 𝜏 ′ | 𝐺1 ⊕ (𝐺2 ∨𝐺3)

(S:Future)

Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏 | 𝐺
Γ;Δ;Ω, 𝑢;Ψ, 𝑢 ⊢ future[𝑢] 𝑒 : 𝜏 future[𝑢] | 𝐺 $𝑢

(S:Touch)

Γ;Δ;Ω;Ψ, 𝑢 ⊢ 𝑒 : 𝜏 future[𝑢] | 𝐺
Γ;Δ;Ω;Ψ, 𝑢 ⊢ touch 𝑒 : 𝜏 | 𝐺 ⊕ 𝑢 %

(S:New)

Γ;Δ;Ω, 𝑢;Ψ, 𝑢 ⊢ 𝑒 : 𝜏 | 𝐺 𝑢 ∉ FV(𝜏) 𝑢 ∉ Ω,Ψ

Γ;Δ;Ω;Ψ ⊢ new 𝑢.𝑒 : 𝜏 | a𝑢.𝐺

Fig. 16. Graph type system for _𝐺 .

As we did for graph types, we will now present rules defining what it means for a type to be

well-formed. The judgment is Δ;Ψ ⊢ 𝜏 ok. Note that this judgment does not include the affine

context of vertices “available” for spawns: types are fundamentally predictions about the value of
an expression, and values do not spawn futures (future handles are themselves values, however,

and so types must include the vertex names for already-spawned futures). The full rules for the

judgment are included in the supplementary material. The interesting rule is the one for function

types, which requires that the graph on the arrow is well-formed:

Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏1 ok Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏2 ok Δ; ·;Ψ ⊢ 𝐺 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗

Δ;Ψ ⊢ Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝐺−→ 𝜏2 ok

5.2 Graph Type System
We are now ready to present the rules for the graph type system, which produces types and graph

types from annotated _𝐺 expression. The rules are shown in Figure 16. The judgment now includes

the vertex contexts Ω andΨ but is otherwise the same as the graph typing judgment for the fork-join

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:16 Stefan K. Muller

language. The most interesting rules are S:Fun and S:App. For a function fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒 , we

will infer a type Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
`𝛾 .Π®𝑢𝑓 ;®𝑢𝑡 .𝐺−−−−−−−−−→ 𝜏2. As before, we add 𝑓 to the context with a type of this

shape, but using the recursive instance 𝛾 instead of the full graph. We also add 𝛾 to the context,

with its kind, Π®𝑢𝑓 ; ®𝑢𝑡 .∗. Placing the Π binding inside the ` binding like this and thus assigning 𝛾 a Π
kind allows for vertex-polymorphic recursion, which is crucial. Recall the pipeline example above.

Without polymorphic recursion, each recursive instance of pipeline would need to be passed the

same future. The body of the function is analyzed using only ®𝑢𝑓 as the affine context; vertices from

the context outside the function cannot be captured by the function body, as using the function in

multiple places would then allow these vertices to be duplicated. The outer context Ψ, however,
may be used freely inside the function body in addition to vertices bound in ®𝑢𝑡 . Practically speaking,
this means that any vertex spawned by a function body must be either passed as a parameter to the

function or bound by a new inside the body. If the vertex needs to be available outside the function

body (e.g., if the function returns the future), it must be passed as a parameter.

Applications 𝑒1 [®𝑢 ′
𝑓
; ®𝑢 ′

𝑡] 𝑒2 now include pairs of vertex sequences as parameters. The affine context

must include ®𝑢 ′
𝑓
; the remainder of the affine context is split between 𝑒1 and 𝑒2. The unrestricted

vertex context must include ®𝑢 ′
𝑡 , but the entirety of this context, including ®𝑢 ′

𝑡 , is available to both 𝑒1
and 𝑒2. We perform the appropriate substitutions on both the argument and return types. Finally, we

must instantiate the graph of the function body 𝐺3, with the appropriate vertices (from rule S:Fun,

we know that𝐺3 will be of Π kind). We first unroll𝐺3 to try to expose a Π binding and then perform

the instantiation. If 𝐺3 = 𝛾 , this will result in the graph type 𝛾 [®𝑢 ′
𝑓
; ®𝑢 ′

𝑡], while if it is actually a Π

(under a recursive binding), we will perform the appropriate 𝛽-reduction.

Rules S:Future and S:Touch simply require the vertices to be in the appropriate contexts. The

rule for new 𝑢.𝑒 adds 𝑢 to both contexts. Additionally, it requires that 𝑢 is does not appear free in

the type of 𝑒 . This restriction prevents a spawned future from escaping the scope of its vertex.

Lemma 3 presents a number of results showing that typing or formation are preserved under

substitution: values may be substituted into expressions (part 1), graphs may be substituted into

graphs (part 2), types (3) and the typing of expressions (4), and vertices may be substituted into

graphs (5), types (6) and expressions (7).

Lemma 3.

(1) If Γ, 𝑥 : 𝜏 ′;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏 | 𝐺 and ·; ·;Ω;Ψ ⊢ 𝑣 : 𝜏 ′ | • then Γ;Δ;Ω;Ψ ⊢ 𝑒 [𝑣/𝑥] : 𝜏 | 𝐺 .
(2) If Δ, 𝛾 : ^ ′

;Ω;Ψ ⊢ 𝐺 : ^ and Δ;Ω;Ψ ⊢ 𝐺 ′
: ^ ′ then Δ;Ω;Ψ ⊢ 𝐺 [𝐺 ′/𝛾] : ^.

(3) If Δ, 𝛾 : ^;Ψ ⊢ 𝜏 ok and Δ;Ω;Ψ ⊢ 𝐺 : ^ then Δ;Ψ ⊢ 𝜏 [𝐺/𝛾] ok.
(4) If Γ;Δ, 𝛾 : ^;Ω;Ψ ⊢ 𝑒 : 𝜏 | 𝐺 and Δ;Ω;Ψ ⊢ 𝐺 ′

: ^ then Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏 [𝐺 ′/𝛾] | 𝐺 [𝐺 ′/𝛾].
(5) If Δ;Ω, ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝐺 : ^ then Δ;Ω, ®𝑢 ′

𝑓
;Ψ, ®𝑢 ′

𝑡 ⊢ 𝐺 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] : ^.
(6) If Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏 ok then Δ;Ψ, ®𝑢 ′

𝑡 ⊢ 𝜏 [®𝑢 ′
𝑡/®𝑢𝑡] ok.

(7) If Γ;Δ;Ω, ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝑒 : 𝜏 | 𝐺 and ®𝑢 ′
𝑓
∩ Ω, ®𝑢𝑓 = ∅ then Γ;Δ;Ω, ®𝑢 ′

𝑓
;Ψ, ®𝑢 ′

𝑡 ⊢ 𝑒 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] :
𝜏 [®𝑢 ′

𝑡/®𝑢𝑡] | 𝐺 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡].

The proofs are straightforward inductions, and are available in the supplementary material.

We can now show that the various static semantics are consistent: If an expression has type 𝜏

and graph type𝐺 , then 𝜏 and𝐺 are well-formed. The judgment Δ;Ψ ⊢ Γ is the natural extension of

type formation to contexts: a context is well-formed if all of the types in it are.

Lemma 4. If Δ;Ψ ⊢ Γ and Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏 | 𝐺 then Δ;Ψ ⊢ 𝜏 ok and Δ;Ω;Ψ ⊢ 𝐺 : ∗.

Proof. By induction on the derivation of Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏 | 𝐺 . □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:17

(C:Unit)

⟨⟩ ⇓ ⟨⟩ | •

(C:Fun)

fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒 ⇓ fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒 | •

(C:App)

𝑒1 ⇓ fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒 | 𝑔1 𝑒2 ⇓ 𝑣 | 𝑔2
𝑒 [®𝑢 ′

𝑓
/®𝑢𝑓] [®𝑢 ′𝑡/®𝑢𝑡] [𝑣/𝑥] [fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒/𝑓] ⇓ 𝑣 ′ | 𝑔′

𝑒1 [®𝑢 ′𝑓 ; ®𝑢
′
𝑡] 𝑒2 ⇓ 𝑣 ′ | 𝑔1 ⊕ 𝑔2 ⊕ 𝑔′

(C:Pair)

𝑒1 ⇓ 𝑣1 | 𝑔1 𝑒2 ⇓ 𝑣2 | 𝑔2
(𝑒1, 𝑒2) ⇓ (𝑣1, 𝑣2) | 𝑔1 ⊕ 𝑔2

(C:Fst)

𝑒 ⇓ (𝑣1, 𝑣2) | 𝑔
fst 𝑒 ⇓ 𝑣1 | 𝑔

(C:InL)

𝑒 ⇓ 𝑣 | 𝑔
inl 𝑒 ⇓ inl 𝑣 | 𝑔

(C:Future)

𝑒 ⇓ 𝑣 | 𝑔
future[𝑢] 𝑒 ⇓ future[𝑢] 𝑣 | 𝑔$𝑢

(C:Touch)

𝑒 ⇓ future[𝑢] 𝑣 | 𝑔
touch 𝑒 ⇓ 𝑣 | 𝑔 ⊕ 𝑢 %

(C:New)

𝑒 ⇓ 𝑣 | 𝑔 𝑢 ′ fresh

new 𝑢.𝑒 ⇓ 𝑣 | 𝑔[𝑢 ′/𝑢]

Fig. 17. Cost Semantics for _𝐺 .

5.3 Cost Semantics and Soundness
Figure 17 presents the cost semantics for the full _𝐺 calculus. The judgment 𝑒 ⇓ 𝑣 | 𝑔 is the same as

in Figure 9 for _𝐺
𝐹 𝐽
. We omit rules C:Par, C:CaseL and C:CaseR, which are unchanged from Figure 9.

We also omit rules C:Snd and C:InR, which are analogous to C:Fst and C:InL, respectively. The

interesting additions are rules C:Future, C:Touch and C:New. For an expression future[𝑢] 𝑒 , if 𝑒
evaluates to 𝑣 and has graph 𝑔, we represent the spawning of the future by left-composing 𝑔 using

vertex𝑢. The future evaluates to a future value that simply stores the result 𝑣 . An expression touch 𝑒

first evaluates 𝑒 down to a future value future[𝑢] 𝑣 , which gives both the value that the touch should
return and the vertex that should be touched. The graph that results from evaluating 𝑒 is then

sequentially composed with a touch of 𝑢. We evaluate an expression new 𝑢.𝑒 by first evaluating 𝑒 .

For all instances of𝑢 in the resulting graph, we substitute a fresh vertex𝑢 ′
to preserve the “newness”

of 𝑢 in the final graph. Note that we do not need to substitute into the final value 𝑣 : the typing rule

S:New ensures that 𝑢 does not appear in 𝑣 .

We can now show the analogue of Theorem 1 for _𝐺 . As before, we show that if an expression 𝑒

has a graph type 𝐺 and evaluates with graph 𝑔, then 𝑔 is in the normalization of 𝐺 .

Theorem 3. If ·; ·;Ω;Ψ ⊢ 𝑒 : 𝜏 | 𝐺 and 𝑒 ⇓ 𝑣 | 𝑔, then ·; ·;Ω;Ψ ⊢ 𝑣 : 𝜏 | • and 𝑔 ∈ Norm𝑛 (𝐺) for
some 𝑛 ∈ N.

Proof. By induction on the derivation of 𝑒 ⇓ 𝑣 | 𝑔. The interesting case is C:App. In this

case, 𝑒 = 𝑒1 [®𝑢 ′
𝑓
; ®𝑢 ′

𝑡]𝑒2 and 𝑒1 ⇓ fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒0 | 𝑔1 and 𝑒2 ⇓ 𝑣 | 𝑔2 and

𝑒0 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] [𝑣/𝑥] [fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒0/𝑓] ⇓ 𝑣 ′ | 𝑔3

By inversion on S:App, ·; ·;Ω1;Ψ ⊢ 𝑒1 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝐺3−−→ 𝜏2 | 𝐺1 and ·; ·;Ω2;Ψ ⊢ 𝑒2 : 𝜏1 | 𝐺2

where Ω = Ω1,Ω2, ®𝑢 ′
𝑓
.

By induction, ·; ·;Ω1;Ψ ⊢ fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒0 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝐺3−−→ 𝜏2 | • and ·; ·;Ω2;Ψ ⊢ 𝑣 : 𝜏1 | • and

𝑔1 ∈ Norm𝑛1
(𝐺1) and 𝑔2 ∈ Norm𝑛2

(𝐺2).
By inversion on S:Fun, 𝑓 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1

𝛾
−→ 𝜏2, 𝑥 : 𝜏1;𝛾 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗; ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝑒0 : 𝜏2 | 𝐺 and 𝐺3 =

`𝛾 .Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺 . By Lemma 3,

·; ·; ®𝑢 ′
𝑓
;Ψ, ®𝑢 ′

𝑡 ⊢ 𝑒0 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] [𝑣/𝑥] [fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒0/𝑓] : 𝜏2 [®𝑢 ′
𝑡/®𝑢𝑡] | 𝐺 [Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺/𝛾] [®𝑢 ′

𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:18 Stefan K. Muller

By induction, ·; ·; ®𝑢 ′
𝑓
;Ψ, ®𝑢 ′

𝑡 ⊢ 𝑣 ′ : 𝜏2 [®𝑢 ′
𝑡/®𝑢𝑡] | • and 𝑔3 ∈ Norm𝑛3

(𝐺 [Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺/𝛾] [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡]).
By Lemma 1, we have

𝑔1 ⊕ 𝑔2 ⊕ 𝑔3 ∈ Normmax(𝑛1,𝑛2,𝑛3) (𝐺1 ⊕ 𝐺2 ⊕ 𝐺 [Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺/𝛾] [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡])
= Normmax(𝑛1,𝑛2,𝑛3) (𝐺1 ⊕ 𝐺2 ⊕ unroll (𝐺3) [®𝑢 ′

𝑓
; ®𝑢 ′

𝑡])

□

6 VERTEX ANNOTATION INFERENCE
The graph type system for _𝐺 assumes that programs have been annotated with names of vertices.

Recall that this requires three types of additions and annotations to ordinary source programs:

(1) Future creation operations future e must be annotated with a vertex name; this vertex

becomes the sink of the created future in the graph.

(2) Function definitions must include two sets of vertices ®𝑢𝑓 and ®𝑢𝑡 for use in the function

body; ®𝑢𝑓 must include all vertices used to spawn futures in the function body, as functions

may not capture such vertices from the environment. The other set, ®𝑢𝑡 , allows the function
to accept arguments of future type and be polymorphic over the vertices used in the future.

Applications of functions must instantiate these sets of vertices.

(3) Any new future names that must be created at runtime (e.g., in the body of a recursive

function) must be bound in a “new” construct new 𝑢.𝑒 .

We observed in the introduction (and further discuss in Section 9) an analogy between region

type systems and _𝐺 ; a similar analogy exists between region inference and inferring the above

annotations. Our vertex inference algorithm is inspired by the region inference algorithm of Tofte

and Birkedal [1998], which in turn builds on Hindley-Milner type inference [Hindley 1969; Milner

1978]. In the discussion of our vertex inference algorithm, we will therefore focus on aspects that

are new or different from region inference and Hindley-Milner. A more detailed discussion of the

differences between the setting of this paper and region systems appears in Section 9.

Inference of the vertex annotations occurs in one pass over the source program, at the same

time as, and in concert with, standard Hindley-Milner type inference. Because vertex annotations

appear in the types of futures, and vertex bindings appear in the types of functions (as binders of

the form Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏), unification performed as part of type inference will naturally propagate and

unify vertex annotations correctly. Unifying vertex annotations results in equivalence classes of

vertices; vertices that have been made equivalent by unification are treated identically throughout

the remainder of our algorithm.

When typing a spawn future e, our algorithm creates a new vertex name to use in the annotation

of the expression and in the type of the new future. The remaining interesting points of the inference

algorithm occur when handling function bodies. We follow these steps in inferring a function

definition fun x -> e (or a let-bound non-recursive function; recursive functions are more complex

and described below). We use FF(𝑒) to refer to the future names spawned in 𝑒 and FVS(𝜏) to refer

to the free vertex names in 𝜏 (this extends naturally to FVS(Γ)).
(1) Create a fresh type variable for the argument x and add it to the context.

(2) Perform type inference on the body 𝑒 to get an annotated function body 𝑒 ′, infer a result
type 𝜏2 and possibly narrow down the argument type 𝜏1.

(3) Let ®𝑢𝑛 ≜ FF(𝑒) \ FVS(𝜏2) \ FVS(Γ). This is the set of vertices that are newly used as spawns

in the function body and do not escape the function body, so may be bound as “new” inside

the function. Let 𝑒 ′′ ≜ new ®𝑢𝑛 .𝑒 ′.
(4) Let ®𝑢𝑡 ≜ FVS(𝜏1). This is the set of vertices over which the function must be polymorphic.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:19

(5) Let ®𝑢𝑓 ≜ FF(𝑒 ′′). This is the set of vertices that are newly used as spawns in the function

body and not bound in the “new”. They must therefore be passed as parameters.

(6) Return the annotated function definition fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑥 → 𝑒 ′′.

At an application 𝑒1 𝑒2, we perform type inference on the two subexpressions. If the inferred

type for 𝑒1 is of the form Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝐺−→ 𝜏2, then as we did when processing a future, we create

two sets of fresh new vertices with which to instantiate ®𝑢𝑓 and ®𝑢𝑡 . If these new sets are ®𝑢 ′
𝑓
and ®𝑢 ′

𝑡 ,

we generate the annotated application 𝑒1 [®𝑢 ′
𝑓
; ®𝑢 ′

𝑡] 𝑒2. If the type of 𝑒1 has not yet been inferred

(which might happen if 𝑒1 is a variable), we infer the type Π∅; ®𝑢𝑡 .𝜏1
𝛾
−→ 𝜏2 where ®𝑢𝑡 = FF(𝜏1) and

generate the annotated application 𝑒1 [∅; ®𝑢 ′
𝑡] 𝑒2. If 𝑒2 is a future, this allows the function 𝑒1 to be a

vertex-polymorphic function accepting the future argument. Note that this means that a variable

of function type (e.g., a functional argument of a higher-order function) will not be assigned a Π
type, and therefore not be able to accept or return arguments containing futures, unless the type

of the argument is known to contain a future (that is, FF(𝜏1) ≠ ∅) at the time of application. The

impact of this limitation is fairly minimal in practice and is discussed in the appendix.

Recursive functions require additional care. As in traditional type inference, when analyzing

the body of a recursive function 𝑓 , we create a new type variable to represent the type of the

function, add it to the context, run the procedure for non-recursive functions above and then unify

the “guessed” type with the inferred type of the function. The type of 𝑓 now has the “refined”

form Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝐺−→ 𝜏2, and so recursive invocations of 𝑓 in the body will require annotations,

e.g., 𝑒1 [®𝑢 ′
𝑓
; ®𝑢 ′

𝑡] 𝑒2, as discussed in the previous paragraph. We therefore add the new, “refined,”

type of 𝑓 to the context and run the inference procedure on the body of 𝑓 again to produce

these annotations and perform the relevant unifications on them. In standard type inference with

polymorphic recursion, this iteration of performing inference on the function body could go on

forever [Mycroft 1984] if the type of 𝑓 grows on each iteration. However, in our case, the new

vertex annotations on functions may substitute new vertices into the type of 𝑓 but will not cause it

to grow, and we can stop after the second iteration.

As an example, we will walk through inferring the vertex annotations for the Pipeline program

of Section 4. Because the pipeline function is recursive, we begin by guessing a type 'a for it

and proceed to perform inference on the body. At touch fut on line 3, we infer that fut has the

type ’b future[𝑢0], where 𝑢0 is a freshly created name. When we later encounter touch fut on line

5, we unify ’bwith int. When analyzing the application f h, we infer a type ’c
𝛾0−→ ’d for f, where𝛾0

is a freshly created graph variable (as discussed above, we do not infer a Π type for f because h is not

yet known to—and indeed doesn’t—have a future type). We generate a new vertex 𝑢1 with which to

annotate the future on line 5. The type of fprefix is then inferred to be int future[𝑢1]. By the time

we encounter the recursive call, we will have inferred the type (’c
𝛾0−→ int) × int future[𝑢1] ×’c list

for the argument to the recursive call. Because this has a free vertex 𝑢1, we will infer the type

Π∅;𝑢1.(’c
𝛾0−→ int) × int future[𝑢1] × ’c list

𝛾1−→ int

for pipeline and annotate the application to be pipeline[∅;𝑢1] (f, fprefix, t). The function

body now has a free vertex 𝑢1 used as a spawn. This vertex does not appear in the return type of the

function, so we add a new 𝑢1. binding around the body of the function. There are no remaining free

spawn vertices, so ®𝑢𝑓 for the function is empty. To compute ®𝑢𝑡 for the function, we look at the type of
the argument (f, fut, l), which we have now inferred to be (’c

𝛾0−→ int) × int future[𝑢0] × ’c list.
We set ®𝑢𝑡 to be the free vertices of this type, which is just 𝑢0. We then iterate this procedure again

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:20 Stefan K. Muller

because pipeline is recursive, but this will not produce any additional annotations because ®𝑢𝑓 = ∅.
This gives us the fully annotated function.

1 let rec pipeline[∅;𝑢0] (f, fut, l) =

2 new 𝑢1 . match l with

3 | [] -> touch fut

4 | h::t ->

5 let fprefix = future[𝑢1] (f h + (touch fut)) in

6 pipeline[∅;𝑢1] (f, fprefix, t)

7 IMPLEMENTATION AND CASE STUDIES
We implemented the graph type inference algorithm in a tool we call GML, which takes a source

program written in a subset of OCaml, extended with future and touch as primitives, and reports

the inferred types, including graph types for functions, of all declarations in the source file. It is also

able to produce visualizations of the computation graphs of functions. We describe GML, including

extensions to the theory that are supported by the implementation, in Section 7.1. In Section 7.2, we

discuss a number of microbenchmarks and one large example program on which we tested GML.

We also consider two program analyses that are typically performed, implicitly or explicitly,

on a graph: deadlock detection and cost analysis. Definitions of both analyses in terms of actual

graphs 𝑔 are readily available in the literature. Algorithms for performing these analyses directly

over graph types𝐺 are a potentially rich area of future work and are outside the scope of this paper,

but we report in Sections 7.3 and 7.4 on proof-of-concept implementations of these analyses using

our implementations of graph type inference and normalization.

In Section 7.5, we also report on one program transformation aided by the graph, which we

perform directly using the graph types, with no normalization. The GML input language, like many

mainstream languages, includes only futures and not par. However, runtime scheduling can be

done much more efficiently for fork-join parallelism than for futures. It may therefore beneficial for

a compiler to be able to automatically find parts of a program that can be compiled using fork-join.

We implement a compiler pass that uses graph type information to find future/touch pairs that can

be replaced with a par and convert them accordingly.

7.1 Implementation
GML was written in OCaml and consists primarily of a parser (generated with ocamllex and

ocamlyacc) and the type inference algorithm. At present, GML is a stand-alone tool that only

performs graph type inference/checking, as well as the analyses described below. To keep the

design simple, it is not implemented as part of OCaml or another compiler, although we hope to

pursue such an implementation in the future. We simultaneously infer vertex annotations using the

algorithm of Section 6, standard types using Hindley-Milner type inference, and graph types; graph

type inference closely follows the rules of Figure 16, which are fairly algorithmic given a vertex-

annotated expression. The user does not need to specify type annotations, graph type annotations

or vertex annotations (indeed, there is not even syntax for graph types or vertex annotations): all

annotations are inferred by GML. GML is not a compiler, as it stops after generating an annotated

abstract syntax tree, but programs accepted by our front-end could be compiled using standard

OCaml compilers (with libraries for parallelism); efficient compilation and execution of parallel

programs is a separate and rich research area that is outside the scope of this paper.

GML accepts input programs written in a sizable subset of OCaml, with many features that are

not included in the _𝐺 calculus including 𝑛-ary tuples, lists and limited forms of pattern matching.

We do not yet support all of the syntactic sugar in OCaml, including full pattern matching or

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:21

multi-argument functions (multiple arguments can be simulated in GML using tuple arguments

or currying). The biggest extension of the theory supported by GML is mutable references. As in

OCaml, references have type t ref for any type t, including futures. The syntax ref e creates a

new reference initialized to the value of e; the value stored in a future can be retrieved using the

syntax !e and destructively updated using the syntax e := e. We also provide a primitive futref,

a reference to an as-yet-unspecified future. This allows programs to declare, and access, futures

which have not yet been spawned, which is a common idiom in imperative implementations of

futures and is useful for applications such as dynamic programming. For how much expressive

power they add to the language, mutable references require few extensions to the theory or to

vertex annotation inference. The typing rules for references simply propagate types and graphs in

the expected ways; dereferencing a reference does not produce a new graph beyond evaluating the

dereferenced expression as only values are stored in references.

(S:Ref)

Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏 | 𝐺
Γ;Δ;Ω;Ψ ⊢ ref 𝑒 : 𝜏 ref | 𝐺

(S:Deref)

Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏 ref | 𝐺
Γ;Δ;Ω;Ψ ⊢!𝑒 : 𝜏 | 𝐺

(S:Assign)

Γ;Δ;Ω1;Ψ ⊢ 𝑒1 : 𝜏 ref | 𝐺1

Γ;Δ;Ω2;Ψ ⊢ 𝑒2 : 𝜏 | 𝐺2

Γ;Δ;Ω1,Ω2;Ψ ⊢ 𝑒1 := 𝑒2 : 𝜏 | 𝐺1 ⊕ 𝐺2

Extending the rest of the machinery of the paper to include references would require tracking a

store through the operational semantics; this type of cost semantics is doable (see, e.g., [Muller et al.

2020]) but complicates the presentation and so references were left out for the sake of simplicity.

Type inference for references proceeds similarly to inference for other types
2
.

After performing inference, GML outputs the type of each top-level declaration in the file.

Because the ASCII representations of graph types can get quite verbose, GML can also output DOT

file representations of the graph types, on which we then run GraphViz [Gansner and North 2000]

to generate a visual representation of the graph type. Figure 18a shows the compact visualization

of the graph type for pipeline above. Note that the visualization includes Π, ` and a bindings, and

displays both alternatives of a𝐺1 ∨𝐺2 type (as “alt1” and “alt2” in the figure). GML also includes

the ability to perform normalization on the graph types and output standard graph representations

for easier visualization. Figure 18b shows the pipeline graph type unrolled three times. By default,

when unrolling a graph type𝐺1 ∨𝐺2 𝑛 times, GML takes the larger alternative (by number of graph

type connectives) the first 𝑛 − 1 times and the smaller one on the last iteration.

Many properties of a parallel program can be inferred readily by the human eye when looking

at a visualization of one or both forms above (the concrete graph type visualization of Figure 18a

or the unrolling of Figure 18b). For example, it is straightforward to tell from such a graph, even

when unrolled just once or twice as in Figure 18b, the amount of parallelism in an algorithm. As an

example, consider the following slight variation on one line of the pipeline program:

1 let fprefix = future ((touch fut) + f h) in

We have swapped the two addends. In GML (unlike in OCaml), function arguments are evaluated

left-to-right, so this waits on fut before computing f h, rather than allowing the future to proceed

in parallel. This small change to the code eliminates the pipelining effect and, indeed, most of the

parallelism in the program; this fact is not easy to see in the code but is readily visible in Figure 18c,

the visualization of the pipeline program with the above substitution: all of the instances of “`g2”,

which represents the calls to f, are in a path and therefore occur in sequence.

2
As always, the combination of mutation and polymorphism causes some problems, which we solve using an OCaml-

style value restriction: we only generalize type variables for syntactic values; in particular, we do not generalize the type

of futref to 'a future ref.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:22 Stefan K. Muller

μ `g1. Π , u6. ν u9.

or

alt2

alt1

`g1[, u9]

u9

`g2... u6

a

Π , u6.

`g2...

u10 `g2...

u11

u6

b

Π , u6.

u10

`g2...

u11

`g2...

u6

c

Fig. 18. Two visual representations of the pipeline program, and one of a slight alteration to the source code

that drastically decreases parallelism. All three visualizations were produced by GML.

Table 1. Microbenchmarks, grouped by purpose.

Benchmark purpose #

Standard parallel benchmarks (e.g., Fibonacci, Quicksort) 3

Adversarial/complex tests of vertex and type inference 11

Tests of deadlock detector (9 with deadlocks, 4 without) 13

Adversarial tests for fork-join conversion 4

Total 31

7.2 Benchmarks
We developed a number of benchmarks on which to test graph type inference, as well as the

analyses and transformations described later in the section. Some were microbenchmarks, largely

used as regression tests or adversarial tests of corner cases for type inference and the analyses. We

also implemented one larger case study, a concurrent web server, to demonstrate the expressivity

and scaling of the implementation.

7.2.1 Microbenchmarks. The microbenchmark suite consists of 31 example programs of varying

sizes and purposes. Most tested a particular behavior of graph type inference or of deadlock

detection or fork-join conversion (both described later in the section.) The type/purpose and

number of microenchmarks are summarized in Table 1.

7.2.2 Case Study: Web Server. As a larger proof-of-concept example to show that GML allows

suitably expressive input programs and can scale, we implemented a variation on the web server

example of Muller et al. [2018]. Our version of the program consists of a foreground loop that

accepts incoming HTTP connections and a background loop that periodically optimizes a cache

of frequently-requested pages. Both the foreground and background tasks involve non-trivial

parallelism. The foreground loop spawns a new future to handle every new connection, so that each

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:23

Table 2. Benchmark sizes and type inference times.

Benchmark LoC Time (ms)

Quicksort 50 1.1

Webserver 156 10.6

Webserver 200 16.3

Webserver 262 16.8

Webserver 362 24.6

client can be served in parallel. The asynchronous interaction that this allows is a major benefit of

futures over fork-join programming. The function to handle HTTP requests accepts the request,

and looks up the page in a cache maintained in a global mutable reference. If the page is in not in

the cache, it is loaded from disk. All requested pages are recorded in a buffer also stored as global

mutable reference
3
.

The background thread maintains the cache by tracking a histogram of pages with the number

of times they have been requested. It periodically traverses the buffer of new requests, updates the

histogram and uses a parallel implementation of Quicksort to sort the pages by number of requests.

The cache is updated with the top 𝑁 most-requested pages, where 𝑁 is a global constant.

For the purposes of type inference, we replace low-level system library calls, mostly those

dealing with network operations, with no-ops; this does not impact the graph type inference as

these networking system calls are sequential. GML is able to correctly infer useful graph types

for all of the top-level functions in the program. As is the case with many static analyses for

difficult-to-evaluate properties, correctness was assessed by manually inspecting the program to

determine the correct graph type.

Although performance is not a major result of this paper, we tested varying versions of the

benchmark of different sizes (by implementing more or less functionality within the benchmark

itself that might otherwise be delegated to library code) to determine the effect on type inference

time. The results, for 3 versions of the webserver and the smaller Quicksort benchmark (which forms

part of the webserver code as well) are summarized in Table 2. The table shows the (non-blank)

lines of code for each benchmark, as well as time taken for graph type inference on a commodity

desktop. A better-engineered implementation and a more robust scaling evaluation are outside the

scope of this paper, but the proof-of-concept implementation shows well-behaved scaling even

on the largest (362-line) version of the webserver. This at least shows that graph type inference is

fast enough to be performed as a normal part of compilation. This is to be expected, as graph type

checking, like type checking, is naturally compositional: after a type is inferred for a function, its

size no longer impacts the checking of other code as only its type is used. The types of functions

are larger because they capture more information about the function (its parallel dependencies)

but in most real-world code such as the web server, parallel behavior is confined to a few “main”

functions, so this is not a large scaling problem in practice.

7.3 Application: Deadlock Detection
As discussed above, a deadlock corresponds to a cycle in the computation graph. Therefore, if a

function has graph type 𝐺 and all 𝑔 ∈ Norm𝑛 (𝐺) are acyclic for all 𝑛 ≥ 0, then the function is

3
In an implementation to executed on an actual parallel platform, these accesses to global state would need to be protected

by some form of synchronization provided by the underlying parallelism implementation; we are only concerned with the

inference of the graph types and so the implementation details of parallelism and synchronization are out of scope.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:24 Stefan K. Muller

guaranteed not to deadlock. Cycle detection on a graph can be performed in linear time in the

number of vertices and edges using a depth-first search, so finding a deadlock in a particular graph

is straightforward. We cannot, of course, search an infinite number of normalized graphs. However,

we conjecture that it suffices to normalize until every recursive graph type has been unrolled at

least once. At this point, further recursive applications of graph types will use either the same

vertices as previous applications or newly-created vertices, which will not in either case create new

cycles. We have implemented a prototype deadlock detector based on this conjecture; it normalizes

the graph type until every recursive binding has been unrolled at least once, then returns the

resulting set of normalized graphs. Each graph is then checked for cycles.

We also consider it to be a deadlock if a touch targets a future that is never spawned; this

corresponds to an edge in a graph whose source does not exist in the graph. Our deadlock detector

checks the graph type directly for this possibility, without normalizing. The algorithm traverses

the graph type, tracking two sets of vertices: 1) vertices that are definitely spawned in the graph

and 2) vertices that may be touched without being spawned. If set (2) is nonempty at the end of the

traversal, we report a possible deadlock.

We tested the deadlock detector on a number of example programs with and without deadlocks,

including some synthetic, adversarial examples with difficult-to-detect deadlocks, a version of

the webserver case study with a subtle deadlock (as well as the original, deadlock-free version),

and a motivating example from prior work on dynamic deadlock detection [Cogumbreiro et al.

2017]. Our deadlock detector was correct on all tested examples, where the ground truth was

determined by manual inspection of the code. One interesting example is a program that uses

a dynamic programming-style algorithm to compute the 8
𝑡ℎ

Fibonacci number. The algorithm

spawns 8 futures which are placed in global mutable references: future 𝑛 computes fib(𝑛) by
touching futures 𝑛 − 1 and 𝑛 − 2. The futures themselves are spawned in parallel in a tree-like,

nested-parallel function (the main thread splits into two, each of those threads splits into two, each

of those splits into two and each of the 8 resulting threads creates a future and writes it into the

array). A slight programming error (e.g., instead touching futures 𝑛 − 1 and 𝑛 + 1) could result in

a deadlock, which our detector successfully reports. On the correct version of the program, the

detector correctly reports no deadlock.

7.4 Application: Cost Analysis
The cost of a parallel program is typically reported in terms of its work (the number of vertices in

the graph, which corresponds to the total amount of computation) and span (the longest path in

the graph, which must be executed sequentially). Work divided by span is often used as a measure

of the amount of parallelism in an algorithm. When reporting the parallelism of a program or

algorithm, both quantities are generally reported asymptotically in the input size, recognizing that

a program can produce a family of graphs of varying sizes depending on the input.

Determining loop bounds and program running time based on program inputs is a complex task

and has been the subject of a great deal of research (e.g., [Blazy et al. 2013; Ermedahl et al. 2007;

Hofmann and Jost 2003; Li and Malik 1997]), which we do not aim to replicate or improve upon

here. We can, however, use graph types to say something about the asymptotic work and span

of a graph in terms of the number of loop iterations (the techniques of the above-cited literature

can then be used to translate between program inputs and number of loop iterations). Let𝑊 (𝑔)
and 𝑆 (𝑔) be the work and span of a graph, respectively. As a simple case, assume a program

has a graph type 𝐺 with a single recursive binding. Let 𝑤 (𝑛) = max{𝑊 (𝑔) | 𝑔 ∈ Norm𝑛 (𝐺)}
and 𝑠 (𝑛) = max{𝑆 (𝑔) | 𝑔 ∈ Norm𝑛 (𝐺)} The work of the program is then 𝑂 (𝑤 (𝑛)) and the span

is 𝑂 (𝑠 (𝑛)), where 𝑛 is the number of recursive iterations of the program (or, alternatively, the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:25

number of unrollings of the recursive binding of the graph type). The work and span functions can

be expanded into multivariate functions for graph types with multiple recursive bindings.

As a proof of concept, we implemented an extension to GML that unrolls the graph of a pro-

gram various numbers of times and attempts to determine the complexity class (currently just

linear, quadratic or exponential) of the work and span in terms of the number of unrollings. This

implementation is able to correctly determine, for example:

• Exponential work and linear span for Fibonacci.

• Quadratic work and linear span for the Pipeline example, where the function 𝑓 is also linear.

• Quadratic work and span for the accidentally de-parallelized Pipeline example (Figure 18c)

As with the deadlock detector, the ground truth works and spans for the above examples were

determined manually (aided by known work and span for well-known algorithms like Fibonacci

and parallel Quicksort).

7.5 Application: Fork-Join Transformation
Many parallel applications, such as the web server example of Section 7.2.2, mix fork-join code (e.g.,

parallel Quicksort) with more complex uses of futures (e.g., the pipelined buildcache) function.

Many languages, including the input language of GML, provide only futures as a parallelism

construct, since it is easier in the early stages of compilation to handle a small number of language

constructs, and futures strictly subsume fork-join. However, in work-stealing schedulers, which

are common in parallel language runtimes, fork-join code exposes valuable optimizations. It is

therefore beneficial for the code actually executed to use a different mechanism for purely fork-join

code, such as the par construct of Section 3 (by purely fork-join, we mean that expressions within

a par do not make general use of futures, though they may have nested uses of par). We show in

this subsection how graph types can be used by a compiler to automatically transform code that

uses only futures into code that uses par for purely fork-join parts of the program.

The general idea of the transformation algorithm is as follows. We maintain a stack, called

the spine, of futures spawned by the current thread. For each future, we track its sink vertex, the

code that the future executes, and the code executed in the current thread since the spawn. If the

spawned futures are thought of as forming a tree, each element of the spine contains a branch and

the piece of the trunk between that branch and the next. An entry of the spine also indicates if

that future contains only fork-join code. The first entry in the spine contains a special entry with

just the code in the “trunk” before the furst future is spawned. On a touch, if the touched future is

at the bottom of the stack (was the last one spawned) and contains only fork-join code, then we

are able to make a par out of the code of the future and the trunk. Otherwise, the current spine is

not purely fork-join and we reconstruct it into a single trunk and continue. A formalization of this

process is available in the supplementary material.

8 DISCUSSION AND FUTUREWORK
Two exciting areas for future work are using graph types to implement static analyses, and enhanc-

ing the expressiveness of graph types themselves. This section briefly explores both areas.

Development of Static Analyses. In addition to the proof-of-concept analyses prsented in this

paper, we believe that many more, and more elegant or efficient, analyses can be developed that

operate directly over graph types. The reason is that a central component of many static analyses

for parallel programs is extracting a graph; graph types abstract out this information. Thus, we

believe graph types provide two major benefits to the development of static analyses: 1) developers

of new analyses need not write code to extract graph information from source programs if this

information is already available in a graph type, and 2) while this paper discusses graph types

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:26 Stefan K. Muller

and inference only for an OCaml-like language, these techniques can be applied in many other

languages; an analysis that works over graph types rather than source code can then be immediately

applied to any language for which graph types are implemented.

The development of our proof-of-concept deadlock and cost analyses can serve as a “recipe” for

porting other static analyses to work on graph types or developing other static analyses that work

directly on graph types. The basic idea is to formulate (part of) the analysis as a graph problem—for

example, deadlock detection is equivalent to determining if there is a cycle in the graph—and then

investigate how to solve the graph problem from the graph type. In our deadlock detection case,

this involves unrolling the graph type to some extent as some cycles may not be visible in the bare

graph type; it remains to be seen whether a deadlock detector can operate directly on the graph

type without unrolling. Other questions can be answered simply by reading off the graph type.

One such example not discussed in this paper is race detection. The heart of a race detection

algorithm is a may-happen-in-parallel analysis (a race, then, is a write and a read or write to

the same location that may happen in parallel). May-happen-in-parallel analyses exist for many

languages but are fairly heavyweight to design and implement. Checking if two program points may

happen in parallel in a graph type simply involves tracking what vertices in the graph represent

the two program points (this shouldn’t require unrolling as the graph type corresponds directly

to the source program) and performing a reachability query on the graph (vertices 𝑢 and 𝑣 may

happen in parallel if there is no path from 𝑢 to 𝑣 or vice-versa).

Limitations and Future Work. While graph types, as presented here, can represent and have been

implemented over a large enough subset of OCaml to encode interesting examples, some uses of

futures remain out of reach and the graph type system itself can be extended in many interesting

ways to support still more general forms of parallelism. As one example, to support recursive data

structures (such as lists) containing futures, types would need a way to generate new vertex names

(for example, 𝜏 future list ≜ `𝑡 .unit + a𝑢.(𝜏 future[𝑢] × 𝑡)). As another, dynamic programming

algorithms can be expressed in an elegant way using arrays of futures; to produce graph types

for such algorithms in general would require reasoning about array indices in the graph types,

using some form of dependent types. We intend to explore such extensions in the future, while

also further exploring the power of graph types as presented in this work.

9 RELATEDWORK
Graphs and Cost Semantics. The idea of using a graph as an abstract representation of a parallel

program goes back to at least the 1960s [Karp and Miller 1966; Rodriguez Bezos 1969]. The work

we build on most directly is in the community of cost semantics for parallel programs, in which

a dynamic semantics for a parallel language is augmented to track cost information in the form

of a graph, often called a cost graph or cost DAG (for Directed Acyclic Graph, as in programs that

do not deadlock, the graph will be acyclic). Cost semantics were originally developed to reason

about the complexity of sequential algorithms [Rosendahl 1989; Sands 1990]. Our cost semantics

notation is most closely based on the work of Blelloch and Greiner [1995, 1996], who were in turn

inspired by the work of Hudak and Anderson [1987], which used partially ordered multisets to

represent dependencies in much the same way as DAGs. This early work focused on fork-join or

nested parallelism and was later extended to handle futures by Spoonhower [2009] using the “left

composition” and edge addition operations we also use in our graphs and graph types. While we

focus on the work on cost semantics becausemuch of it tends to bemore theoretical in nature, papers

in other areas have also presented dynamic semantics augmented with some form of graph. For

example, Cogumbreiro et al. [2017] present such a semantics in the context of deadlock detection.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:27

In this work, we are primarily interested in control dependencies that arise from the use of

fork-join constructs and futures. Other notions of dependency graphs can capture other forms of

data and control dependencies (in sequential and parallel or concurrent programs) and can be used

for various other program analyses (e.g., [Korel 1987]). Analyzing these dependencies, statically or

dynamically, is the main idea behind program slicing [Weiser 1984].

Static Graph Analysis. There is little existing work on representing and analyzing computation

or dependency graphs for parallel programs. Most of the existing work focuses on coarser-grained

parallelism, rather than the fine-grained implicit parallelism provided by fork-join and futures. For

example, Chen et al. [2002] developed a static dependency analysis for Ada 95, which includes

constructs for coarse-grained parallelism. In a series of papers, Cheng et al. proposed several general

graph formalisms for representing a wide variety of control and data dependencies in sequential

and parallel programs (e.g., [Cheng 1993]) and developed an automated tool for computing and

visualizing these graphs from programs in several languages with coarse-grained parallelism

including Ada, C and Pascal [Kasahara et al. 1995]. Their tool even includes analyses built on top

of the graph representation, including a deadlock detector. Because of the granularity considered,

none of the above work need consider the level of dynamism of the graphs we handle, and none

has or needs features similar to ours for compact representation, e.g., recursive and polymorphic

graph types: the produced graph is a single, concrete graph.

Other Graph-Based Analyses. Although they do not present a formal operational semantics, theo-

retical models of properties such as priority inversions [Babaoğlu et al. 1993] and data races [Baner-

jee et al. 2006] have included models that use dependency information in ways similar to a depen-

dency graph. Practical dynamic analyses for, for example, deadlock (e.g. [Cogumbreiro et al. 2018])

and data races (e.g. [Banerjee et al. 2006]) track this dependency information in a variety of ways,

such as by using vector clocks [Lamport 1978]. As tracking and analyzing all of the necessary infor-

mation at runtime can be quite expensive, much work has focused on only tracking some subset of

it [Flanagan and Freund 2009; Utterback et al. 2019, 2016; Xu et al. 2020]. Other work on deadlock

detection, such as Known Joins (KJ) [Cogumbreiro et al. 2017] and Transitive Joins (TJ) [Voss et al.

2019] has traded precision for overhead by tracking certain dependency patterns that can lead to

deadlock. These patterns are easier to track at runtime, leading to low overhead. However, both

KJ and TJ disallow many deadlock-free programs, including the dynamic-programming Fibonacci

example of Section 7.3, which our analysis correctly reports to be deadlock-free.

In general, dynamic analyses such as these track dependency information for a particular run

of a program. Some of them are specific to a particular schedule (that is, they may report that an

execution is free of deadlocks or races when another run of the program, with different sets of

runtime decisions made by the scheduler would result in a deadlock or race). Even those analyses

that are agnostic to the schedule are specific to a particular input and in general cannot declare a

program free of deadlocks or races for all inputs in the same way that a static analysis can.

Other Static Analyses. Static analyses also exist for many of the discussed features of parallel

programs. Because many of these features are fundamentally questions of dependency, these

analyses in general perform some static approximation of dependency information, but do not

explicitly generate or reason about representations of the full dependency graph in the way that

this paper does. For example, many static analyses for deadlocks (e.g., [Boyapati et al. 2002; Engler

and Ashcraft 2003]) operate on more explicitly threaded code (e.g., code that uses pthreads with
mutexes) and tracks ownership of locks by threads in order to detect cycles. Navabi et al. [2008]

develop a static analysis of the dependency structure of programs with futures, in order to ensure

consistency with a sequential semantics (that is, the dependency pattern of the program could

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:28 Stefan K. Muller

arise from a sequential program without futures, a hallmark of reasoning about parallel programs).

Nandivada et al. [2013] analyze data dependencies in X10 code to determine whether various

optimizations and refactorings are legal; this is similar in nature to our fork-join transformation

(in the supplementary material) but the dependency patterns required are less complex, and X10

includes only async-finish parallelism, which is less general than futures.

Hoffmann and Shao [2015] analyze fork-join programs to obtain upper bounds on their work

and span in terms of the input sizes. This analysis maintains some information about the structure

of the cost graph, but only locally in order to compose the work and span of subgraphs properly.

The information maintained is not general enough to handle futures. Static cost analyses like theirs

are in many ways complementary to our cost analysis of Section 7.4: their analysis can compute

the relationship between loop iterations and input sizes which, together with the dependency

information from our analysis, can give the actual work and span bounds for very complex programs.

Our analysis captures a superset of the dependency information tracked by the above analyses,

which are each specialized to a particular application. Using our analysis, implementers of new

static analyses for parallel programs can simply implement their analyses over the graph type and

not need to worry about extracting the necessary dependency information from a source program.

Effect Types, Region Systems and Region Inference. Our graph type system can be considered a form

of type and effect system. These systems were originally proposed by Lucassen and Gifford [Gifford

and Lucassen 1986; Lucassen 1987] to track imperative side effects that occur during evaluation,

and later used by Jouvelot and Gifford [1989] to track control flow. One application of effect systems

that was particularly influential on this paper is region type systems, particularly that of Tofte and

Talpin [1997]. These systems give a type discipline for region-based memory management, in which

allocations are grouped into regions, simplifying memory management. The type system uses effects

to track what regions must be live (not deallocated) for certain computations to be meaningful.

Like vertices in our graph type system, regions are explicitly named and generated at runtime;

several of the technical devices of annotating vertices on spawns (analogous to annotating regions

on allocations) and for passing vertices to functions are inspired by Tofte and Talpin’s system. Tofte

and Birkedal [1998] proposed the first efficient algorithm for inferring region annotations, and

our vertex algorithm is in turn inspired by their inference algorithm. There are several important

distinctions between our system and region systems, however. The most notable is that, unlike

vertices, regions may be used by multiple allocations; indeed, the region inference algorithm often

intentionally combines allocations into the same region. Our affine discipline for vertex names is

thus new with respect to region type systems, and our inference algorithm must be more careful to

ensure that every future creation is annotated with a unique vertex. We have necessarily omitted

details of region-based memory management and the related literature; the interested reader can

find more information and additional citations in the excellent survey by Henglein et al. [2005].

10 CONCLUSION
We have presented graph types, a general and expressive notation for representing sets of com-

putation graphs of a parallel program. Our graph type system is able to infer graph types from

annotated parallel programs; these annotations need not be added by the programmer but can be

inferred by our vertex annotation inference algorithm. We have implemented all of the above for a

reasonably expressive subset of OCaml, extended with parallelism primitives, in our tool GML. As

demonstrated in several proof-of-concept implementations, graph types show some promise in

easing the development and implementation of new static analyses for parallel programs.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:29

ACKNOWLEDGMENTS
The author would like to thank the anonymous reviewers, as well as Umut Acar, Jatin Arora, Guy

Blelloch, and Sam Westrick for helpful discussions at various points in this work. This work was

partially supported by the National Science Foundation under grant CCF-2107289.

REFERENCES
Arvind and K. P. Gostelow. 1978. The Id Report: An Asychronous Language and Computing Machine. Technical Report TR-114.

Department of Information and Computer Science, University of California, Irvine.

Özalp Babaoğlu, Keith Marzullo, and Fred B. Schneider. 1993. A Formalization of Priority Inversion. Real-Time Systems 5, 4
(1993), 285–303. https://doi.org/10.1007/BF01088832

Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and Paul Petersen. 2006. A Theory of Data Race Detection. In Proceedings of
the 2006 Workshop on Parallel and Distributed Systems: Testing and Debugging (Portland, Maine, USA) (PADTAD ’06).
Association for Computing Machinery, New York, NY, USA, 69–78. https://doi.org/10.1145/1147403.1147416

Sandrine Blazy, André Maroneze, and David Pichardie. 2013. Formal Verification of Loop Bound Estimation for WCET

Analysis. In Revised Selected Papers of the 5th International Conference on Verified Software: Theories, Tools, Experiments -
Volume 8164 (Menlo Park, CA, USA) (VSTTE 2013). Springer-Verlag, Berlin, Heidelberg, 281–303. https://doi.org/10.1007/

978-3-642-54108-7_15

Guy Blelloch and John Greiner. 1995. Parallelism in Sequential Functional Languages. In Proceedings of the Seventh
International Conference on Functional Programming Languages and Computer Architecture (La Jolla, California, USA)
(FPCA ’95). Association for Computing Machinery, New York, NY, USA, 226–237. https://doi.org/10.1145/224164.224210

Guy E. Blelloch and John Greiner. 1996. A Provable Time and Space Efficient Implementation of NESL. In Proceedings of the
First ACM SIGPLAN International Conference on Functional Programming (Philadelphia, Pennsylvania, USA) (ICFP ’96).
Association for Computing Machinery, New York, NY, USA, 213–225. https://doi.org/10.1145/232627.232650

Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. 2002. Ownership Types for Safe Programming: Preventing Data

Races and Deadlocks. In Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (Seattle, Washington, USA) (OOPSLA ’02). Association for Computing Machinery, New York,

NY, USA, 211–230. https://doi.org/10.1145/582419.582440

Zhenqiang Chen, Baowen Xu, Jianjun Zhao, and Hongji Yang. 2002. Static Dependency Analysis for Concurrent Ada 95

Programs. In Reliable Software Technologies — Ada-Europe 2002, Johann Blieberger and Alfred Strohmeier (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 219–230.

Jingde Cheng. 1993. Process dependence net of distributed programs and its applications in development of distributed

systems. In Proceedings of 1993 IEEE 17th International Computer Software and Applications Conference COMPSAC ’93.
231–240. https://doi.org/10.1109/CMPSAC.1993.404187

Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida. 2018. Dynamic Deadlock Verification for

General Barrier Synchronisation. ACM Trans. Program. Lang. Syst. 41, 1, Article 1 (Dec. 2018), 38 pages. https:

//doi.org/10.1145/3229060

Tiago Cogumbreiro, Rishi Surendran, Francisco Martins, Vivek Sarkar, Vasco T. Vasconcelos, and Max Grossman. 2017.

Deadlock Avoidance in Parallel Programs with Futures: Why Parallel Tasks Should Not Wait for Strangers. Proc. ACM
Program. Lang. 1, OOPSLA, Article 103 (Oct. 2017), 26 pages. https://doi.org/10.1145/3143359

Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static Detection of Race Conditions and Deadlocks. In Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles (Bolton Landing, NY, USA) (SOSP ’03). Association for

Computing Machinery, New York, NY, USA, 237–252. https://doi.org/10.1145/945445.945468

Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde, and Björn Lisper. 2007. Loop Bound Analysis based on

a Combination of Program Slicing, Abstract Interpretation, and Invariant Analysis. 6 (01 2007).

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise Dynamic Race Detection. In Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (Dublin, Ireland) (PLDI ’09).
Association for Computing Machinery, New York, NY, USA, 121–133. https://doi.org/10.1145/1542476.1542490

Emden R. Gansner and Stephen C. North. 2000. An Open Graph Visualization System and Its Applications to Software

Engineering. Softw. Pract. Exper. 30, 11 (Sept. 2000), 1203–1233.
David K. Gifford and John M. Lucassen. 1986. Integrating Functional and Imperative Programming. In Proceedings of the

1986 ACM Conference on LISP and Functional Programming (Cambridge, Massachusetts, USA) (LFP ’86). Association for

Computing Machinery, New York, NY, USA, 28–38. https://doi.org/10.1145/319838.319848

Robert H. Halstead. 1985. MULTILISP: a language for concurrent symbolic computation. ACM Transactions on Programming
Languages and Systems 7 (1985), 501–538.

Fritz Henglein, Henning Makholm, and Henning Niss. 2005. Effect Types and Region-Based Memory Management. In

Advanced Topics in Types and Programming Languages, Benjamin C. Pierce (Ed.). MIT Press, Cambridge, Massachusetts,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

https://doi.org/10.1007/BF01088832
https://doi.org/10.1145/1147403.1147416
https://doi.org/10.1007/978-3-642-54108-7_15
https://doi.org/10.1007/978-3-642-54108-7_15
https://doi.org/10.1145/224164.224210
https://doi.org/10.1145/232627.232650
https://doi.org/10.1145/582419.582440
https://doi.org/10.1109/CMPSAC.1993.404187
https://doi.org/10.1145/3229060
https://doi.org/10.1145/3229060
https://doi.org/10.1145/3143359
https://doi.org/10.1145/945445.945468
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/319838.319848

46:30 Stefan K. Muller

Chapter 3, 87–135.

J. Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc. 146 (1969),
29–60. http://www.jstor.org/stable/1995158

Jan Hoffmann and Zhong Shao. 2015. Automatic Static Cost Analysis for Parallel Programs. In Programming Languages and
Systems, Jan Vitek (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 132–157.

Martin Hofmann and Steffen Jost. 2003. Static Prediction of Heap Space Usage for First-Order Functional Programs. In 30th
Symposium on Principles of Programming Languages (POPL’03). 185–197.

Paul Hudak and Steven Anderson. 1987. Pomset Interpretations of Parallel Functional Programs. In Proceedings of the
Functional Programming Languages and Computer Architecture. Springer-Verlag, Berlin, Heidelberg, 234–256.

Pierre Jouvelot and David K. Gifford. 1989. Reasoning about Continuations with Control Effects. In Proceedings of the ACM
SIGPLAN 1989 Conference on Programming Language Design and Implementation (Portland, Oregon, USA) (PLDI ’89).
Association for Computing Machinery, New York, NY, USA, 218–226. https://doi.org/10.1145/73141.74837

Richard M. Karp and Rayamond E. Miller. 1966. Properties of a Model for Parallel Computations: Determinacy, Termination,

Queueing. SIAM J. Appl. Math. 14, 6 (1966), 1390–1411. https://doi.org/10.1137/0114108

Y. Kasahara, Y. Nomura, M. Kamachi, J. Cheng, and K. Ushijima. 1995. An integrated support environment for distributed

software development based on unified program representations. In Proceedings 1995 Asia Pacific Software Engineering
Conference. 254–263. https://doi.org/10.1109/APSEC.1995.496974

Bogdan Korel. 1987. The program dependence graph in static program testing. Inform. Process. Lett. 24, 2 (1987), 103–108.
https://doi.org/10.1016/0020-0190(87)90102-5

Leslie Lamport. 1978. Time, Clocks and the Ordering of Events in a Distributed System. Commun. ACM 21 (July 1978),

558–565.

Yau-Tsun Steven Li and Sharad Malik. 1997. Performance analysis of embedded software using implicit path enumeration.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 16, 12 (1997), 1477–1487.
John M. Lucassen. 1987. Types and Effects toward the Integration of Functional and Imperative Programming. PhD thesis.

Massachusetts Institute of Technology, Cambridge, Massachusetts. Available as Technical Report MIT-LCS-TR-408.

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. 17, 3 (1978), 348–375.

https://doi.org/10.1016/0022-0000(78)90014-4

Stefan K. Muller, Umut A. Acar, and Robert Harper. 2018. Competitive Parallelism: Getting Your Priorities Right. Proc. ACM
Program. Lang. 2, ICFP, Article 95 (July 2018), 30 pages.

Stefan K. Muller, Kyle Singer, Noah Goldstein, Umut A. Acar, Kunal Agrawal, and I-Ting Angelina Lee. 2020. Responsive

Parallelism with Futures and State. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 577–591.

https://doi.org/10.1145/3385412.3386013

Alan Mycroft. 1984. Polymorphic type schemes and recursive definitions. In International Symposium on Programming,
M. Paul and B. Robinet (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 217–228.

V. Krishna Nandivada, Jun Shirako, Jisheng Zhao, and Vivek Sarkar. 2013. A Transformation Framework for Optimizing

Task-Parallel Programs. ACM Trans. Program. Lang. Syst. 35, 1, Article 3 (April 2013), 48 pages. https://doi.org/10.1145/

2450136.2450138

Armand Navabi, Xiangyu Zhang, and Suresh Jagannathan. 2008. Quasi-Static Scheduling for Safe Futures. In Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Salt Lake City, UT, USA) (PPoPP
’08). Association for Computing Machinery, New York, NY, USA, 23–32. https://doi.org/10.1145/1345206.1345212

Jorge E Rodriguez Bezos. 1969. A Graph Model for Parallel Computations. Ph.D. Dissertation. Massachusetts Institute of

Technology, Cambridge, Massachusetts.

Mads Rosendahl. 1989. Automatic complexity analysis. In FPCA ’89: Functional Programming Languages and Computer
Architecture. ACM, 144–156.

David Sands. 1990. Complexity Analysis for a Lazy Higher-Order Language. In ESOP ’90: Proceedings of the 3rd European
Symposium on Programming. Springer-Verlag, London, UK, 361–376.

Daniel Spoonhower. 2009. Scheduling Deterministic Parallel Programs. Ph.D. Dissertation. Carnegie Mellon University,

Pittsburgh, PA, USA.

Mads Tofte and Lars Birkedal. 1998. A Region Inference Algorithm. ACM Trans. Program. Lang. Syst. 20, 4 (July 1998),

724–767. https://doi.org/10.1145/291891.291894

Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Management. Information and Computation 132, 2 (1997),

109–176. https://doi.org/10.1006/inco.1996.2613

Robert Utterback, Kunal Agrawal, Jeremy Fineman, and I-Ting Angelina Lee. 2019. Efficient Race Detection with Futures. In

Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming (Washington, District of Columbia)

(PPoPP ’19). Association for ComputingMachinery, New York, NY, USA, 340–354. https://doi.org/10.1145/3293883.3295732

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

http://www.jstor.org/stable/1995158
https://doi.org/10.1145/73141.74837
https://doi.org/10.1137/0114108
https://doi.org/10.1109/APSEC.1995.496974
https://doi.org/10.1016/0020-0190(87)90102-5
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3385412.3386013
https://doi.org/10.1145/2450136.2450138
https://doi.org/10.1145/2450136.2450138
https://doi.org/10.1145/1345206.1345212
https://doi.org/10.1145/291891.291894
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1145/3293883.3295732

Static Prediction of Parallel Computation Graphs 46:31

(T:Unit)

Δ;Ψ ⊢ unit ok

(T:Fun)

Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏1 ok Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏2 ok Δ; ·;Ψ ⊢ 𝐺 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗

Δ;Ψ ⊢ Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝐺−→ 𝜏2 ok

(T:Sum)

Δ;Ψ ⊢ 𝜏1 ok Δ;Ψ ⊢ 𝜏2 ok
Δ;Ψ ⊢ 𝜏1 + 𝜏2 ok

(T:Prod)

Δ;Ψ ⊢ 𝜏1 ok Δ;Ψ ⊢ 𝜏2 ok
Δ;Ψ ⊢ 𝜏1 × 𝜏2 ok

(T:Fut)

Δ;Ψ, 𝑢 ⊢ 𝜏 ok
Δ;Ψ, 𝑢 ⊢ 𝜏 future[𝑢] ok

Fig. 19. Type formation rules.

Robert Utterback, Kunal Agrawal, Jeremy T. Fineman, and I-Ting Angelina Lee. 2016. Provably Good and Practically Efficient

Parallel Race Detection for Fork-Join Programs. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures (Pacific Grove, California, USA) (SPAA ’16). Association for Computing Machinery, New York, NY,

USA, 83–94. https://doi.org/10.1145/2935764.2935801

Caleb Voss, Tiago Cogumbreiro, and Vivek Sarkar. 2019. Transitive Joins: A Sound and Efficient Online Deadlock-Avoidance

Policy (PPoPP ’19). Association for Computing Machinery, New York, NY, USA, 378–390. https://doi.org/10.1145/3293883.

3295724

Mark Weiser. 1984. Program Slicing. IEEE Transactions on Software Engineering SE-10, 4 (1984), 352–357. https://doi.org/10.

1109/TSE.1984.5010248

Yifan Xu, Kyle Singer, and I-Ting Angelina Lee. 2020. Parallel Determinacy Race Detection for Futures. In Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (San Diego, California) (PPoPP ’20).
Association for Computing Machinery, New York, NY, USA, 217–231. https://doi.org/10.1145/3332466.3374536

A TYPE FORMATION
As we did for graph types, we present rules defining what it means for a type to be well-formed.

The judgment is Δ;Ψ ⊢ 𝜏 ok. Note that this judgment does not include the affine context of vertices

“available” for spawns: types are fundamentally predictions about the value of an expression, and

values do not spawn futures (future handles are themselves values, however, and so types must

include the vertex names for already-spawned futures). The rules for the judgment are shown in

Figure 19, and primarily require that graphs contained on any arrow are well-formed.

B PROOF OF LEMMA 3
Proof. We show the interesting cases for all parts except (1), which is standard.

(1) By induction on the derivation of Γ, 𝑥 : 𝜏 ′;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏 | 𝐺 .
(2) By induction on the derivation of Δ, 𝛾 : ^ ′

;Ω;Ψ ⊢ 𝐺 : ^.

• DW:RecPi. Then 𝐺 = `𝛾 ′.Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺 ′′
and Δ, 𝛾 : ^ ′, 𝛾 ′

: Π®𝑢𝑓 ; ®𝑢𝑡 .∗; ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝐺 ′′
: ∗. By

exchange and induction, Δ, 𝛾 ′
: Π®𝑢𝑓 ; ®𝑢𝑡 .∗; ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝐺 ′′[𝐺 ′/𝛾] : ∗. Apply rule DW:RecPi.

(3) By induction on the derivation of Δ, 𝛾 : ^;Ψ ⊢ 𝜏 ok.
• T:Fun Then 𝜏 = Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1

𝐺′
−−→ 𝜏2. By induction, Δ;Ψ ⊢ 𝜏1 [𝐺/𝛾] ok and Δ;Ψ ⊢ 𝜏2 [𝐺/𝛾] ok.

By part 2, Δ; ·;Ψ ⊢ 𝐺 ′[𝐺/𝛾] : Π®𝑢𝑓 ; ®𝑢𝑡 .∗. Apply rule T:Fun.

(4) By induction on the derivation of Γ;Δ, 𝛾 : ^;Ω;Ψ ⊢ 𝑒 : 𝜏 | 𝐺 .
• S:Fun. By induction, Γ, 𝑓 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1

𝛾 ′

−→ 𝜏2, 𝑥 : 𝜏1;Δ, 𝛾
′
: Π®𝑢𝑓 ; ®𝑢𝑡 .∗; ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝑒 : 𝜏2 [𝐺 ′/𝛾] |

𝐺 [𝐺 ′/𝛾]. By part 3, Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏1 [𝐺 ′/𝛾] ok and Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏2 [𝐺 ′/𝛾] ok. Apply rule S:Fun.

• S:App. By induction,

Γ;Δ;Ω1;Ψ, ®𝑢 ′
𝑡 ⊢ 𝑒1 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1

𝐺3−−→ 𝜏2 [𝐺 ′/𝛾] | 𝐺1 [𝐺 ′/𝛾]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

https://doi.org/10.1145/2935764.2935801
https://doi.org/10.1145/3293883.3295724
https://doi.org/10.1145/3293883.3295724
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/3332466.3374536

46:32 Stefan K. Muller

and

Γ;Δ;Ω2;Ψ, ®𝑢 ′
𝑡 ⊢ 𝑒2 : 𝜏1 [®𝑢 ′

𝑡/®𝑢𝑡] [𝐺 ′/𝛾] | 𝐺2 [𝐺 ′/𝛾]
We have

Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝐺3−−→ 𝜏2 [𝐺 ′/𝛾] = Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1 [𝐺 ′/𝛾]

𝐺3 [𝐺′/𝛾]
−−−−−−−→ 𝜏2 [𝐺 ′/𝛾]

and 𝜏2 [𝐺 ′/𝛾] [®𝑢 ′
𝑡/®𝑢𝑡] = 𝜏2 [®𝑢 ′

𝑡/®𝑢𝑡] [𝐺 ′/𝛾]. We have

unroll (𝐺3 [𝐺 ′/𝛾]) [®𝑢 ′
𝑓
; ®𝑢 ′

𝑡] = unroll (𝐺3) [®𝑢 ′
𝑓
; ®𝑢 ′

𝑡] [𝐺 ′/𝛾]
Apply rule S:App.

(5) By induction on the derivation of Δ;Ω, ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝐺 : ^.

• DW:Pi. Then𝐺 = Π®𝑢 ′′
𝑓
; ®𝑢 ′′

𝑡 .𝐺
′
and Δ;Ω, ®𝑢𝑓 , ®𝑢 ′′

𝑓
;Ψ, ®𝑢𝑡 , ®𝑢 ′′

𝑡 ⊢ 𝐺 ′
: ∗. Without loss of generality,

assume that ®𝑢 ′′
𝑓
is disjoint from both ®𝑢𝑓 and ®𝑢 ′

𝑓
and that ®𝑢 ′′

𝑡 is disjoint from both ®𝑢𝑡 and ®𝑢 ′
𝑡 .

By induction, Δ;Ω, ®𝑢 ′
𝑓
, ®𝑢 ′′

𝑓
;Ψ, ®𝑢 ′

𝑡 , ®𝑢 ′′
𝑡 ⊢ 𝐺 [®𝑢 ′

𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] : ∗. Apply rule DW:Pi.

• DW:App. Then 𝐺 = 𝐺 ′[®𝑢 ′′′
𝑓
; ®𝑢 ′′′

𝑡] and Δ;Ω, ®𝑢𝑓 ;Ψ, ®𝑢𝑡 , ®𝑢 ′′′
𝑡 ⊢ 𝐺 ′

: Π®𝑢 ′′
𝑓
; ®𝑢 ′′

𝑡 .^. Without loss of

generality, assume that ®𝑢 ′′
𝑓
is disjoint from both ®𝑢𝑓 and ®𝑢 ′

𝑓
and that ®𝑢 ′′

𝑡 is disjoint from

both ®𝑢𝑡 and ®𝑢 ′
𝑡 . By induction, Δ;Ω, ®𝑢 ′

𝑓
;Ψ, ®𝑢 ′

𝑡 , ®𝑢◦
𝑡 ⊢ 𝐺 [®𝑢 ′

𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] : Π®𝑢 ′′
𝑓
; ®𝑢 ′′

𝑡 .^ , where ®𝑢◦
𝑡 =

®𝑢 ′′′
𝑡 [®𝑢 ′

𝑡/®𝑢𝑡].We have𝐺 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] = (𝐺 ′[®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡]) [®𝑢◦
𝑓
; ®𝑢◦

𝑡] where ®𝑢◦
𝑓
= ®𝑢 ′′′

𝑓
[®𝑢 ′

𝑓
/®𝑢𝑓].

Apply DW:App.

(6) By induction on the derivation of Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏 ok.
• T:Fun. Then 𝜏 = Π®𝑢 ′′

𝑓
; ®𝑢 ′′

𝑡 .𝜏1
𝐺−→ 𝜏2 and Δ;Ψ, ®𝑢𝑡 , ®𝑢 ′′

𝑡 ⊢ 𝜏1 ok and Δ;Ψ, ®𝑢𝑡 , ®𝑢 ′′
𝑡 ⊢ 𝜏2 ok

and Δ; ·;Ψ, ®𝑢𝑡 ⊢ 𝐺 : Π®𝑢 ′′
𝑓
; ®𝑢 ′′

𝑡 .∗, Without loss of generality, assume ®𝑢 ′′
𝑡 is disjoint from ®𝑢𝑡

and ®𝑢 ′
𝑡 . By induction, Δ;Ψ, ®𝑢 ′

𝑡 , ®𝑢 ′′
𝑡 ⊢ 𝜏1 [®𝑢 ′

𝑡/®𝑢𝑡] ok and Δ;Ψ, ®𝑢𝑡 , ®𝑢 ′′
𝑡 ⊢ 𝜏2 [®𝑢 ′

𝑡/®𝑢𝑡] ok. By part 5,

Δ; ·;Ψ, ®𝑢 ′
𝑡 ⊢ 𝐺 [®𝑢 ′

𝑡/®𝑢𝑡] : Π®𝑢 ′′
𝑓
; ®𝑢 ′′

𝑡 .∗. Apply rule T:Fun.

(7) By induction on the derivation of Γ;Δ;Ω, ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝑒 : 𝜏 | 𝐺 .
• S:Fun. Then 𝑒 = fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒 ′ and

Γ, 𝑓 : Π®𝑢 ′′
𝑓
; ®𝑢 ′′

𝑡 .𝜏1
𝛾
−→ 𝜏2, 𝑥 : 𝜏1;Δ, 𝛾 : Π®𝑢 ′′

𝑓
; ®𝑢 ′′

𝑡 .∗; ®𝑢 ′′
𝑓
;Ψ, ®𝑢𝑡 , ®𝑢 ′′

𝑡 ⊢ 𝑒 ′ : 𝜏2 | 𝐺 ′

and Δ;Ψ, ®𝑢𝑡 , ®𝑢 ′′
𝑡 ⊢ 𝜏1 ok and Δ;Ψ, ®𝑢𝑡 , ®𝑢 ′′

𝑡 ⊢ 𝜏2 ok. Without loss of generality, assume that ®𝑢 ′′
𝑓

is disjoint from both ®𝑢𝑓 and ®𝑢 ′
𝑓
and that ®𝑢 ′′

𝑡 is disjoint from both ®𝑢𝑡 and ®𝑢 ′
𝑡 . We have

𝑒 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] = fun[®𝑢 ′′
𝑓
; ®𝑢 ′′

𝑡] 𝑓 𝑥 = 𝑒 ′[®𝑢 ′
𝑡/®𝑢𝑡]. By induction, Γ, 𝑓 : Π®𝑢 ′′

𝑓
; ®𝑢 ′′

𝑡 .𝜏1
𝛾
−→ 𝜏2, 𝑥 :

𝜏1;Δ, 𝛾 : Π®𝑢 ′′
𝑓
; ®𝑢 ′′

𝑡 .∗; ®𝑢 ′′
𝑓
;Ψ, ®𝑢 ′

𝑡 , ®𝑢 ′′
𝑡 ⊢ fun[®𝑢 ′′

𝑓
; ®𝑢 ′′

𝑡] 𝑓 𝑥 = 𝑒 ′[®𝑢 ′
𝑡/®𝑢𝑡] : 𝜏2 [®𝑢 ′

𝑡/®𝑢𝑡] | 𝐺 ′[®𝑢 ′
𝑡/®𝑢𝑡].

By part 6, Δ;Ψ, ®𝑢 ′
𝑡 , ®𝑢 ′′

𝑡 ⊢ 𝜏1 [®𝑢 ′
𝑡/®𝑢𝑡] ok and Δ;Ψ, ®𝑢 ′

𝑡 , ®𝑢 ′′
𝑡 ⊢ 𝜏2 [®𝑢 ′

𝑡/®𝑢𝑡] ok. We have 𝜏 [®𝑢 ′
𝑡/®𝑢𝑡] =

Π®𝑢 ′′
𝑓
; ®𝑢 ′′

𝑡 .𝜏1 [®𝑢 ′
𝑡/®𝑢𝑡]

`𝛾 .Π®𝑢𝑓 ;®𝑢𝑡 .𝐺′ [®𝑢′
𝑡 /®𝑢𝑡]−−−−−−−−−−−−−−−−→ 𝜏 [®𝑢 ′

𝑡/®𝑢𝑡]. Apply rule S:Fun.

• S:App. Then 𝑒 = 𝑒1 [®𝑢 ′′′
𝑓
; ®𝑢 ′′′

𝑡] 𝑒2 and 𝜏 = 𝜏2 [®𝑢 ′′′
𝑡 /®𝑢 ′′

𝑡] and

Γ;Δ;Ω1, ®𝑢𝑓 1;Ψ, ®𝑢𝑡 , ®𝑢 ′′′
𝑡 ⊢ 𝑒1 : Π®𝑢 ′′

𝑓
; ®𝑢 ′′

𝑡 .𝜏1
𝐺3−−→ 𝜏2 | 𝐺1

and

Γ;Δ;Ω2, ®𝑢𝑓 2;Ψ, ®𝑢𝑡 , ®𝑢 ′′′
𝑡 ⊢ 𝑒2 : 𝜏1 [®𝑢 ′′′

𝑡 /®𝑢 ′′
𝑡] | 𝐺2

where ®𝑢𝑓 = ®𝑢𝑓 1, ®𝑢𝑓 2. Let ®𝑢 ′
𝑓 1

and ®𝑢 ′
𝑓 2

be the equivalent projections of ®𝑢 ′
𝑓
. Without loss of

generality, assume that ®𝑢 ′′
𝑓
is disjoint from both ®𝑢𝑓 and ®𝑢 ′

𝑓
and that ®𝑢 ′′

𝑡 is disjoint from

both ®𝑢𝑡 and ®𝑢 ′
𝑡 . By induction,

Γ;Δ;Ω1, ®𝑢 ′
𝑓 1
;Ψ, ®𝑢 ′

𝑡 , ®𝑢 ′′′
𝑡 ⊢ 𝑒1 [®𝑢 ′

𝑓 1
/®𝑢𝑓 1] [®𝑢 ′

𝑡/®𝑢𝑡] : Π®𝑢 ′′
𝑓
; ®𝑢 ′′

𝑡 .𝜏1 [®𝑢 ′
𝑡/®𝑢𝑡]

𝐺3 [®𝑢′
𝑡 /®𝑢𝑡]−−−−−−−−→ 𝜏2 [®𝑢 ′

𝑡/®𝑢𝑡] | 𝐺1 [®𝑢 ′
𝑓 1
/®𝑢𝑓 1] [®𝑢 ′

𝑡/®𝑢𝑡]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:33

and

Γ;Δ;Ω2, ®𝑢 ′
𝑓 2
;Ψ, ®𝑢 ′

𝑡 , ®𝑢 ′′′
𝑡 ⊢ 𝑒2 [®𝑢 ′

𝑓 2
/®𝑢𝑓 2] [®𝑢 ′

𝑡/®𝑢𝑡] : 𝜏1 [®𝑢 ′′′
𝑡 /®𝑢 ′′

𝑡] [®𝑢 ′
𝑡/®𝑢𝑡] | 𝐺2 [®𝑢 ′

𝑓 2
/®𝑢𝑓 2] [®𝑢 ′

𝑡/®𝑢𝑡]

Wehave𝜏1 [®𝑢 ′′′
𝑡 /®𝑢 ′′

𝑡] [®𝑢 ′
𝑡/®𝑢𝑡] = 𝜏1 [®𝑢 ′

𝑡/®𝑢𝑡] [®𝑢◦
𝑡 /®𝑢 ′′

𝑡] where ®𝑢◦
𝑡 = ®𝑢 ′′′

𝑡 [®𝑢 ′
𝑡/®𝑢𝑡].We have𝜏 [®𝑢 ′

𝑡/®𝑢𝑡] =
𝜏2 [®𝑢 ′

𝑡/®𝑢𝑡] [®𝑢◦
𝑡 /®𝑢 ′′

𝑡] and
𝑒 [®𝑢 ′

𝑡/®𝑢𝑡] = (𝑒1 [®𝑢 ′
𝑓 1
/®𝑢𝑓 1] [®𝑢 ′

𝑡/®𝑢𝑡]) [®𝑢◦
𝑓
; ®𝑢◦

𝑡] 𝑒2 [®𝑢 ′
𝑓 2
/®𝑢𝑓 2] [®𝑢 ′

𝑡/®𝑢𝑡]

where ®𝑢◦
𝑓
= ®𝑢 ′′′

𝑓
[®𝑢 ′

𝑓
/®𝑢𝑓]. We have

𝐺 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡]
= 𝐺1 [®𝑢 ′

𝑓 1
/®𝑢𝑓 1] [®𝑢 ′

𝑡/®𝑢𝑡] ⊕ 𝐺2 [®𝑢 ′
𝑓 2
/®𝑢𝑓 2] [®𝑢 ′

𝑡/®𝑢𝑡] ⊕ (unroll (𝐺3) [®𝑢 ′′′
𝑓
; ®𝑢 ′′′

𝑡]) [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡]
= 𝐺1 [®𝑢 ′

𝑓 1
/®𝑢𝑓 1] [®𝑢 ′

𝑡/®𝑢𝑡] ⊕ 𝐺2 [®𝑢 ′
𝑓 2
/®𝑢𝑓 2] [®𝑢 ′

𝑡/®𝑢𝑡] ⊕ unroll (𝐺3 [®𝑢 ′
𝑡/®𝑢𝑡]) [®𝑢◦

𝑓
; ®𝑢◦

𝑡]

Apply rule S:App.

• S:New. Then 𝑒 = new 𝑢.𝑒 ′ and Γ;Δ;Ω, ®𝑢𝑓 , 𝑢;Ψ, ®𝑢𝑡 , 𝑢 ⊢ 𝑒 : 𝜏 | 𝐺 ′
where 𝐺 = a𝑢.𝐺 ′

and 𝑢 ∉ FV(𝜏) and 𝑢 ∉ Ω, ®𝑢𝑓 ,Ψ, ®𝑢𝑡 . Without loss of generality, assume 𝑢 ∉ ®𝑢 ′
𝑓
, ®𝑢 ′

𝑡 . We

have 𝑒 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] = new𝑢.𝑒 ′[®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] and𝐺 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] = a𝑢.𝑒 ′[®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡].
By induction, Γ;Δ;Ω, ®𝑢 ′

𝑓
, 𝑢;Ψ, ®𝑢 ′

𝑡 , 𝑢 ⊢ 𝑒 ′[®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] : 𝜏 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] | 𝐺 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡].
□

C PROOF OF LEMMA 4
Proof. By induction on the derivation of Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏 | 𝐺 .
We prove some representative cases.

• S:Fun. Then Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏1 ok and Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏2 ok and Γ, 𝑓 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝛾
−→ 𝜏2, 𝑥 : 𝜏1;Δ, 𝛾 :

Π®𝑢𝑓 ; ®𝑢𝑡 .^; ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝑒 : 𝜏2 | 𝐺 . By induction, Δ, 𝛾 : Π®𝑢𝑓 ; ®𝑢𝑡 .^; ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝐺 : ∗. By
rule DW:RecPi, Δ; ·;Ψ ⊢ `𝛾 .Π®𝑢3; ®𝑢𝑡 .𝐺 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗. Apply rule T:Fun.

• S:App. Then Γ;Δ;Ω1;Ψ, ®𝑢 ′
𝑡 ⊢ 𝑒1 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1

𝐺3−−→ 𝜏2 | 𝐺1 and Γ;Δ;Ω2;Ψ, ®𝑢 ′
𝑡 ⊢ 𝑒2 : 𝜏1 | 𝐺2.

By induction, Δ;Ψ, ®𝑢 ′
𝑡 ⊢ Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1

𝐺3−−→ 𝜏2 ok and Δ;Ω1;Ψ, ®𝑢 ′
𝑡 ⊢ 𝐺1 : ∗ and Δ;Ψ, ®𝑢 ′

𝑡 ⊢ 𝜏1 ok

and Δ;Ω2;Ψ, ®𝑢 ′
𝑡 ⊢ 𝐺2 : ∗. By inversion on T:Fun, Δ;Ψ, ®𝑢𝑡 ⊢ 𝜏2 ok and Δ; ·;Ψ ⊢ 𝐺3 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗.

By DW:App, Δ; ®𝑢 ′
𝑓
;Ψ, ®𝑢 ′

𝑡 ⊢ unroll (𝐺3) [®𝑢 ′
𝑓
; ®𝑢 ′

𝑡] : ∗. Apply DW:Seq.

• S:Case. Then Γ;Δ;Ω1;Ψ ⊢ 𝑒1 : 𝜏1 + 𝜏2 | 𝐺1 and Γ, 𝑥 : 𝜏1;Δ;Ω2;Ψ ⊢ 𝑒2 : 𝜏 ′ | 𝐺2 and

Γ, 𝑦 : 𝜏2;Δ;Ω2;Ψ ⊢ 𝑒3 : 𝜏 ′ | 𝐺3. By induction, Δ;Ω1;Ψ ⊢ 𝐺1 : ∗ and Δ;Ψ ⊢ 𝜏 ′ ok and Δ;Ω2;Ψ ⊢
𝐺2 : ∗ and Δ;Ω2;Ψ ⊢ 𝐺3 : ∗ By DW:Or, Δ;Ω2;Ψ ⊢ 𝐺2 ∨𝐺3 : ∗. Apply DW:Seq.

• S:Future. Then Γ;Δ;Ω;Ψ ⊢ 𝑒 : 𝜏 | 𝐺 . By induction, Δ;Ψ ⊢ 𝜏 ok and Δ;Ω;Ψ ⊢ 𝐺 : ∗. By T:Fut,
Δ;Ψ, 𝑢 ⊢ 𝜏 future[𝑢] ok. By DW:Spawn, Δ;Ω, 𝑢;Ψ, 𝑢 ⊢ 𝐺 $𝑢 : ∗.

• S:Touch. Then Γ;Δ;Ω;Ψ, 𝑢 ⊢ 𝑒 : 𝜏 future[𝑢] | 𝐺 . By induction, Δ;Ψ, 𝑢 ⊢ 𝜏 future[𝑢] ok
and Δ;Ω;Ψ, 𝑢 ⊢ 𝐺 : ∗. By inversion on T:Fut, Δ;Ψ, 𝑢 ⊢ 𝜏 ok. By DW:Touch, Δ;Ω;Ψ, 𝑢 ⊢ 𝑢 % :

∗. Apply DW:Seq.

• S:NewF. Then Γ;Δ;Ω, 𝑢;Ψ, 𝑢 ⊢ 𝑒 : 𝜏 | 𝐺 and 𝑢 ∉ FV(𝜏). By induction, Δ;Ψ, 𝑢 ⊢ 𝜏 ok,

so Δ;Ψ ⊢ 𝜏 ok, and Δ;Ω, 𝑢;Ψ, 𝑢 ⊢ 𝐺 : ∗. Apply DW:New.

□

D PROOF OF THEOREM 3
Proof. By induction on the derivation of 𝑒 ⇓ 𝑣 | 𝑔.
• C:App. Then 𝑒 = 𝑒1 [®𝑢 ′

𝑓
; ®𝑢 ′

𝑡]𝑒2 and 𝑒1 ⇓ fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒0 | 𝑔1 and 𝑒2 ⇓ 𝑣 | 𝑔2 and

𝑒0 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] [𝑣/𝑥] [fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒0/𝑓] ⇓ 𝑣 ′ | 𝑔3

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:34 Stefan K. Muller

By inversion on S:App, ·; ·;Ω1;Ψ ⊢ 𝑒1 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝐺3−−→ 𝜏2 | 𝐺1 and ·; ·;Ω2;Ψ ⊢ 𝑒2 : 𝜏1 | 𝐺2

where Ω = Ω1,Ω2, ®𝑢 ′
𝑓
.

By induction, ·; ·;Ω1;Ψ ⊢ fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒0 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1
𝐺3−−→ 𝜏2 | • and ·; ·;Ω2;Ψ ⊢ 𝑣 : 𝜏1 | •

and 𝑔1 ∈ Norm𝑛1
(𝐺1) and 𝑔2 ∈ Norm𝑛2

(𝐺2).
By inversion on S:Fun, 𝑓 : Π®𝑢𝑓 ; ®𝑢𝑡 .𝜏1

𝛾
−→ 𝜏2, 𝑥 : 𝜏1;𝛾 : Π®𝑢𝑓 ; ®𝑢𝑡 .∗; ®𝑢𝑓 ;Ψ, ®𝑢𝑡 ⊢ 𝑒0 : 𝜏2 | 𝐺

and 𝐺3 = `𝛾 .Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺 . By Lemma 3,

·; ·; ®𝑢 ′
𝑓
;Ψ, ®𝑢 ′

𝑡 ⊢ 𝑒0 [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡] [𝑣/𝑥] [fun[®𝑢𝑓 ; ®𝑢𝑡] 𝑓 𝑥 = 𝑒0/𝑓] : 𝜏2 [®𝑢 ′
𝑡/®𝑢𝑡] | 𝐺 [Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺/𝛾] [®𝑢 ′

𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡]

By induction, ·; ·; ®𝑢 ′
𝑓
;Ψ, ®𝑢 ′

𝑡 ⊢ 𝑣 ′ : 𝜏2 [®𝑢 ′
𝑡/®𝑢𝑡] | • and𝑔3 ∈ Norm𝑛3

(𝐺 [Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺/𝛾] [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡]).
By Lemma 1, we have

𝑔1 ⊕ 𝑔2 ⊕ 𝑔3 ∈ Normmax(𝑛1,𝑛2,𝑛3) (𝐺1 ⊕ 𝐺2 ⊕ 𝐺 [Π®𝑢𝑓 ; ®𝑢𝑡 .𝐺/𝛾] [®𝑢 ′
𝑓
/®𝑢𝑓] [®𝑢 ′

𝑡/®𝑢𝑡])
= Normmax(𝑛1,𝑛2,𝑛3) (𝐺1 ⊕ 𝐺2 ⊕ unroll (𝐺3) [®𝑢 ′

𝑓
; ®𝑢 ′

𝑡])

• C:Pair. Then 𝑒 = (𝑒1, 𝑒2) and 𝑣 = (𝑣1, 𝑣2) and 𝑔 = 𝑔1 ⊕ 𝑔2 and 𝑒1 ⇓ 𝑣1 | 𝑔1 and 𝑒2 ⇓ 𝑣2 | 𝑔2.
By inversion on S:Pair, ·; ·;Ω1;Ψ ⊢ 𝑒1 : 𝜏1 | 𝐺1 and ·; ·;Ω2;Ψ ⊢ 𝑒2 : 𝜏2 | 𝐺2 and 𝜏 = 𝜏1 × 𝜏2
and 𝐺 = 𝐺1 ⊕ 𝐺2. By induction, ·; ·;Ω1;Ψ ⊢ 𝑣1 : 𝜏1 | • and ·; ·;Ω2;Ψ ⊢ 𝑣2 : 𝜏2 | • and 𝑔1 ∈
Norm𝑛1

(𝐺1) and 𝑔2 ∈ Norm𝑛2
(𝐺2). By rule S:Pair, we have ·; ·;Ω1;Ψ ⊢ 𝑒 : 𝜏 | •. By Lemma 1,

we have 𝑔 ∈ Normmax(𝑛1,𝑛2) (𝐺).
• C:CaseL. Then 𝑒 = case 𝑒1 {𝑥 .𝑒2;𝑦.𝑒3} and𝑔 = 𝑔1⊕𝑔2 and 𝑒1 ⇓ inl 𝑣 ′ | 𝑔1 and 𝑒2 [𝑣 ′/𝑥] ⇓ 𝑣 | 𝑔2.
By inversion on S:Case, ·; ·;Ω1;Ψ ⊢ 𝑒1 : 𝜏1 + 𝜏2 | 𝐺1 and 𝑥 : 𝜏1; ·;Ω2;Ψ ⊢ 𝑒2 : 𝜏 | 𝐺2

and 𝐺 = 𝐺1 ⊕ (𝐺2 ∨𝐺3). By induction, ·; ·;Ω1;Ψ ⊢ inl 𝑣 ′ : 𝜏1 + 𝜏2 | • and 𝑔1 ∈ Norm𝑛1
(𝐺1).

By inversion on S:InL, ·; Γ;Ω1;Ψ ⊢ 𝑣 ′ : 𝜏1 | •. By Lemma 3, ·; ·;Ω2;Ψ ⊢ 𝑒2 [𝑣 ′/𝑥] : 𝜏 | 𝐺2. By

induction, and ·; ·;Ω2;Ψ ⊢ 𝑣 : 𝜏 | • and 𝑔2 ∈ Norm𝑛2
(𝐺2). By Lemma 1, 𝑔 ∈ Normmax(𝑛1,𝑛2) (𝐺).

• C:Future. Then 𝑒 = future[𝑢] 𝑒 ′ and 𝑔 = 𝑔′$𝑢 and 𝑒 ′ ⇓ 𝑣 | 𝑔′. By inversion on S:Future, we

have ·; ·;Ω′
;Ψ ⊢ 𝑒 ′ : 𝜏 | 𝐺 ′

where Ω = Ω, 𝑢 and 𝐺 = 𝐺 ′$𝑢 . By induction, ·; ·;Ω′
;Ψ ⊢ 𝑣 : 𝜏 | •

and 𝑔′ ∈ Norm𝑛 (𝐺 ′). By the definition of normalization, we have 𝑔 ∈ Norm𝑛 (𝐺).
• C:Touch. Then 𝑒 = touch 𝑒 ′ and 𝑔 = 𝑔′ ⊕ 𝑢 % and 𝑒 ′ ⇓ future[𝑢] 𝑣 | 𝑔′. By inversion

on S:Touch, ·; ·;Ω;Ψ ⊢ 𝑒 ′ : 𝜏 future[𝑢] | 𝐺 ′
where 𝐺 = 𝐺 ′ ⊕ 𝑢 %. By induction, ·; ·;Ω;Ψ ⊢

𝑣 : 𝜏 future[𝑢] | • and 𝑔′ ∈ Norm𝑛 (𝐺 ′). By the definition of normalization, we have
𝑢 % ∈

Norm𝑛 (
𝑢 %), so by Lemma 1, 𝑔 ∈ Norm𝑛 (𝐺).

• C:New. Then 𝑒 = new 𝑢.𝑒 ′ and 𝑔 = 𝑔′[𝑢 ′/𝑢] and 𝑒 ⇓ 𝑣 | 𝑔′. By inversion on S:New,

·; ·;Ω, 𝑢;Ψ, 𝑢 ⊢ 𝑒 : 𝜏 | 𝐺 ′
and 𝑢 ∉ FV(𝜏) and 𝐺 = a𝑢.𝐺 ′

. By induction, ·; ·;Ω, 𝑢;Ψ, 𝑢 ⊢ 𝑣 : 𝜏 | •
and 𝑔′ ∈ Norm𝑛 (𝐺 ′). We have Norm𝑛 (𝐺) = Norm𝑛 (𝐺 ′[𝑢 ′/𝑢]). By Lemma 1, 𝑔 ∈ Norm𝑛 (𝐺).

□

E LIMITATIONS OF THE INFERENCE ALGORITHM
The only major limitation we are aware of on the programs for which our algorithm can infer

annotations is the one mentioned above: if variable (e.g., a function argument) 𝑓 has function type,

its inferred type when applied will be Π∅; ®𝑢𝑡 .𝜏1
𝛾
−→ 𝜏2, where ®𝑢𝑡 is the set of vertices currently known

to be free in the argument. For example, in Figure 20a, the function mytouchwill not be assigned a Π
type because its argument ft would not yet have been given a future type. This will result in a type

error as written, but can easily be fixed with one type annotation (Figure 20b). Inferring ∅ as the

vertices spawned by the function is a more fundamental (and necessary) limitation. For example,

in Figure 20c, myspawn takes a function and returns a future, but there is no way to know locally

whether it spawns and returns a future that runs the function, returns an already-spawned future

it has captured, spawns two futures and returns one depending on the result of the function, etc.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

Static Prediction of Parallel Computation Graphs 46:35

let f mytouch =

let callmt ft =

mytouch ft

in

let fut = future 42 in

callmt fut

a

let f mytouch =

let callmt (ft: 'a future) =

mytouch ft

in

let fut = future 42 in

callmt fut

b

let f myspawn =

let fut =

myspawn (fun _ -> 42)

in

touch fut

c

Fig. 20. Programs with functional arguments that accept or return futures.

Therefore, there is very little we can algorithmically infer about function-type variables that return

futures (either about the annotated return type or the function’s graph type). Fortunately, in our

experience, this situation rarely occurs in realistic programs.

F FORMALIZATION OF FORK-JOIN TRANSFORMATION
The transformation algorithm is defined formally in Figure 21 using the judgment Γ; 𝑆 ⊢ 𝜖 {
_, _⊲ (_, 𝜖 ′) meaning that, under context Γ and spine 𝑆 , the code 𝜖 transforms into the code 𝜖 ′. If _, _⊲
(_, 𝜖 ′) = _, _ ▶ (_, 𝜖 ′), then the code is purely fork-join (this fact is usedwhen spawning a new future

to know whether the code of the future is purely fork-join). Rules P:EndPure and P:EndNotPure

apply when we have reached the end of the code; they reconstruct the spine into a piece of code

that is marked as pure if and only if the spine is empty (that is, if there are no outstanding futures

that were not fork-join). Rules P:TouchPar applies when we can create a par: the newly created par

is added to the spine when we recursively process the rest of the code. If the touch does not target

the last future spawned or that future is not purely fork-join, P:TouchNotPar reconstructs the

spine into a piece of code that is passed as the new spine when we recursively process the rest of

the code. Regardless of whether the rest of the code is purely fork-join, P:TouchNotPar markes

the output as not pure. Finally, rule P:Future adds a newly spawned future to the spine. The rule

recursively transforms the code in the future before adding it to the spine; if the code in the future

is purely fork-join, it is added as a pure spine entry.

The “Reconstruct” and “MkPar” operations are also defined in Figure 21. The operation Reconstruct (𝑆)
traverses the spine 𝑆 , turning the entries back into the code that spawns the futures, intermixed

with the code along the “trunk”. The operation MkPar (𝜖1, 𝜖2, x) makes a par out of a future and a

piece of the trunk, where 𝑥 is the variable that received the value of the future. After making the

actual par, 𝑥 should get the left component of the resulting pair; the other component goes into a

fresh temporary variable 𝑡1. The right component of the par needs to return any variables defined

in the trunk 𝜖2, as these could be used in the future. These are collected into a tuple, returned into 𝑡1;

this temporary variable is then deconstructed using the original variable names, thus leaving those

variables bound to the expected value in the continuation of the trunk.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

46:36 Stefan K. Muller

(P:EndPure)

Γ; _, _ ⊲ (_, 𝜖) ⊢ (𝑥, 𝑒, 𝜏) :: [] { _, _ ▶ (_, 𝜖 :: (𝑥, 𝑒, 𝜏) :: [])

(P:EndNotPure)

𝑆 ≠ _, _ ⊲ (_, ·)
Γ; 𝑆 ⊢ (𝑥, 𝑒, 𝜏) :: [] { _, _ ⊲ (_, Reconstruct (𝑆) :: (𝑥, 𝑒, 𝜏) :: [])

(P:TouchPar)

Γ;𝑢 ′, 𝑥2 ⊲ (𝜖3,MkPar (𝜖1, 𝜖2, y) :: 𝜖4) :: 𝑆 ⊢ 𝜖 { _, _ ⊲ (_, 𝜖 ′) Γ(𝑥) = 𝑢 future[𝜏]
Γ;𝑢, 𝑥1 ▶ (𝜖1, 𝜖2) :: 𝑢 ′, 𝑥2 ⊲ (𝜖3, 𝜖4) :: 𝑆 ⊢ (𝑦, touch 𝑥, 𝜏) :: 𝜖 { _, _ ⊲ (_, 𝜖 ′)

(P:TouchNotPar)

Γ; _, _ ⊲ (_, Reconstruct (𝑢, 𝑥2 ⊲ (𝜖1, (𝑦, touch 𝑥, 𝜏)𝜖2::) :: 𝑆)) ⊢ 𝜖 { _, _ ⊲ (_, 𝜖 ′)
Γ(𝑥) = 𝑢 ′

future[𝜏 ′]
Γ;𝑢, 𝑥1 ⊲ (𝜖1, 𝜖2) :: 𝑆 ⊢ (𝑦, touch 𝑥, 𝜏) :: 𝜖 { _, _ ⊲ (_, 𝜖 ′)

(P:Future)

Γ; _, _ ⊲ (_, []) ⊢ 𝜖1 { _, _ ⊲ (_, 𝜖 ′
1
) Γ;𝑢, 𝑥 ⊲ (𝜖 ′

1
, []) :: 𝑆 ⊢ 𝜖2 { _, _ ⊲ (_, 𝜖 ′)

Γ; 𝑆 ⊢ (𝑥, future[𝑢] 𝜖1, 𝜏) :: 𝜖2 { _, _ ⊲ (_, 𝜖 ′)

Reconstruct (_, _ ⊲ (_, 𝜖)) = _, _ ⊲ (_, 𝜖)

Reconstruct (𝑆) = _, _ ⊲ (_, 𝜖)
Reconstruct (𝑢, 𝑥 ⊲ (𝜖1, 𝜖2) :: 𝑆) = _, _ ⊲ (_, (𝑥, future[𝑢] 𝜖1,)::𝜖2 :: 𝜖)

FV(𝜖2) = (𝑥1, . . . , 𝑥𝑛) 𝑡1

MkPar (𝜖1, 𝜖2, y) = ((𝑦, 𝑡1), par(𝜖1, 𝑡2 :: (𝑥1, . . . , 𝑥𝑛))) :: ((𝑥1, . . . , 𝑥𝑛), 𝑡1) :: []

Fig. 21. Selected rules for transforming fork-join code into pars.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 46. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph Notation
	2.2 Parallelism Mechanisms

	3 Graph Types for Fork-Join Programs
	3.1 Graph Types
	3.2 Normalization: From Graph Types to Graphs
	3.3 Language and Graph Type System
	3.4 Cost Semantics and Soundness

	4 Graph Types
	4.1 Full Graph Type Syntax and Normalization
	4.2 Graph Type Formation

	5 A Graph-Annotated Core Calculus
	5.1 Syntax and Type Formation
	5.2 Graph Type System
	5.3 Cost Semantics and Soundness

	6 Vertex Annotation Inference
	7 Implementation and Case Studies
	7.1 Implementation
	7.2 Benchmarks
	7.3 Application: Deadlock Detection
	7.4 Application: Cost Analysis
	7.5 Application: Fork-Join Transformation

	8 Discussion and Future Work
	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Type Formation
	B Proof of Lemma 3
	C Proof of Lemma 4
	D Proof of Theorem 3
	E Limitations of the Inference Algorithm
	F Formalization of Fork-Join Transformation

