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Abstract

We propose a framework for using static resource analysis
to guide the automatic optimization of general-purpose GPU
(GPGPU) kernels written in CUDA, NVIDIA’s framework
for GPGPU programming. In our proposed framework, op-
timizations are applied to the kernel and candidate kernels
are evaluated for performance by running a static analysis
that predicts the execution cost of GPU kernels. The use of
static analysis, in contrast to many existing frameworks for
performance tuning GPU kernels, lends itself to high-level,
hardware-independent optimizations that can be of particu-
lar benefit to novice programmers unfamiliar with CUDA’s
performance pitfalls. As a proof of concept, we have imple-
mented two example optimizations and a simple search strat-
egy in a tool called COpPER (CUDA Optimization through
Programmatic Estimation of Resources), which makes use
of a static resource analysis tool for CUDA from prior work.
The prototype tool automatically improves the performance
of sample kernels by 2–4% in initial experiments, and demon-
strates the feasibility of using static analysis as part of auto-
mated performance tuning for GPU kernels.

CCS Concepts: • Software and its engineering→ Soft-

ware performance; Parallel programming languages.
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1 Introduction

General-purpose programming on GPUs (GPGPU) is becom-
ing increasingly common, driven by machine learning and
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data-intensive scientific applications. Running certain com-
putations, or kernels on the GPU can drastically improve the
performance of certain types of software. In order to make
GPGPU programming more accessible, various frameworks
for developing GPU kernels have arisen, CUDA, developed
by NVIDIA, being one of the more popular. The idea behind
CUDA is that programmers write applications in an extended
dialect of C/C++, called CUDA C/C++. While the syntax and
extrinsic semantics of CUDA C/C++ resemble the sequential
language counterparts, the performance characteristics are
drastically different due to the nature of GPU hardware. It is
possible for a novice CUDA programmer, even one experi-
enced in sequential C or C++ programming, to unknowingly
introduce severe performance bottlenecks into kernels.
To make matters worse, there are few to no hard and

fast rules for gaining good performance with a GPU kernel,
and optimizations are often counterintuitive. As an exam-
ple, one performance bottleneck in CUDA kernels is called
warp divergence, which can result in code running more
sequentially than expected (the exact nature of this bottle-
neck is not important for the moment and is described in
more detail in Section 4.1). One optimization for reducing the
impact of warp divergences, which we investigate further
in this paper, is branch distribution [6]. In some programs,
branch distribution actually increases the number of warp
divergences. Because a warp divergence comes with a cer-
tain constant cost, [1] doing so might actually cause worse
performance. However, in general, this additional overhead
is (more than) offset by the increase in parallelism that is
gained. Determining whether an optimization is likely to be
beneficial or not is a difficult problem, even for experienced
GPU programmers. Recent work [11] addressed this prob-
lem by providing a performance model for CUDA kernels,
as well as a quantitative program logic usable for predicting
the impact of several common performance bottlenecks on
a CUDA kernel. This program logic has been implemented
in a tool called RaCUDA. RaCUDA takes as input a CUDA
kernel and a resource metric, which assigns abstract “costs”
to various operations performed by a kernel. The tool stati-
cally predicts an upper bound on the “cost” of running the
kernel, in the units given by the resource metric. The aim
of RaCUDA is to help novice programmers to identify and
correct performance bottlenecks in their programs.

In this work, we propose taking the goal of RaCUDA a step
further to automatically optimize input kernels to remove or
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reduce the impact of the targeted performance bottlenecks.
The essence of our proposed framework is to iteratively apply
optimizations to an input kernel, exploring the space of pos-
sible optimizations using some search strategy, and checking
for improvement by running RaCUDA. As a proof of concept
of this framework, we have implemented a tool, COpPER
(CUDA Optimization through Programmatic Estimation of
Resources), that (like RaCUDA) takes as input an unopti-
mized kernel and a resource metric, applies optimizations in
a guided manner and returns the best kernel according to
the provided resource metric, as estimated by RaCUDA (this
may be the original kernel if, as in the branch distribution
example above, the attempted optimizations did not result
in an improvement). COpPER does not execute the kernel—
the optimizations performed are hardware-independent and
running the tool does not require a GPU.

To demonstrate our approach, we have equipped COpPER
with two optimizations it can perform on kernels: the branch
distribution transformation described above and another op-
timization that copies frequently-used array segments into
the GPU’s fast shared memory. Our approach, however, can
work with a wide variety of optimizations, search strate-
gies, and resource metrics. The approach can be used with
off-the-shelf optimizations that take CUDA kernels as input
and output optimized kernels. However, our approach has
the added benefit that optimizations can more tightly inte-
grate with the static analysis in order to specialize to the
particular kernel. For example, the optimization that moves
arrays to shared memory requires computing upper and
lower bounds on the array indices accessed to know what
segment of the array to move. These bounds are computed
using information already calculated by RaCUDA during an
abstract interpretation pass, which are then passed through
to the function that does the optimization.
At a high level, our work has a similar goal to many pa-

pers and systems on auto-tuning kernels to apply particular
optimizations or select parameters to maximize the perfor-
mance of a kernel (e.g. [3–5, 9, 10, 14]). The main difference
is that these systems generally get feedback on possible im-
provements by actually running the kernel on a GPU to
empirically determine the execution time. This is a good
approach for tuning predictable kernels for the best possible
performance on hardware, but there are several reasons to
prefer static analysis over execution for some applications.
First, the analysis of RaCUDA is hardware-independent and
geared toward higher-level performance properties. This
makes it of more use to programmers, especially novices,
who are aiming for good, but perhaps not bleeding-edge, per-
formance across a wide range of hardware. Second, the use
of static analysis allows for information-sharing, such as the
use of array bounds for copying arrays to shared memory,
as described above. The same information could be observed
by profiling a running kernel, but only for one particular run
of a kernel. If the array indices accessed depend on the input

data, for example, information obtained by profiling might
result in unsound optimizations. This leads to a final benefit
of static analysis: the quantitative program logic underlying
RaCUDA comes with a proof guaranteeing a sound upper
bound on execution cost, a desirable feature in real-time
scenarios where worst-case performance is critical. Indeed,
recent work [15] has succeeded in producing adversarial in-
puts to drastically increase the time and power consumption
of neural networks. Even if programmers develop kernels
that are robust to these inputs, it is important to know that
automatic optimizations cannot introduce vulnerabilities to
such attacks—this could not be guaranteed by an optimiza-
tion framework that simply runs the code to test whether
there is improvement on an average input.
On the other hand, the choice of whether to use actual

GPU execution or static analysis (or some combination of
the two) to assess the benefits of optimizations is largely
orthogonal from many of the contributions made by the
auto-tuning research, such as how to prune the search space
or when to sample (whether “sampling” means executing a
candidate kernel or statically analyzing it). Many of these
advances can be integrated with our approach. Our purpose
in this paper is to introduce one new axis in the design space
of kernel optimization methods: the use of static analysis. In
order to assess the feasibility of this approach, we introduce
and evaluate it by itself rather than in combination with
other cutting-edge advances; these combinations would be
an excellent subject for future study.
The remainder of the paper proceeds as follows. In Sec-

tion 2, we give some background information including a
more thorough discussion of related work on tuning GPU
kernels andmore detail on the structure of RaCUDAwhich is
necessary to understand the operation of COpPER. Section 3
gives a brief overview of our proposed framework. We then
delve more deeply into the details of COpPER in Section 4,
which details the resource metric used as the optimization
function as well as other heuristics and assumptions used for
our proof-of-concept implementation, and Section 5, which
describes the two example optimizations we implemented. In
Section 6, we evaluate COpPER on a selection of benchmarks
drawn from various sources including prior work and pub-
lic GitHub repositories. Although a thorough evaluation on
real-world code is beyond the scope of this preliminary fea-
sibility study, COpPER is able to apply the two implemented
optimizations in several settings with modest but non-trivial
(2–4%) benefit. Finally, we conclude with some observations
about this study and directions for future work in this area.

2 Background and Related Work

2.1 Related Work

Auto-tuning GPU kernels. Given that the performance
of GPGPU kernels (including those written in CUDA, but oth-
ers as well) is so sensitive to small code changes, parameters,
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and hardware details, it is not surprising that there is a great
deal of literature on performance tuning of kernels, including
doing so automatically. This process of auto-tuning is gener-
ally aimed at tuning kernels for particular hardware. Many
auto-tuning frameworks and algorithms are even specialized
to particular applications such as matrix multiplication [5, 9]
and stencil computations [4, 10]. Schoonhoven et al. [14]
provide a quantitative comparison of various optimization
algorithms used for auto-tuning and, in the process, conduct
a good survey of the auto-tuning literature.

Most auto-tuning algorithms operate based on a feedback
loop of performing optimizations and then executing the
new kernel on the GPU to test its performance, whereas we
instead statically analyze kernels to predict their resource
usage. Our work is therefore more geared toward general,
hardware-independent optimizations. Because the aims are
different, we will review some of the work most closely re-
lated to ours, and refer the interested reader to the literature
reviews of these papers for more details.

As in our work, auto-tuning generally reduces to a guided
search of a large space of optimizations, with some work
aimed at how to best narrow down the search space. Garvey
and Abdelrahman [4] use machine learning (ML) models to
select optimizations, and other heuristics to guide the re-
mainder of the search of the optimization space. OpenTuner
[3] uses a combination of sampling and regression trees to ex-
plore the search space. Such techniques could also be applied
to the idea of resource analysis-guided kernel optimization,
whereas we have largely used a greedy approach.

There is also work on general optimizations for specific
performance bottlenecks. Han and Abdelrahman [6] present
program transformations for reducing the impact of warp
divergence, including the branch distribution optimization
we apply in our work. The same authors in later work [7]
use ML models to decide whether an optimization on the
use of memory is likely to be beneficial or not.

Quantitative Models of GPU Performance. Using static
analysis to assess the performance bottlenecks of a kernel,
or the performance benefits of an optimization, requires a
model of the performance of GPU kernels. Such models are
complex and difficult to come by because of the complexities
of GPU hardware and the closed-source nature of many of
the common architectures and APIs. The quantitative model
behind RaCUDA, the static analysis tool on which our proto-
type is constructed, is based around predicting the impact of
three major bottlenecks described in Section 4.1. However,
RaCUDA itself does not provide a model for combining this
information into an estimate of the running time (or even an
abstract cost) of a kernel; that work is done by the resource
metric that is a parameter to RaCUDA. Deriving a resource
metric that can approximate execution time requires a model
that translates software features such as those predicted by
RaCUDA into execution times. The model of Braun et al. [2],

which aims to predict the runtime performance of kernels
based on such hardware-independent features, is a promising
step in this direction. In a similar vein, GPURoofline [8] is a
performance model for GPU kernels specifically intended to
guide optimizations of GPGPU code.

2.2 Background: RaCUDA

RaCUDA [11] is a fully automated static resource analysis
for CUDA kernels. It takes as input a CUDA program and a
resource metric, which maps operations to costs in abstract
units. For example, RaCUDA includes resource metrics for
“warp divergences” which assigns a cost of one every time
a warp divergence occurs, and a cost of zero to all other
operations. It also includes a “steps” metric, which assigns a
cost of one to most sequential operations (weighting memory
operations based on expected latency), giving a high-level
approximation of execution time.
RaCUDA consists of three main components. The front

end parses the source code (using FrontC1) and converts it
to a high-level imperative, resource-annotated intermediate
representation (IMP) using the given resource metric to an-
notate operations with costs. The converted kernel then un-
dergoes an abstract interpretation. Information gleaned about
values during this analysis is used to estimate CUDA-specific
costs (such as the range of memory addresses accessed by a
read operation, which impacts the latency of the access) and
other information necessary for the bound analysis. Finally,
the bound analysis builds a set of constraints on the resource
usage of program components, which is then solved by an
off-the-shelf LP solver. The bound analysis component of
RaCUDA is largely unchanged from that of Absynth [12],
on which RaCUDA is based.

3 Overview

In this section, we give an overview of the design of COpPER
and how it builds on RaCUDA.

3.1 COpPER Design

Figure 1 shows the design of COpPER’s pipeline, including
some of the internal process of RaCUDA (which wemodified
somewhat, as described below). COpPER takes an unopti-
mized CUDA kernel as input, and runs RaCUDA on it using
a custom resource metric that estimates the relative running
time impact of different operations (this metric is discussed
in more detail in Section 4.1). This initial run of RaCUDA
serves several purposes:

1. The resource usage bound produced as a result serves
as a baseline cost for the unoptimized kernel; the cost
estimates for optimized versions will be compared to
this baseline to check for improvement.

2. The CUDA Abstract Syntax Tree (AST) produced by
the front end will be fed into the optimizers.

1https://github.com/BinaryAnalysisPlatform/FrontC
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Figure 1. An illustration of the design of COpPER.

3. Some optimizations internally use information gath-
ered during the abstract interpretation phase.

After the initial run of RaCUDA, the CUDA AST, anno-
tated with information derived from the abstract interpre-
tation, is passed to the first optimizer, which generates a
number of candidates, which are distinct kernels with the op-
timization applied. The candidates may differ on the degree
of agressiveness of the optmization, or other parameters of
the particular optimization. COpPER then runs the abstract
interpretation and bound analysis of RaCUDA on each can-
didate to estimate their execution cost. We need to perform
the abstract interpretation again on each candidate, despite
having performed it already on the unoptimized kernel, be-
cause the optimization may have changed runtime values in
the kernel, especially the values of variables introduced in
the conversion from CUDA to IMP which track cost.
After obtaining a bound (if possible) for each candidate,

we compare the bounds and select the best candidate (or
the original kernel if none of the candidates have better
bounds). Because the bound is a (polynomial) function of
the input parameters to the kernel, we compare the bounds
using a heuristic comparison function on polynomials which
we describe in more detail in Section 4.2. We then pass the
winning candidate to the next optimization, and the process
repeats until all optimizations have been applied. COpPER
then returns the final, optimized kernel.

Note that this design assumes that optimizations are inde-
pendent. For example, assume that two optimizations, 1 and
2, produce two candidates each (A and B for optimization 1,
C and D for optimization 2). We could consider four candi-
date kernels, with each combination of optimizations (e.g.,
AC, AD, BC, and BD). To avoid the exponential blowup in
the number of candidates, however, we assume that if, e.g.,
candidate A outperforms candidate B under only optimiza-
tion 1 and C outperforms D under only optimization 2, then
AC is the best of the four candidates.

4 Cost Metrics and Heuristics

4.1 Weighted Steps Cost Metric

The resource metric we use to predict execution cost bounds
for kernels is called weighted steps and is based on the steps
metric of Muller and Hoffmann [11]. Every basic CUDA oper-
ation (arithmetic operations, assignments, condition checks,
etc.) costs one unit, with the following exceptions:

• Divergent Warps. CUDA threads operate in groups of
32 called warps. All threads in a warp execute the same
instruction. If a warp executes a conditional statement
where some threads in the warp take one branch and
some take the other, the warp is said to diverge: both
branches are executed, one after the other, with the
appropriate threads activated and deactivated while
executing each branch. When a warp diverges, our
metric charges one unit of cost for the overhead of
masking and unmasking threads, and then analyzes
the two branches as if they execute in sequence.

• Global Memory. In CUDA, all threads share access to
a large global memory. When multiple threads in a
warp access different addresses in global memory, the
GPU attempts to group these reads into as few reads as
possible of fixed-size (e.g., 128 byte) segments, called
sectors, as possible. If the 32 threads of a warp all read
from (or write to) addresses very far from each other,
this access would take 32 sectors. On the other hand, if
all of the threads access the same handful of adjacent
addresses, this might be possible with one sector. Our
cost metric charges 5𝑁 units for a global memory read
or write of 𝑁 sectors (the multiplicative coefficient is
to account for the fact that global memory is slower
than shared memory, described below).

• Shared Memory.Multiple warps can be grouped into
blocks. Threads within a block share access to a small,
fast area of shared memory. Shared memory is orga-
nized into 32 banks, which may be accessed concur-
rently. If the 32 threads in a warp all access consecutive
locations in shared memory, these accesses all map to
different banks, and the locations are all accessed con-
currently. However, if two or more accesses target
different addresses in the same bank (called a bank
conflict), these accesses must be sequentialized. Our
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metric charges 𝑁 units for an access to shared memory
where at most 𝑁 accesses target the same bank.

In short, the weighted steps metric aims to simulate the
time taken to execute one warp, including the added latency
that might be caused by uncoalesced global memory accesses
(those in which a warp accesses memory locations that can-
not be grouped into a few accesses of consecutive regions)
and shared memory bank conflicts. In future work, the rel-
ative costs of various operations should be tuned based on
empirical observation, and can even be adjusted for a partic-
ular GPU. The values used here are simply initial heuristics
to get a working prototype.

4.2 Polynomial Comparison Heuristic

Each candidate optimized kernel, including the baseline with
no optimizations, is analyzed using the resource metric from
Section 4.1 to obtain an upper bound on the cost of execu-
tion, as a polynomial function of input parameters. We must
then compare these upper bounds to determine whether
one candidate is better than another. In this section, we
define a comparison function ⪯ on two multivariate poly-
nomials 𝑓 and 𝑔 with the same number of arguments. In
general, it is not possible to define ⪯ such that 𝑓 ⪯ 𝑔 if
and only if 𝑓 (𝑥0, . . . , 𝑥𝑛) < 𝑔(𝑥0, . . . , 𝑥𝑛) for all 𝑥0, . . . , 𝑥𝑛 .
Nor do we wish to rely solely on asymptotic complexity
classes: many optimizations do not change the asymptotic
complexity of a program. Intuitively, we want 𝑓 ⪯ 𝑔 when
𝑓 (𝑥0, . . . , 𝑥𝑛) < 𝑔(𝑥0, . . . , 𝑥𝑛) for a large domain of com-
monly occurring values for 𝑥0, . . . , 𝑥𝑛 . This domain will, of
course, depend on the application and it will likely be ben-
eficial to adjust the heuristic ⪯ function as needed for a
particular application.

We use the following definition for ⪯:
1. If 𝑓 is of lower degree than 𝑔, then 𝑓 ⪯ 𝑔

2. If 𝑓 and 𝑔 are of the same degree 𝑛, then compare the
sums of the 𝑛𝑡ℎ degree coefficients of 𝑓 and 𝑔. If this
sum is lower for 𝑓 , then 𝑓 ⪯ 𝑔. If it is lower for 𝑔,
then 𝑔 ⪯ 𝑓 . If they are equal (or within a specified ab-
solute difference), proceed to compare the coefficients
at the next-higher degree.

3. If this process terminateswithout determining that 𝑓 ⪯
𝑔 or 𝑔 ⪯ 𝑓 , then we say 𝑓 ̸⪯ 𝑔 and 𝑔 ̸⪯ 𝑓 . Because we
choose a candidate 𝑓 only if 𝑓 ⪯ 𝑔, where 𝑔 is the best
candidate so far, this will result in the new candidate
not being chosen.

This definition has the property that 𝑓 ⪯ 𝑔 if and only
if lim𝑥0,...,𝑥𝑛→∞

𝑓 (𝑥0,...𝑥𝑛 )
𝑔 (𝑥0,...𝑥𝑛 ) ≤ 1, but also provides a useful com-

parison for asymptotically “equal” polynomials where the
limit approaches 1.

5 Implemented Optimizations

In this section, we present two algorithms aimed at opti-
mizing CUDA kernels. The first is the Branch Distribution

algorithm, which identifies and moves complex, or expensive
common code blocks shared between conditional branches.
This reduces the impact of branch divergence, which helps
improve performance. The second algorithm optimizes ker-
nels by moving certain global memory array parameters into
shared memory. It first determines the access bounds for
array parameters, identifies which ones can benefit from
shared memory, and modifies the original code to use shared
memory instead of global.

5.1 Branch Distribution

Branch Distribution [6] reduces the performance impact of
some instances of branch divergence by identifying com-
mon blocks of code shared between branches, and restruc-
turing the control flow by moving the common code out-
side of the conditional statements. This algorithm is espe-
cially useful when the common code blocks inside the condi-
tional branches are computationally expensive. The expen-
sive statements will be executed only once by all threads in
the warp, rather than twice in sequence.

For example, suppose we have a conditional in our kernel,
with the potentially expensive, or complex, statement A.

if (condition1) { A; B; }

else { A; C; }

In this case, if threads in a warp have different values for
the condition, the warp would diverge and the two branches
would execute sequentially, reducing the performance of the
warp. Branch distribution could refactor the code as follows:

A;

if (condition1) { B; }

else { C; }

In this case, the expensive code block A has been moved
outside of the conditions, so all threads would execute the
block simultaneously, reducing the impact of the branch
divergence and improving performance.
In some cases, branch distribution may not help the per-

formance. For example, if we started off with this code:

if (condition1) { A; B; C;}

else { D; B; F; }

It would be refactored into this:

if (condition1) { A; }

else { D; }

B;

if (condition1) { C; }

else { F; }

If the common code B is extremely expensive, then this refac-
toring is indeed likely to be an optimization. 2 On the other
2Note that simply counting the number of potential divergences would miss
this optimization, as we have increased the total number of divergences but
decreased their impact on performance.
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hand, if B has a negligible performance impact, then the
overhead of having two (divergent) conditional statements
may actually negatively affect our performance. Because of
this, we only want to move common code blocks outside
of the conditional statements when we are confident that
they are sufficiently expensive. The weighted steps metric
(Section 4.1) can estimate whether an application of branch
distribution is likely to be an optimization or not. However,
we wish to reduce the number of candidate kernels that
need to be analyzed, and so our implementation uses some
heuristics to determine when to apply branch distribution.

In addition to the kernel AST, the optimization accepts as
a parameter a “complexity cutoff” indicating how “expensive”
a block of code should be before the optimizationwill factor it
out of a conditional. Our optimization will continue factoring
out blocks of code until their complexity falls below the given
cutoff. As a simple complexity metric, we use the number of
statements, with loop statements counting triple.

The branch distribution algorithm consists of two parts: a
function for finding the Most Complex Common Code Block
(MCCCB) between two ASTs (e.g., the two branches of a
conditional) and a main function that applies the MCCCB
algorithm to conditional branches in the AST until all com-
mon code blocks over the complexity cutoff are factored out.
We now describe these two processes in more detail.

Most Complex CommonCode Block (MCCCB). TheMC-
CCB function takes as parameters two blocks of code, as well
as the complexity cutoff. We use a dynamic programming
approach similar to the longest common substring problem,
where the complexity score replaces the substring length
in the original algorithm. The function outputs the most
complex sub-AST that the two code blocks have in common,
and its complexity score.

Branch Distribution Algorithm. This function serves
as the entry point for the algorithm. It processes the state-
ments in the kernel one at a time, recursively traversing sub-
statements (such as loop bodies and conditional branches).
When the traversal reaches a conditional statement, it cal-
culates the most complex common code block between the
two branches (which have, themselves, already had branch
distribution applied). If common code is found that passes
the complexity cutoff, the function reorganizes the code to
move the common code outside the conditional branches.

5.2 Shared Memory

The second optimization we implemented automatically
moves arrays from slow global memory to fast shared mem-
ory. If the array elements are used frequently, the perfor-
mance benefits of storing them in shared memory are likely
to outweigh the cost of initially moving the data from global
to shared memory (and back if they’re modified). In order
to determine whether an array can be allocated in shared
memory, and what portion of the array to move, we must

first determine lower and upper bounds on the indices ac-
cessed by a kernel, as a function of the thread ID. In order
to facilitate this analysis, we have extended the abstract in-
terpretation pass of RaCUDA (see Section 2.1) to annotate
expressions in the AST with lower and upper bounds on
the runtime value of an expression (in terms of the thread
ID and other parameters), if these can be computed from
information already tracked by the abstract interpretation.
As an example, the top of Figure 2 shows a motivating

example kernel of Muller and Hoffmann [11] that adds and
subtracts the vector A to even and odd rows of a matrix B,
respectively (the suffix 2 in the kernel’s name refers to the
fact that, in themotivating example fromwhich this is drawn,
this kernel has already gone through 2 rounds of iterative
revision). The array element A[i] is accessed once for each
row of B, so it is a performance optimization to move A to
shared memory. The result of this optimization, as performed
by our implementation, is shown on the bottom of the figure.

The overall algorithm can be broken up into three sections:

1. Generate a hashtable of access bounds for each array
parameter in the kernel.

2. Identify which array parameters can be moved into
shared memory.

3. Modify the original code to move the data between
global and shared memory, and rewrite accessed to the
array to target the new, shared memory, array.

Note that our optimization only determines which arrays
can bemoved to sharedmemory, not whether doing sowould
be profitable. For a set 𝐴 of arrays that can be moved, the
optimization will generate a candidate kernel corresponding
to each element of the power set of 𝐴, in which each com-
bination of arrays has been moved to shared memory. The
subsequent RaCUDA analysis passes will determine which
of these (including the original candidate in which no arrays
are moved) is likely to be most performant.

Hash table Generation. We generate a hash table that
maps arrays to information about its access patterns. Each
array that is a parameter to the kernel corresponds to an
entry in the hash table. We build the hash table by iterating
through the code block, populating an intermediate hash ta-
ble that stores the lower and upper bounds of any expression
used to index into each array parameter. In the example of
the kernel in Figure 2, both arrays have two accesses. Each
access to A[i] (both accesses are to the same element, but we
do not yet perform this deduplication) has upper and lower
bounds of blockIdx.x * blockDim.x + threadIdx.x be-
cause this is the statically known value of i. The expression
j * w + i, used as the first index to B, has an upper bound of
h * w + blockIdx.x * blockDim.x + threadIdx.x (h is
an upper bound of j and i is bounded as above) and a lower
bound of blockIdx.x * blockDim.x + threadIdx.x (i.e.,
where j is 0). We can bound (j + 1) * w + i similarly.
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__global__ void addSubArray2 (int *A, int *B, int w, int h) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

for (int j = 0; j < h; j += 2) {

B[j * w + i] += A[i];

B[(j + 1) * w + i] -= A[i];

}

}

__global__ void addSubArray2 (int *A, int *B, int w, int h) {

signed long int lower_bound_A1 = blockIdx.x * blockDim.x;

__shared__ int A1[BLOCKSIZE ];

for (int temp = 0; temp < 1; temp ++)

A1[threadIdx.x] = A[( blockIdx.x * blockDim.x) + threadIdx.x];

__syncthreads ();

for (int j = 0; j < h; j += 2) {

B[j * w + i] += A1[i - lower_bound_A1 ]];

B[(j + 1) * w + i] -= A1[i - lower_bound_A1 ]];

}

}

Figure 2. The unoptimized (top) and optimized (bottom) versions of the addSub2 kernel.

Once the hashtable has been populated, we remove dupli-
cate entries and determine, for each array, how many shared
memory arrays should be allocated for it—if a thread ac-
cesses multiple disjoint segments of an array, it may be more
efficient to store only these segments as separate arrays in
shared memory. Each of these segments is assigned a unique
number, called a variant number. In the case of the example,
both arrays have one variant.

Sharable Parameter Identification. After generating
the hashtable, we use the access bounds from the array pa-
rameters to determine which arrays can be moved to shared
memory. In particular, we only copy an array if the size of
its segments can be determined at compile time to be a con-
stant multiple of the number of threads in a block.3 We test
whether this is the case for each array variant by subtracting
the lower bound from the upper bound, taking the size of
a block to be the difference between the upper and lower
bounds of the thread ID. In the example, the upper bound
of i becomes blockIdx.x * blockDim.x + blockDim.x
and the lower bound is blockIdx.x * blockDim.x + 0, for
a segment size of blockDim.x. Technically, block dimensions
are indicated dynamically at the time a kernel is launched.
However, in most kernels, these are compile-time constants,
so we declare the shared memory variant A1 as an array of

3This is not a restriction of CUDA; indeed, it is possible (though slightly
unwieldy) to allocate arrays in shared memory whose size is not known
at compile time. However, the loops that are necessary to copy such array
segments into shared memory pose problems for RaCUDA’s analysis, so
we would not be able to analyze the resulting code for improvement.

size BLOCKSIZE, where BLOCKSIZE will need to be filled in
with the constant dimension of a block in order to use the
resulting code.

Code Modification. Finally, we modify the original code
to bring global parameters that were identified as movable
into shared memory (and back to global memory at the end
of the kernel, if any of the accesses are writes). To do this,
we generate code that copies the data between global and
shared through this process:

1. Declare shared memory arrays for each array variant.
2. Declare and define variables to capture the lower bound

of each variant’s accesses.
3. Add code to copy the necessary data for each variant

to the new shared array (using a for loop if a variant’s
segment is wider than the thread block).

4. Modify the original code to use the shared memory
array instead of the original global memory array.

5. Copy the changes from shared memory back to global
memory (the reverse of step 3) if writes are detected.

The bottom of Figure 2 shows the optimized version of
the addSub2 kernel: the for loop copies values from A into
the new shared array A (indeed, the body of the loop is only
executed once, so a loop is not needed), and the accesses
to A[i] are changed to A[i - lower_bound_A1] where
lower_bound_A1 is defined to be the lowest index of A ac-
cessed by a particular block, as determined by the abstract
interpretation pass.
The restrictions on what arrays can be copied to shared

memory are fairly conservative in order to ensure that the
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resulting code can be analyzed by RaCUDA and that the
code rewriting in Step 4 above preserves the semantics of
the code. In the future, we hope to be able to relax some of
these restrictions.

6 Evaluation

We evaluated COpPER on a set of benchmarks drawn from
prior work and other sources. The RaCUDA analysis and our
optimizations aim to improve code written by novices with
little knowledge of performance properties of CUDA, and so
the goal in the evaluation was to approximate such kernels.
With this in mind, we used three sources for benchmarks:

• Synthetic benchmarks used by Muller and Hoffmann
[11] to illustrate the performance bottlenecks targeted
by RaCUDA. These benchmarks intentionally possess
the performance bottlenecks.

• Code downloaded from public GitHub repositories.
We filtered for repositories under the "CUDA" topic
whose primary language was CUDA, and sorted by
lowest number of stars, in order to target repositories
of programmers learning or practicing CUDA. Some of
these benchmarks were edited to remove features not
supported by RaCUDA and, in some cases, to remove
optimizations such as the use of shared memory if the
programmer had already optimized in this fashion.

• Code produced by ChatGPT [13] with prompts begin-
ning “Pretend you’re a student just learning CUDA
and you don’t know about performance bottlenecks
like warp divergence and and shared memory...”

We discuss the benchmarks in more detail below.
• addSub0 and addSub2 were drawn from Muller and
Hoffmann [11], and are two versions of a kernel that
manipulates a matrix (the code for addSub2 appears in
Figure 2). Kernel addSub0 uses a thread per row and
conditions on the row modulo 2, resulting in a warp
divergence. Kernel addSub2 uses a thread per column
and iterates over rows for better locality, but does not
use shared memory. The kernels have two parameters,
𝑤 and ℎ, the width and height of the matrix.

• SYN-BRDIS is a synthetic kernel written by Muller and
Hoffmann [11] and inspired by Han and Abdelrahman
[6], to motivate the use of branch distribution. It has
two parameters,𝑀 and 𝑁 , which are used as bounds
of inner and outer loops, respectively.

• DMVM is a kernel for dense matrix-vector multiplica-
tion produced by ChatGPT. It doesn’t have divergences
or use shared memory, but the kernel’s locality prop-
erties doesn’t lend itself to the use of shared memory.
The kernel has two parameters, 𝑤 and ℎ, the width
and height of the matrix.

• For the DVMM kernel, we manually modified the
DMVM kernel above to instead multiply the vector
by the matrix, but otherwise left the code the same.

• ElementWise is a kernel produced by ChatGPT with
the goal of adding two matrices. It is worth noting
that the logic of the code is incorrect, and repeatedly
iterates over the first rows of the matrices (and does
not use parallelism). Because of this logic error, the
kernel could make use of shared memory.

• The 1DConv benchmark, taken from GitHub, com-
putes a 1-D convolution of an image vector.

• The Rank benchmark, taken from GitHub, computes
the rank of each element in an array in numerical order.
The array could be stored in shared memory.

We ran COpPER on all of these benchmarks and recorded
the execution time of COpPER as well as what optimiza-
tion(s), if any, were found. The experiments were run on a
commodity machine with 16 GB of memory and 2.6 GHz
processors. Note that COpPER runs sequentially and uses
only the CPU, not the GPU. The results are presented in
Table 1. The first two columns show the time to run COpPER
overall and the time spent in RaCUDA, respectively. The
first observation about the time taken by COpPER is that
it inherits from RaCUDA a heavy dependence on the com-
plexity of the code. This is to be expected, because COpPER
runs RaCUDA to completion on each candidate. While some
benchmarks finish in approximately a second, SYN-BRDIS
(the most expensive-to-analyze benchmark in the original
paper on RaCUDA [11]) took approximately half an hour
and Rank timed out after 10 hours. Across all benchmarks,
the vast majority of the time (>98%, and >99% for most bench-
marks) was spent running RaCUDA.
For benchmarks that did not time out, COpPER found

optimizations for all except DMVM and ElementWise. We
consider this a correct result for DMVM, as a manual inspec-
tion of the kernel shows that moving the matrix or vector
to shared memory would not be beneficial: as written, each
element of the matrix and vector is loaded from global mem-
ory only once (in DVMM, naively swapping the roles of the
vector and matrix causes each element of the vector to be
loaded for each iteration of the loop, making it beneficial to
move the vector to shared memory). In ElementWise, the
first row of the matrix could be moved to shared memory,
but COpPER does not find this optimization because of its
restriction to fixed-length array segments.
For benchmarks where an optimization was found, the

last three columns of the table give the upper bound on the
weighted steps cost metric computed by COpPER for the
input kernel and the optimized kernel, as a function of the
input parameters described above. The last column gives
the type of optimization performed (for all kernels, only one
optimization, either branch distribution or global-to-shared,
turned out to be beneficial).

Next, we selected two kernels (addSub2 and SYN-BRDIS)
for a deeper evaluation of the benefits of the optimization.
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Table 1. Optimization time and optimizations found for the benchmarks.

Benchmark Time (s) RaCUDA (s) Opt. found? Orig. bound Optimized bound Type(s) of opt

addSub0 7.527 7.522 Yes 7 + 1078𝑤 8 + 746𝑤 Branch Dist.
addSub2 0.414 0.408 Yes 166 + 152ℎ 185 + 108ℎ Global-to-shared
SYN-BRDIS 1653.316 1653.301 Yes 15 + 70𝑁 + 116𝑀𝑁 16 + 61𝑁 + 93𝑀𝑁 Branch Dist.
DMVM 1.438 1.433 No
DVMM 1.651 1.642 Yes 50 + 128ℎ 113 + 84ℎ Global-to-shared
ElementWise 53.883 53.881 No
1DConv 8.049 8.038 Yes 812 624 Global-to-shared
Rank >10h — —

Table 2. Performance of unoptimized (Unopt.) and optimized
(Opt.) versions of the addSub2 kernel.

ℎ Unopt. (ms) Opt. (ms) % Impr.

1000 0.419 0.427 -1.91
2000 0.798 0.791 0.88
3000 1.213 1.181 2.64
4000 1.591 1.555 2.26
5000 1.975 1.927 2.43
6000 2.373 2.308 2.74
7000 2.773 2.700 2.63
8000 3.153 3.078 2.38
9000 3.556 3.468 2.47
10000 3.951 3.846 2.66

For both kernels, we executed both the optimized and unop-
timized versions of the kernel, with suitable setup code. The
experiments were run on the same machine as the bench-
marks above, which has an NVIDIA GeForce GTX 1650 GPU.
The results for addSub2 are in Table 2, for varying values
of ℎ (the bound is unaffected by 𝑤 ). The last column gives
the percentage improvement provided by the optimization.
For smaller values of ℎ, the optimization gives little benefit.
Indeed, for ℎ = 1000, the optimized version runs almost 2%
slower. However, for larger values ofℎ, the optimized version
converges to approximately 2.5% faster, a modest improve-
ment. This behavior is consistent with the bounds found by
RaCUDA for the optimized and unoptimized kernels: the
constant factor of the bound is larger in the optimized ver-
sion, because of the overhead introduced by moving values
from global memory to shared memory. This constant over-
head is outweighed by the improvement in the linear bound
for larger values of ℎ. The improvement is, however, smaller
than would be expected from the bounds (as ℎ grows, we
would expect the difference to converge to

152ℎ − 108ℎ
152ℎ

≈ 29%

Table 3. Performance of unoptimized (Unopt.) and optimized
(Opt.) versions of the SYN-BRDIS kernel.

𝑀 𝑁 Unopt. (ms) Opt. (ms) % Impr.

128 128 4.130 3.994 3.29
128 256 8.170 7.915 3.12
128 384 12.209 11.842 3.01
128 512 16.239 15.770 2.89
128 640 20.277 19.696 2.87
128 768 24.318 23.624 2.85
128 896 28.350 27.552 2.81
128 1024 32.388 31.47 2.83
256 128 8.227 7.941 3.48
384 128 12.321 11.905 3.38
512 128 16.411 15.854 3.39
640 128 20.508 19.810 3.40
768 128 24.604 23.771 3.39
896 128 28.708 27.728 3.41
1024 128 32.815 31.683 3.45

This indicates that the weighted steps heuristic used is an im-
perfect model of the cost of execution and could be improved
with real-world data.

The results for the SYN-BRDIS kernel are shown in Table 3,
first varying 𝑁 and then varying𝑀 while keeping the other
parameter constant. The branch distribution optimization
results in an improvement for all values tested, as predicted
by RaCUDA: the constant overhead introduced by the op-
timization is quite small. Somewhat counterintuitively, the
improvement seems to decrease slightly as 𝑁 increases for
fixed𝑀 , but more experimentation is needed to determine
whether this is significant or an experimental artifact. As
with addSub2, the improvements are smaller than predicted
by the weighted steps metric, but are not trivial.

7 Conclusion and Future Work

In this work, we have proposed a framework for using static
resource analysis to guide the automatic optimization of
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general-purpose GPU kernels written in CUDA. Static re-
source analysis provides a sound, hardware-independent
basis for determining the performance benefits of optimiza-
tions. As a proof of concept, we implemented the COpPER
tool with a simple search strategy and two optimizations.
COpPER is able to achieve modest speedups in benchmarks
with performance bottlenecks.

Much work remains to be done. For one, a full evaluation
of an improved and expanded version of COpPER would
involve a larger set of benchmarks more representative of
the kernels we target: simple code written by novice CUDA
programmers. Such an evaluation could use a systematic
study of public code repositories or of student submissions in,
for example, an undergraduate parallel systems course. These
evaluations are beyond the scope of this first study, which
simply aims to establish the feasibility of static analysis as a
tool in guiding the optimization of CUDA kernels.

It is also important to note that our goal is not to compete
with the existing work being done in tuning GPU kernels. In-
deed, this work has made major strides in improving aspects
such as the sampling and search strategy, from which our
framework could benefit. Future work should evaluate the
use of static analysis as a replacement for kernel execution in
a state-of-the-art auto-tuning framework (and/or the integra-
tion of major ideas from these frameworks into our system).
In addition, as discussed in the evaluation, our optimization
framework is only as good as the resource model it (and
in particular, RaCUDA) uses to predict the performance of
candidate kernels. The quantitative model behind RaCUDA
is based around predicting the impact of warp divergences,
global memory accesses, and shared memory bank conflicts.
The original evaluation of RaCUDA shows that it is fairly
precise in quantitatively predicting these bottlenecks. How-
ever, combining this information into a precise estimate of
kernel execution time is beyond the scope of RaCUDA. One
approach would be to combine RaCUDA’s predictions of
certain properties of the code with some of the models de-
scribed in Section 2, which could turn these predictions into
more concrete predictions of kernel execution time.

Acknowledgments

This work was partially supported by the National Science
Foundation under award number CCF-2007784.

References

[1] Piotr Bialas and Adam Strzelecki. 2016. Benchmarking the Cost of
Thread Divergence in CUDA. In Parallel Processing and Applied Math-
ematics, Roman Wyrzykowski, Ewa Deelman, Jack Dongarra, Konrad
Karczewski, Jacek Kitowski, and Kazimierz Wiatr (Eds.). Springer In-
ternational Publishing, Cham, 570–579. https://doi.org/10.1007/978-
3-319-32149-3_53

[2] Lorenz Braun, Sotirios Nikas, Chen Song, Vincent Heuveline, and
Holger Fröning. 2021. A Simple Model for Portable and Fast Prediction
of Execution Time and Power Consumption of GPU Kernels. ACM
Trans. Archit. Code Optim. 18, 1, Article 7 (dec 2021), 25 pages. https:

//doi.org/10.1145/3431731
[3] Wilson Feng and Tarek S. Abdelrahman. 2017. A Sampling Based Strat-

egy to Automatic Performance Tuning of GPU Programs. In 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 1342–1349. https://doi.org/10.1109/IPDPSW.2017.46

[4] Joseph D. Garvey and Tarek S. Abdelrahman. 2015. Automatic Perfor-
mance Tuning of Stencil Computations on GPUs. In 2015 44th Interna-
tional Conference on Parallel Processing. 300–309. https://doi.org/10.
1109/ICPP.2015.39

[5] Dominik Grewe and Anton Lokhmotov. 2011. Automatically Gen-
erating and Tuning GPU Code for Sparse Matrix-Vector Multiplica-
tion from a High-Level Representation. In Proceedings of the Fourth
Workshop on General Purpose Processing on Graphics Processing Units
(Newport Beach, California, USA) (GPGPU-4). Association for Com-
puting Machinery, New York, NY, USA, Article 12, 8 pages. https:
//doi.org/10.1145/1964179.1964196

[6] Tianyi David Han and Tarek S. Abdelrahman. 2011. Reducing Branch
Divergence in GPU Programs. In Proceedings of the Fourth Workshop
on General Purpose Processing on Graphics Processing Units (Newport
Beach, California, USA) (GPGPU-4). ACM, New York, NY, USA, Article
3, 8 pages. https://doi.org/10.1145/1964179.1964184

[7] Tianyi David Han and Tarek S. Abdelrahman. 2014. Automatic Tun-
ing of Local Memory Use on GPGPUs. CoRR abs/1412.6986 (2014).
arXiv:1412.6986 http://arxiv.org/abs/1412.6986

[8] Haipeng Jia, Yunquan Zhang, Guoping Long, Jianliang Xu, Shengen
Yan, and Yan Li. 2012. GPURoofline: A Model for Guiding Performance
Optimizations on GPUs. In Euro-Par 2012 Parallel Processing, Christos
Kaklamanis, Theodore Papatheodorou, and Paul G. Spirakis (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 920–932.

[9] Yinan Li, Jack Dongarra, and Stanimire Tomov. 2009. A Note on
Auto-tuning GEMM for GPUs. In Computational Science – ICCS 2009,
Gabrielle Allen, Jaroslaw Nabrzyski, Edward Seidel, Geert Dick van
Albada, Jack Dongarra, and Peter M. A. Sloot (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 884–892.

[10] Azamat Mametjanov, Daniel Lowell, Ching-Chen Ma, and Boyana
Norris. 2012. Autotuning Stencil-Based Computations on GPUs. In
2012 IEEE International Conference on Cluster Computing. 266–274.
https://doi.org/10.1109/CLUSTER.2012.46

[11] Stefan K. Muller and Jan Hoffmann. 2021. Modeling and Analyzing
Evaluation Cost of CUDAKernels. 5, POPL, Article 25 (1 2021), 31 pages.
https://doi.org/10.1145/3434306

[12] Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018.
Bounded Expectations: Resource Analysis for Probabilistic Programs.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Philadelphia, PA, USA) (PLDI
2018). ACM, New York, NY, USA, 496–512. https://doi.org/10.1145/
3192366.3192394

[13] OpenAI. 2024. ChatGPT. https://chat.openai.com/chat. (Jan. 2024
version).

[14] Richard Arnoud Schoonhoven, Ben van Werkhoven, and Kees Joost
Batenburg. 2023. Benchmarking Optimization Algorithms for Auto-
Tuning GPU Kernels. IEEE Transactions on Evolutionary Computation
27, 3 (2023), 550–564. https://doi.org/10.1109/TEVC.2022.3210654

[15] Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Papernot, Robert
Mullins, and Ross Anderson. 2021. Sponge Examples: Energy-Latency
Attacks on Neural Networks. In 2021 IEEE European Symposium on
Security and Privacy (EuroS&P). 212–231. https://doi.org/10.1109/
EuroSP51992.2021.00024

https://doi.org/10.1007/978-3-319-32149-3_53
https://doi.org/10.1007/978-3-319-32149-3_53
https://doi.org/10.1145/3431731
https://doi.org/10.1145/3431731
https://doi.org/10.1109/IPDPSW.2017.46
https://doi.org/10.1109/ICPP.2015.39
https://doi.org/10.1109/ICPP.2015.39
https://doi.org/10.1145/1964179.1964196
https://doi.org/10.1145/1964179.1964196
https://doi.org/10.1145/1964179.1964184
https://arxiv.org/abs/1412.6986
http://arxiv.org/abs/1412.6986
https://doi.org/10.1109/CLUSTER.2012.46
https://doi.org/10.1145/3434306
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3192366.3192394
https://chat.openai.com/chat
https://doi.org/10.1109/TEVC.2022.3210654
https://doi.org/10.1109/EuroSP51992.2021.00024
https://doi.org/10.1109/EuroSP51992.2021.00024

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Related Work
	2.2 Background: RaCUDA

	3 Overview
	3.1 COpPER Design

	4 Cost Metrics and Heuristics
	4.1 Weighted Steps Cost Metric
	4.2 Polynomial Comparison Heuristic

	5 Implemented Optimizations
	5.1 Branch Distribution
	5.2 Shared Memory

	6 Evaluation
	7 Conclusion and Future Work
	Acknowledgments
	References

