Getting Your Priorities Right

Fine-grained threading
Computation
E.g. early compress

Interaction
E.g. GUI

E-mail client

Need priorities - Millions of threads, no way to distinguish

2 problems w/ most ways of handling priorities
1. Fixed order → Anti-modular
2. Priority inversions - high-prio thread waiting for low-prio

Solution: PriML
Partially ordered priors - prior order декл
spawn/sync + priorities
Q sort code

Type sys. prevents prior inversions

\[c := \cdots | c \text{ thread } [p] | c \text{ cmd } [p] | \forall \pi : C . c \]
\[p := p \mid \pi \]
\[e := \cdots | \Delta \pi : C . e \]
\[C := p \leq p \mid C \land C \]
\[m := x \leftarrow e ; m \mid \text{spawn } [p] ; \pi] \mid m ; \mid \text{sync } e] \mid \text{ret } e \]
\[\Gamma \vdash m \div 2 \mathbin{@} p : m \mathbin{\text{returns}} a, \mathbb{r} \mathbin{\text{uns}} \mathbin{@} p \mathbin{\text{rio}}. \ p \]

\[\frac{\Gamma \vdash m \div 2 \mathbin{@} p'} {\Gamma \vdash \text{spawn}(p'; 2) \mathbin{\text{\&}} 2 \mathbin{\text{thread}}(p) \mathbin{@} p} \quad \text{(SPAWN)} \]

\[\frac{\Gamma \vdash e : 2 \mathbin{\text{thread}}(p) \quad \Gamma \vdash p \mathbin{\leq} p'} {\Gamma \vdash \text{sync } e \div 2 \mathbin{@} p} \quad \text{(SYNC)} \]

\[\frac{\Gamma, C \vdash e : 2} {\Gamma \vdash \lambda \mu. C. e : \text{Var}. C. 2} \]

Cost Semantics

Model program as a DAG - label threads w/priorities

- **Greedy schedule** - Assign vertices to procs so no procs are idle unless necessary.
 \[T \leq \frac{w \cdot p}{s} \]
- **Prompt schedule** - Greedy + run highest prio vertices possible

Bound response time: How long from when a thread is spawned until it completes.

Let \(a = s \ldots t \)

\[RT(a) \leq \frac{w_p (w)}{p} + s \cdot a \cdot \pi \]

\(w_p (w) \) - competitor work, \(a \cdot \pi \) - \(a \)-span (longest path ending at \(t \))
Bound holds unless there is a prior inversion.

Cost semantics: \(M \vdash v : g \)

Theorem: If \(\tau : m \vdash c @ p \) and \(M \vdash v : g \), then \(g \) does not have a prior inversion.

Dynamic semantics: \(m \Rightarrow m' \)

- thread pool
- \(a \Leftrightarrow m \)

Theorem: If \(\tau : m \vdash c @ p \) and \(a @ m \Rightarrow^* m' \) and \(m' \) final and \(a \) thread \(a \) is active for \(T \) transitions. Then \(M \vdash v : g \) and \(\exists \) a prompt schedule of \(g \) in which \(RT(a) = T \).