Big Step Semantics

\[e \rightarrow e' \text{ "e steps to } e'" \text{ (one step)} \]
\[e \rightarrow^* e' \text{ "e steps to } e'" \text{ (many steps)} \]
\[e \rightarrow^* v \text{ and } v \text{ eval } "e evaluates to } v" \]
\[e \Downarrow v \text{ "e evaluates to } v" \]

\[e := x!() | \lambda x.e | e_1 e_2 | (e, e) | \text{fst } e | \text{snd } e | \text{linl } e \]
\[\text{inr } e | \text{case } e \text{ of } \lambda x.e_1 | x.e_2 | \text{fix } x=e \]

\[t := \text{unit } | t \rightarrow t | t \times c | t + t \]

\[v := () | \lambda x.e | (v, v) | \text{linl } v | \text{linr } v \]

Combines 3 step rules for application

\[\frac{\nu \nu}{\nu \nu} \quad \frac{\nu \nu}{\nu \nu} \]

\[\frac{\nu \nu}{\nu \nu} \quad \frac{\nu \nu}{\nu \nu} \]

Way less rules!

\[\frac{\text{case } e \text{ of } \lambda x.e_1 | x.e_2 | v. v'}{\nu \nu} \]
\[\frac{\text{case } e_1 \text{ of } \lambda x.e_2 | v. v'}{\nu \nu} \]

\[\frac{\text{fix } x=e/x \nu \nu}{\nu \nu} \]

\[\frac{\text{fix } x=e \nu \nu}{\nu \nu} \]
Preservation: If \(\Gamma \vdash e : \tau \) and \(\epsilon \vdash v, \Gamma_{\epsilon} \vdash v : \tau \).

\(\vdash v \)

\((E-1) \) \(\checkmark \)

\((E-2) \) Then \(e = e_1, e_2 \) and \(e_1 \downarrow \forall \Delta e \) and \(e_2 \downarrow \forall \Delta e \).

By inversion, \(\tau = \tau \) and \(\Gamma, \epsilon \vdash e_1 : \tau \) and \(\Gamma, \epsilon \vdash e_2 : \tau \).

By induction, \(\Gamma, \epsilon \vdash e_1 : \tau \) and \(\Gamma, \epsilon \vdash e_2 : \tau \).

By inversion, \(\Gamma, \epsilon \vdash e_1 : \tau \).

By substitution, \(\Gamma, \epsilon \vdash [v/x] e : \tau \). By induction, \(\Gamma, \epsilon \vdash v : \tau \).

\((E-3) \) Then \(e = (e_1, e_2) \) and \(e_1 \downarrow \forall \Delta e \), and \(e_2 \downarrow \forall \Delta e \) and \(v = (v_1, v_2) \).

By inversion, \(\tau = \tau \times \tau \) and \(\Gamma, \epsilon \vdash e_1 : \tau \) and \(\Gamma, \epsilon \vdash e_2 : \tau \).

By induction, \(\Gamma, \epsilon \vdash e_1 : \tau \) and \(\Gamma, \epsilon \vdash e_2 : \tau \).

By typing rules, \(\Gamma, \epsilon \vdash v : \tau \times \tau \).

\((E-4) \) Then \(e = \text{fst } e_0 \) and \(e_0 \downarrow \forall \Delta (v, v_2) \).

By inversion, \(\tau = \tau \times \tau \) and \(\Gamma, \epsilon \vdash e_0 : \tau \).

By induction, \(\Gamma, \epsilon \vdash v : \tau \).

\((E-6) \) Then \(e = \text{inl } e_0 \) and \(e_0 \downarrow \forall \Delta v \) and \(v = \text{inl } v_1 \).

By inversion, \(\tau = \tau_1 + \tau_2 \) and \(\Gamma, \epsilon \vdash e_0 : \tau \).

By induction, \(\Gamma, \epsilon \vdash e_0 : \tau \). By typing rules, \(\Gamma, \epsilon \vdash v : \tau_1 + \tau_2 \).

\((E-8) \) Then \(e = \text{case } e_1 \text{ of } \text{ex } e_2 \mid x \downarrow e_3 \) and \(\epsilon \vdash v, \Gamma_{\epsilon} \vdash v : \tau \).

By inversion, \(\tau = \tau_1 + \tau_2 \) and \(\Gamma, \epsilon \vdash e_1 : \tau \).

By induction, \(\Gamma, \epsilon \vdash e_1 : \tau \). By inversion, \(\Gamma, \epsilon \vdash v : \tau_1 \).

By substitution, \(\Gamma, \epsilon \vdash ([v/x] e_2) \).

By induction, \(\Gamma, \epsilon \vdash v : \tau \).

\((E-10) \) Then \(e = \text{fix } x = e_0 \) and \(\text{fix } x = e_0(x) \).

By inversion, \(\Gamma, \epsilon \vdash e : \tau \). By substitution and induction, \(\Gamma, \epsilon \vdash v : \tau \).
Progress: ...

One option: \(\forall e \in \mathbb{E}, \exists v \in \mathbb{V} \text{ s.t. } e \Downarrow v \)

True in STLC w/o fix but not in most real languages.

\(\exists v. \ \text{fix } x = x \uparrow v. \)

Big step can't talk about non-terminating expressions

No real way to talk about progress (\(\Rightarrow \) type safety).

But:
- Don't need to worry about evaluation order
- Don't need all the search rules

Thm. \(e \rightarrow^* v \iff e \Downarrow v \)

\(\iff \) Fairly straightforward with a couple annoying lemmas

\(\Rightarrow \) Suffices to show

Lemma: If \(e \rightarrow e' \) and \(e' \Downarrow v \) then \(e \Downarrow v \).
Cost Semantics

How long does a program take to run?

\[e \rightarrow^* v \]

\[e \rightarrow e_1 \rightarrow e_2 \rightarrow \ldots \rightarrow e_{n+1} v \]

\[\underbrace{\ldots_n \text{ steps}} \]

\[e \not\vdash v \text{ not so clear} \]

\[e \vdash v \text{ "e evaluates to } v \text{ in } \text{time } n" \]

\[e \vdash_{nv} \text{ e.e} \vdash_{nv} \text{ v(e)} \vdash_{nv} \]

\[e_{1, e_2} \vdash_{nv} (v, v) \]

\[\text{ Thm: } e \rightarrow^* v \text{ iff } e \vdash_{nv} v \]

Why is this useful?

Static cost analysis

\[\text{ o.e.tin } \text{ - has type } o \text{ takes 3n steps to run} \]

If \[o.e.tin \text{ and } e_{1, e_2}^n \text{ then } \text{m} \leq n \]

- Hard to show

If \[o.e.tin \text{ and } e \vdash_{nv} v \text{ then } \text{m} \leq n \text{ easier} \]

\[o.e.tin \Rightarrow e \vdash_{nv}^n \Rightarrow e \vdash_{nv}^\infty \]

We did the static analysis right

We did the cost semantics right