Lecture 3

Last time: Type system to reject programs like
"Hello" ^ "World"

Type safety: "Well-typed programs can't go wrong."
Robin Milner

2 Components:
Progress: If e is well-typed, it's a value or can take a step.

Preservation: If a well-typed exp. takes a step, still well-typed w/ the same type.

\[e_1 \Rightarrow e_2 \Rightarrow e_3 \Rightarrow \ldots \Rightarrow v \]

Preservation: If \(e : \tau \) and \(e \Rightarrow e' \) then \(e' : \tau \)

Pf: By induction on the derivation of \(e \Rightarrow e' \)

S-1 By **inversion on T-3**, \(\tau = \text{int} \).
 By T-1, \(\bar{n}_1 + n_2 : \text{int} \).
S-2 By **inversion on T-4**, \(\tau = \text{string} \).
 By T-2, \(\text{"s","t" : string} \).
S-3 By **inversion on T-5**, \(\tau = \text{int} \).
 By T-1, \(1s : \text{int} \).
S-4 By **inversion on T-3**, \(\tau = \text{int} \).
 By T-1, \(e_1 : \text{int} \).
 By T-3, \(e_1 + e_2 : \text{int} \).
S-5 By **inversion on T-3**, \(\tau = \text{int} \).
 By T-1, \(e_2 : \text{int} \).
 By T-3, \(\bar{n}_1 + e_2 : \text{int} \).
S-6, S-7, S-8 similar to above.
Lemma: Canonical Forms

1. If \(e \) \(\text{val} \) and \(e : \text{int} \), then \(e = \overline{n} \) for some \(n \).
2. If \(e \) \(\text{val} \) and \(e : \text{string} \), then \(e = "s" \) for some \(s \).

Pf: The only rules that can derive \(e \) \(\text{val} \) are \(V-1 \) and \(V-2 \).
 If \(V-1 \), then \(e = \overline{n} \) and \(e : \text{int} \).
 If \(V-2 \), then \(e = "s" \) and \(e : \text{string} \). \(\square \)

Progress: If \(e : \text{int} \), then \(e \) \(\text{val} \) or there exists \(e' \) s.t. \(e = e' \).

Pf: By induction on the derivation of \(e : \text{int} \).

\(T-1 \) \(\overline{n} \) \(\text{val} \) by \(V-1 \)

\(T-2 \)
\("s" \) \(\text{val} \) by \(V-2 \)

\(T-3 \) Then \(e = \text{int} \), \(e = e_1 + e_2 \), \(e_1 : \text{int} \), and \(e_2 : \text{int} \).

By \(1H \), \(e_1 \) \(\text{val} \) or \(e_1 \rightarrow e_1' \).

* \(e_1 \) \(\text{val} \).

By \(CF \), \(e_1 = \overline{n_1} \) for some \(n_1 \).

By \(1H \), \(e_2 \) \(\text{val} \) or \(e_2 \rightarrow e_2' \).

* \(e_2 \) \(\text{val} \).

By \(CF \), \(e_2 = \overline{n_2} \) for some \(n_2 \).

By \(S + \), \(\overline{n_1 + n_2} \rightarrow \overline{n_1 + n_2} \).

* \(e_2 \rightarrow e_2' \). By \(S - \), \(\overline{n_1 + n_2} \rightarrow \overline{n_1} + \overline{n_2} \).

* \(e_1 \rightarrow e_1' \). By \(S + \), \(e_1 + e_2 \rightarrow e_1' + e_2' \).

\(T-4 \), \(T-5 \) similar to above. \(\square \)