Weakest Preconditions

Part 1: Definitions and Basic Properties CS 536: Science of Programming, Spring 2022

- 1. Let $w \Leftrightarrow wp(S, q)$, let S be deterministic, and let $\{\tau\} = M(S, \sigma)$ where $\tau \in \Sigma \cup \{\bot\}$.
 - a. For which $\sigma \vDash w$ do we have $\sigma \vDash [w] S [q]$?
 - b. For which $\sigma \vDash \neg w$ do we have $\sigma \vDash [\neg w] S [q]$? How about $\sigma \vDash \{\neg w\} S \{q\}$?
 - c. For which $\sigma \vDash w$ do we have $\sigma \vDash [w] S [\neg q]$?
 - d. For which $\sigma \vDash \neg w$ do we have $\sigma \vDash \{\neg w\} S \{\neg q\}$?
- 2. If $\sigma \vDash w$ and $\sigma \vDash \{w\} S \{q\}$ and $\sigma \nvDash [w] S [q]$,
 - a. What can we conclude about $M(S, \sigma)$?
- 5. Briefly explain why each of the following statements about *wp* and *wlp* are correct. (Answers like "That's how *X* is defined" are allowed.)
 - a. For all $\sigma \in \Sigma$, $\sigma \vDash wp(S, q)$ iff $M(S, \sigma) \vDash q$
 - b. For all $\sigma \in \Sigma$, $\sigma \models wlp(S, q)$ iff $M(S, \sigma) \bot \models q$
 - c. ⊨[*wp*(*S*, *q*)] *S* [*q*]
 - d. \vDash {wlp(S, q)} S {q}
 - e. $\models [p] S [q] \text{ iff } \models p \rightarrow wp(S, q)$
 - f. $\models \{p\} S \{q\} \text{ iff } \models p \rightarrow wlp(S, q)$
 - g. $\models \{\neg wp(S, q)\} S \{\neg q\}$, if S is deterministic
 - h. $\models [\neg w l p(S, q)] S [\neg q]$, if S is deterministic
 - i. $\nvDash p \rightarrow wp(S, q)$ iff $\nvDash [p] S [q]$
 - j. $\nvDash p \rightarrow wlp(S, q)$ iff $\nvDash \{p\} S \{q\}$
- 6. Which of the following statements about relationships between *wp* and *wlp* are possible (i.e., satisfied in a state) and which are impossible (i.e. contradictions)? Briefly explain.
 a. *wlp(S, q)* ∧ *wlp(S, ¬q)*

- b. $\neg wp(S, q) \land \neg wp(S, \neg q)$
- c. $wp(S, q) \land \neg wlp(S, q)$
- d. $wlp(S, q) \land \neg wp(S, \neg q)$
- e. $wp(S, q) \land \neg wlp(S, \neg q)$

Solution to Practice 10 (Weakest Preconditions, pt. 1)

- 1. (Properties of weakest preconditions)
 - a. For all $\sigma \models w$, we have $\sigma \models [w] S [q]$, since w is a precondition for $\models [...] S [q]$.
 - b. For no $\sigma \models \neg w$ do we have $\sigma \models [\neg w] S [q]$ because for w to be the weakest precondition for S and q, it cannot be that $M(S, \sigma) \models q$. For partial correctness, however, if $M(S, \sigma) = \{\bot\}$, then σ satisfies $\{\neg w\} S \{q\}$.
 - c. For no $\sigma \vDash w$ do we have $\sigma \vDash [w] S [\neg q]$ because w is a precondition for $\vDash [...] S [q]$.
 - d. For all $\sigma \vDash \neg w$, we have $\sigma \vDash \{\neg w\} S \{\neg q\}$ because for w to be the weakest precondition for S and $q, \sigma \vDash \neg w$ implies $M(S, \sigma) \nvDash q$. Since S is deterministic, either $M(S, \sigma) = \{\bot\}$ or $M(S, \sigma) \vDash \neg q$. Either way, $\sigma \vDash \{\neg w\} S \{\neg q\}$.
- 2. (Partial but not total correctness when the *wp* is satisfied)
 - a. If $\sigma \vDash w$ and $\sigma \vDash \{w\} S \{q\}$ then $M(S, \sigma) \{\bot\} \vDash q$. If $\sigma \nvDash [w] S [q]$ then $M(S, \sigma) \nvDash q$. This can only happen if $\bot = M(S, \sigma)$ or $M(S, \sigma) = \{\}$. (I.e., S can diverge under σ .)
- 5. (Properties of *wp* and *wlp*)
 - (a) and (b) are the basic definitions of *wp* and *wlp*
 - (c) and (d) say that wp and wlp are preconditions
 - (e) and (f) say that wp and wlp are weakest preconditions
 - (g) and (h) also say that wp and wlp are weakest
 - (i) and (j) are the contrapositives of (e) and (f).
- 6. (Situations involving wp and wlp)
 - a. $M(S, \sigma) = \{\perp\}$ implies $wlp(S, q) \land wlp(S, \neg q)$
 - b. $M(S, \sigma) = \{\bot\}$ implies $\sigma \models \neg wp(S, q) \land \neg wp(S, \neg q)$.
 - c. wp(S, q) implies $\neg wlp(S, q)$, so $wp(S, q) \land \neg wlp(S, q)$ is impossible.
 - d. Since wlp(S, q) implies $\neg wp(S, \neg q)$, we must have $wlp(S, q) \land \neg wp(S, \neg q)$ whenever wlp(S, q).
 - e. $wp(S, q) \Rightarrow \neg wlp(S, \neg q)$ is the contrapositive of the implication for (d) [if you swap q and $\neg q$], so $wp(S, q) \land \neg wlp(S, \neg q)$ must happen if wp(S, q).