Weakest Preconditions

Part 1: Definitions and Basic Properties

CS 536: Science of Programming, Spring 2022

1. Let \(w \equiv w_p(S, q) \), let \(S \) be deterministic, and let \(\{ \tau \} = M(S, \sigma) \) where \(\tau \in \Sigma \cup \{\bot\} \).

a. For which \(\sigma \models w \) do we have \(\sigma \models [w] S [q] \)?

b. For which \(\sigma \models \neg w \) do we have \(\sigma \models [\neg w] S [q] \)? How about \(\sigma \models \{\neg w\} S \{q\} \)?

c. For which \(\sigma \models w \) do we have \(\sigma \models [w] S [\neg q] \)?

d. For which \(\sigma \models \neg w \) do we have \(\sigma \models \{\neg w\} S \{\neg q\} \)?

2. If \(\sigma \models w \) and \(\sigma \models \{w\} S \{q\} \) and \(\sigma \not\models [w] S [q] \),

a. What can we conclude about \(M(S, \sigma) \)?

5. Briefly explain why each of the following statements about \(wp \) and \(wlp \) are correct. (Answers like “That’s how \(X \) is defined” are allowed.)

a. For all \(\sigma \in \Sigma \), \(\sigma \models wp(S, q) \) iff \(M(S, \sigma) \models q \)

b. For all \(\sigma \in \Sigma \), \(\sigma \models wlp(S, q) \) iff \(M(S, \sigma) - \bot \models q \)

c. \(\models [wp(S, q)] S \{q\} \)

d. \(\models \{wp(S, q)\} S \{q\} \)

e. \(\models [p] S \{q\} \) iff \(\models p \rightarrow wp(S, q) \)

f. \(\models \{p\} S \{q\} \) iff \(\models p \rightarrow wlp(S, q) \)

g. \(\models [\neg wp(S, q)] S \{\neg q\} \), if \(S \) is deterministic

h. \(\models [\neg wlp(S, q)] S \{\neg q\} \), if \(S \) is deterministic

i. \(\not\models p \rightarrow wp(S, q) \) iff \(\not\models \{p\} S \{q\} \)

j. \(\not\models p \rightarrow wlp(S, q) \) iff \(\not\models \{p\} S \{q\} \)

6. Which of the following statements about relationships between \(wp \) and \(wlp \) are possible (i.e., satisfied in a state) and which are impossible (i.e. contradictions)? Briefly explain.

a. \(wlp(S, q) \land wlp(S, \neg q) \)
b. \(\neg wp(S, q) \land \neg wp(S, \neg q) \)

c. \(wp(S, q) \land \neg wlp(S, q) \)

d. \(wlp(S, q) \land \neg wp(S, \neg q) \)

e. \(wp(S, q) \land \neg wlp(S, \neg q) \)
Solution to Practice 10 (Weakest Preconditions, pt. 1)

1. (Properties of weakest preconditions)
 a. For all \(\sigma \models w \), we have \(\sigma \models [w] S [q] \), since \(w \) is a precondition for \(\models […] S [q] \).
 b. For no \(\sigma \models \neg w \) do we have \(\sigma \models [\neg w] S [q] \) because for \(w \) to be the weakest precondition for \(S \) and \(q \), it cannot be that \(M(S, \sigma) \models q \). For partial correctness, however, if \(M(S, \sigma) = \{ \bot \} \), then \(\sigma \) satisfies \(\{ \neg w \} S \{ q \} \).
 c. For no \(\sigma \models w \) do we have \(\sigma \models [w] S [\neg q] \) because \(w \) is a precondition for \(\models […] S [q] \).
 d. For all \(\sigma \models \neg w \), we have \(\sigma \models [\neg w] S [\neg q] \) because for \(w \) to be the weakest precondition for \(S \) and \(q \), \(\sigma \models \neg w \) implies \(M(S, \sigma) \not\models q \). Since \(S \) is deterministic, either \(M(S, \sigma) = \{ \bot \} \) or \(M(S, \sigma) \models \neg q \). Either way, \(\sigma \models [\neg w] S [\neg q] \).

2. (Partial but not total correctness when the \(wp \) is satisfied)
 a. If \(\sigma \models w \) and \(\sigma \models \{ w \} S \{ q \} \) then \(M(S, \sigma) - \{ \bot \} \models q \). If \(\sigma \not\models [w] S \{ q \} \) then \(M(S, \sigma) \not\models q \). This can only happen if \(\bot = M(S, \sigma) \) or \(M(S, \sigma) = \{ \} \). (I.e., \(S \) can diverge under \(\sigma \).

5. (Properties of \(wp \) and \(wlp \))
 (a) and (b) are the basic definitions of \(wp \) and \(wlp \)
 (c) and (d) say that \(wp \) and \(wlp \) are preconditions
 (e) and (f) say that \(wp \) and \(wlp \) are weakest preconditions
 (g) and (h) also say that \(wp \) and \(wlp \) are weakest
 (i) and (j) are the contrapositives of (e) and (f).

6. (Situations involving \(wp \) and \(wlp \))
 a. \(M(S, \sigma) = \{ \bot \} \) implies \(wlp(S, q) \land wlp(S, \neg q) \)
 b. \(M(S, \sigma) = \{ \bot \} \) implies \(\sigma \models \neg wp(S, q) \land \neg wp(S, \neg q) \).
 c. \(wp(S, q) \) implies \(\neg wlp(S, q) \), so \(wp(S, q) \land \neg wlp(S, q) \) is impossible.
 d. Since \(wlp(S, q) \) implies \(\neg wp(S, \neg q) \), we must have \(wlp(S, q) \land \neg wp(S, \neg q) \) whenever \(wlp(S, q) \).
 e. \(wp(S, q) \Rightarrow \neg wlp(S, \neg q) \) is the contrapositive of the implication for (d) [if you swap \(q \) and \(\neg q \)], so \(wp(S, q) \land \neg wlp(S, \neg q) \) must happen if \(wp(S, q) \).