Types, Expressions, and States
 CS 536: Science of Programming, Fall 2021

1. Which of the following expressions are legal or illegal according to the syntax we're using? Assume x, y, z are integer variables and b is an array name.
a. (if $x>y$ then x else y)
b. (if $x<y$ then -1 else (if $x=y$ then 0 else 1))
c. (if $y=0$ then f else g)(17)
d. $b[0][1]$
/* What type must b have for this to be legal? */
e. b
/* Remember we're given that b is an array */
2. Which of the following are legal ways to write out a state? (And if not, why not?)
a. $\{x=5, y=2\}$
b. $\{x=$ five, $y=$ one plus one $\}$
c. $\{x=5, y=x$ minus 3$\}$
d. $\{x=5, y=\alpha-3\}$ where $\alpha=5$
e. $\{x=5, y=$ (the value of x in this environment minus 3) $\}$
f. \{ \}
3. Let $e_{4} \equiv x=y+1 \wedge y=z^{2}-3 \wedge z=6$. Write out the textual definition of a state σ_{4} in which e_{4} evaluates to true. Use only bindings that map variables to constants. $\sigma_{4}=\{x$ $=34, y=33, z=6\}$
4. Which of the following states are well-formed and also proper for the expression $b[i]+0$ * y ? If ill-formed, why? If taking the value might cause a runtime error, why?
a. $\{i=0, b=(3,4,8), y=3, z=5)$
b. $\quad\{i=0, b=(6), y=5)$
c. $\{i=0, b=6, y=5)$
d. $\{i=1, b=(3,4,8))$
e. $\{i=1, i=2, y=0, b=(2,6))\}$
f. $\{i=5, b=(1,2), y=4\}$

CS 536 Solution to Practice 3 (Types, Expressions, and States)

1. (Legal and illegal expressions)
a. legal
b. legal
c. illegal because the conditional expression can't yield a function/operator
d. $b[0][1]$ is legal (b must be a 2-dimensional array)
e. b (all by itself) is illegal, since b we've assumed is an array
2. (Legal ways to represent states)
a. $\{x=5, y=2\}$ is legal
b. $\{x=$ five, $y=$ one plus one $\}$ is legal because "five" and "one" etc. refer to semantic objects.
c. $\{x=5, y=x$ minus 3$\}$ is illegal: To be legal, " x minus 3 " has to be a value, so " x " has to be a value (it has to be the name of a mathematical object like 5). But the binding $x=5$ tells us " x " is a variable that can appear in an expression, so " x " is a syntactic object. It can't be syntactic and semantic at the same time.

Also, in this nicely word-processed document, " x " is presented in this font, so we know it's supposed to be a syntactic object. On paper, you see the difference between " x " and " x ". Even so, if someone wrote $\{x=5, y=x$ minus 1$\}$ on the blackboard, it would have to be illegal because of using X in two incompatible ways.
d. $\{x=5, y=\alpha-3\}$ where $\alpha=5-$ is legal. We infer that symbols x and y are syntactic objects and α is the name of the semantic object 5 .
e. $\{x=5, y=$ (the value of x in this environment, minus 3) $\}$ is legal. Since "the value of x in this environment" is just another name (albeit complicated) for the mathematical object 5 , it's legal to use here.
f. $\}$ is legal, since it's just another way to write \varnothing, the empty state.
3. $\sigma_{4}=\{z=6, y=33, x=34\}$
4. (Proper states)
a. (Well-formed and) Proper: The extra binding for z isn't a problem
b. (Well-formed and) Proper: The value of b is an array of length 1.
c. (Well-formed but) Improper: The value of b can't be an integer.
d. (Well-formed but) Improper: We need a binding for y even though we're multiplying it by zero. [So our semantics uses eager evaluation, not lazy evaluation.]
e. III-formed: We have two bindings for i .
f. (Well-formed and) Proper but causes a runtime error, since b has size 2.

