Satisfaction, Validity, and State Updates

CS 536: Science of Programming, Fall 2021

1. Say u and v stand for variables (possibly the same variable) and α and β are values (possibly equal). When is $\sigma[u \mapsto \alpha][v \mapsto \beta]=\sigma[v \mapsto \beta][u \mapsto \alpha]$? Hint: There are four cases because maybe $u \equiv v$ and maybe $\alpha=\beta$.
2. Let $\sigma(b)=(7,5,12,16)$. Assume out-of-bound indexes cause runtime errors.
a. Does $\sigma \vDash \exists k .0 \leq k \wedge k+1<\operatorname{size}(b) \wedge b[k]<b[k+1]$? If so, what was your witness value for k ?
b. Does $\sigma \vDash \exists k .0<k-1 \wedge k+1<\operatorname{size}(b) \wedge b[k-1]<b[k]<b[k+1]$? If so, what was your witness value for k ?
c. Does $\sigma \vDash \forall k .0 \leq k<4 \rightarrow b[k]>0$?
d. If $\sigma(k)=-5$, then does $\sigma \vDash \exists k . b[k]>0$?
3. For each of the situations below, fill in the blanks to describe when the situation holds.

Fill in \qquad 1 with "some", "every", or "this"
Fill in \qquad 2 with "some" or "every"
Fill in \qquad з with " $\sigma(x)$ must be undefined", " $\sigma(x)$ must be defined and $\sigma \vDash p$ ", or "nothing of $\sigma(x)$ "
Fill in \qquad 4 with "$\vDash p$ " or " $\neq p$ "
a. $\sigma \vDash(\exists x \in U . p)$ iff for \qquad ${ }^{1}$ state σ and \qquad ${ }_{2} \alpha \in U, \sigma[x \mapsto \alpha]$ \qquad 4
b. $\quad \sigma \vDash(\forall x \in U . p)$ iff for \qquad ${ }_{1}$ state σ and \qquad ${ }_{2} \alpha \in U, \sigma[x \mapsto \alpha]$ \qquad 4
c. $\sigma \vDash(\exists x \in U . p)$ requires \qquad 3.
d. $\sigma \vDash(\forall x \in U . p)$ requires \qquad 3.
e. $\sigma \not \vDash(\exists x \in U . p)$ iff for \qquad 1 state σ for \qquad ${ }_{2} \alpha \in U, \sigma[x \mapsto \alpha]$ \qquad 4
f. $\quad \sigma \not \vDash(\forall x \in U . p)$ iff for \qquad 1 state σ for \qquad $2^{2} \alpha \in U, \sigma[x \mapsto \alpha]$ \qquad 4
g. $\neq(\forall x \in U . p)$ iff for \qquad 2 state σ, we have σ \qquad 4 ($\forall x \in U . p)$.
h. $\neq(\exists x \in U . p)$ iff for \qquad 2 state σ, we have σ \qquad 4 ($\exists x \in U . p$).
i. $\not \equiv(\forall x \in U . p)$ iff for \qquad 2 state σ, and for \qquad ${ }_{2} \alpha \in U$, we have $\sigma[x \mapsto \alpha]$ \qquad 4
j. $\vDash(\exists x \in U .(\forall y \in V . p))$ iff for \qquad 1 state σ, for \qquad ${ }_{2} \alpha \in U$, and for \qquad ${ }_{2} \beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ \qquad 4
k. $\neq(\exists x \in U .(\forall y \in V . p))$ iff for \qquad ${ }_{1}$ state σ, for \qquad ${ }_{2} \alpha \in U$, and for \qquad $z \beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta][\vDash \mid \vDash \neg] p$.
I. $\vDash(\forall x \in U .(\exists y \in V . p))$ iff for \qquad 1 state σ, for \qquad ${ }_{2} \alpha \in U$, and for \qquad ${ }_{2} \beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ \qquad 4
m. $\neq(\forall x \in U .(\exists y \in V . p))$ iff for \qquad 1 state σ, for \qquad 2 $\alpha \in U$, and for \qquad ${ }_{2} \beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ \qquad ${ }^{4}$
4. Let $p \equiv \exists y . \forall x . f(x)>y$, and let $q \equiv \forall x . \exists y . f(x)>y$. (As usual, assume a domain of \mathbb{Z}.)
a. Is it the case that (regardless of the definition of f), if p is valid then so is q ? If so, explain why. If not, give a definition of $f(x)$ and show $\vDash p$ but $\not \vDash q$.
b. (The converse.) Is it the case that (regardless of the definition of f), if q is valid then so is p ? If so, explain why. If not, give a definition of $f(x)$ and show $\vDash q$ but $\not \equiv p$.

CS 536: Solution to Activity 4 (Satisfaction, Validity, and State Updates)

1. $\sigma[u \mapsto \alpha][v \mapsto \beta]=\sigma[v \mapsto \beta][u \mapsto \alpha]$ iff $u \not \equiv v$ or $(u \equiv v$ and) $\alpha=\beta$. Another way to phrase this is $(\alpha=\beta$ or $u \not \equiv v)$
2. (Quantified statements over arrays) Let $\sigma(b)=(7,5,12,16)$.
a. Yes, $\sigma \models \exists k .0 \leq k \wedge k+1<\operatorname{size}(b) \wedge b[k]<b[k+1]$ with 1 and 2 as possible witnesses for k.
b. Yes, $\sigma \models \exists k .0 \leq k-1 \wedge k+1<\operatorname{size}(b) \wedge b[k-1]<b[k]<b[k+1]$ with 2 as the only witness that works.
c. Yes, $\sigma \models \forall k . b[k]>0$
d. Yes, if $\sigma(k)=-5$, we still have $\sigma \models \exists k . b[k]>0$, with witnesses $0,1,2,3$. The key is that for σ to satisfy the existential with witness call it α, then we need $\sigma[k \mapsto \alpha] \models b[k]$ >0, which doesn't depend on $\sigma(k)$ because the update of σ uses $k=\alpha$, not $k=$ whatever $\sigma(k)$ happens to be. Here's a step-by-step explanation (this is way too much detail for appearing on a test):
```
\(\sigma[k \mapsto \alpha] \vDash b[k]>\)
iff \((\sigma[k \mapsto \alpha](b))(\sigma[k \mapsto \alpha](k))>0\)
iff \((\sigma(b))(\sigma[k \mapsto \alpha](k))>0\)
\(k\)
iff \((\sigma(b))(\alpha) \quad>0\)
iff \(7,5,12\), or \(16>0\)
```

iff $\sigma[k \mapsto \alpha](b[k])>\sigma[k \mapsto \alpha](0) \quad$ defn state \vDash relational test

```
the value of 0 is zero
\sigma[k\mapsto\alpha](b)=\sigma(b) because b\not\equiv
    \sigma[k\mapsto\alpha](k))=\alpha
depending on \alpha = 0, 1, 2, or 3
```

3. (Validity/invalidity of quantified predicates)
a. this σ, some $\alpha, \vDash p$
b. this σ, every $\alpha, \vDash p$
c. nothing of $\sigma(x)$
d. nothing of $\sigma(x)$
e. this σ, every $\alpha, \not \equiv p$
f. this σ, some $\alpha, \not \equiv p$
g. some $\sigma, \not \neq \forall x \in U$. p
h. some σ, every $\alpha, \not \equiv p$
i. some σ, some $\alpha, \neq p$
j. every σ, some α, every $\beta, \vDash p$
k. some σ, every α, some $\beta, \not \neq p$
I. every σ, every α, some $\beta, \vDash p$
m. some σ, some α, every $\beta, \not \models p$
4. $(\exists \forall$ predicates versus $\forall \exists$ predicates, specifically $p \equiv \exists y . \forall x . f(x)>y$, and $q \equiv \forall x . \exists y$. $f(x)>y)$
a. The relation does hold: $\vDash p$ implies $\vDash q$. The short explanation is that for each value α for x, we need to find a value β for y that satisfies the body, but p says that there's a value that works for every α, so we can use that value for β. In more detail, assume p is valid: for every state σ, there is some value β where for every value $\alpha, \sigma[y$ $\mapsto \beta][x \mapsto \alpha] \vDash f(x)>y$. To show that q is valid, take an arbitrary state τ with value α for x. We need a witness value for the $\exists y$; using p with τ for σ, we get a β for the $\exists y$ of p and use that as the witness for the $\exists y$ in q. So then we need $\tau[x \mapsto \alpha][y \mapsto$ $\beta] \vDash f(x)>y$. Substituting σ for τ and swapping the order of the updates, we need $\sigma[y \mapsto \beta][x \mapsto \alpha] \vDash f(x)>y$. But that's exactly what p provided.
b. The relation does not hold: We can have $\vDash q$ but $\not \vDash p$. The easiest example is $f(x)=$ x, then validity of p would require us to find an integer value for y that is > every possible integer value of x, but no such value exists.
As an aside, you can use an arbitrary predicate over x and y instead of $f(x)>y$ as the body of the $\exists \forall$ and $\forall \exists$ predicates. I use $f(x)>y$ here just because it's nice and concrete.
