Satisfaction, Validity, and State Updates CS 536: Science of Programming, Fall 2021

- 1. Say u and v stand for variables (possibly the same variable) and α and β are values (possibly equal). When is $\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha]$? Hint: There are four cases because maybe $u \equiv v$ and maybe $\alpha = \beta$.
- 2. Let $\sigma(b) = (7, 5, 12, 16)$. Assume out-of-bound indexes cause runtime errors.
 - a. Does $\sigma \models \exists k . 0 \le k \land k+1 < size(b) \land b[k] < b[k+1]$? If so, what was your witness value for k?
 - b. Does $\sigma \models \exists k . 0 < k-1 \land k+1 < size(b) \land b[k-1] < b[k] < b[k+1]$? If so, what was your witness value for k?
 - c. Does $\sigma \models \forall k . 0 \le k < 4 \rightarrow b[k] > 0$?
 - d. If $\sigma(k) = -5$, then does $\sigma \models \exists k . b[k] > 0$?

3. For each of the situations below, fill in the blanks to describe when the situation holds. Fill in _____1 with "some", "every", or "this" Fill in 2 with "some" or "every" Fill in $\sigma(x)$ must be undefined", " $\sigma(x)$ must be defined and $\sigma \models p$ ", or "nothing of $\sigma(x)$ " Fill in $_4$ with " $\models p$ " or " $\nvDash p$ " a. $\sigma \models (\exists x \in U. p)$ iff for _____1 state σ and _____2 $\alpha \in U$, $\sigma[x \mapsto \alpha]$ _____4 b. $\sigma \models (\forall x \in U. p)$ iff for 1 state σ and 2 $\alpha \in U, \sigma[x \mapsto \alpha]$ 4 c. $\sigma \models (\exists x \in U. p)$ requires \exists . d. $\sigma \models (\forall x \in U. p)$ requires _____ ³. e. $\sigma \not\models (\exists x \in U. p)$ iff for 1 state σ for 2 $\alpha \in U, \sigma[x \mapsto \alpha]$ 4 f. $\sigma \nvDash (\forall x \in U. p)$ iff for $_1$ state σ for $_2 \alpha \in U, \sigma[x \mapsto \alpha]$ 4 g. $\not\models (\forall x \in U. p)$ iff for _____2 state σ , we have σ _____4 ($\forall x \in U. p$). h. $\not\models (\exists x \in U. p)$ iff for _____2 state σ , we have σ _____4 ($\exists x \in U. p$). i. $\not\models (\forall x \in U. p)$ iff for $_2$ state σ , and for $_2 \alpha \in U$, we have $\sigma[x \mapsto \alpha]$ 4 j. \models ($\exists x \in U$. ($\forall y \in V$. p)) iff for ____1 state σ , for ____2 $\alpha \in U$, and for ____2 $\beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ 4

k. $\not\models (\exists x \in U . (\forall y \in V . p)) \text{ iff for } ___1 \text{ state } \sigma, \text{ for } __2 \alpha \in U, \text{ and for } __2 \beta \in V,$ we have $\sigma[x \mapsto \alpha][y \mapsto \beta] [\models | \models \neg] p.$

- I. \models (∀ *x* ∈ *U*. (∃ *y* ∈ *V*. *p*)) iff for _____1 state σ, for _____2 α ∈ U, and for _____2 β ∈ V, we have σ[*x* ↦ α][*y* ↦ β] _____4
- m. $\nvDash (\forall x \in U . (\exists y \in V . p))$ iff for _____1 state σ , for _____2 $\alpha \in U$, and for _____2 $\beta \in V$, we have $\sigma[x \mapsto \alpha][y \mapsto \beta]$ _____4
- 4. Let $p \equiv \exists y . \forall x . f(x) > y$, and let $q \equiv \forall x . \exists y . f(x) > y$. (As usual, assume a domain of \mathbb{Z} .)
 - a. Is it the case that (regardless of the definition of *f*), if *p* is valid then so is *q*? If so, explain why. If not, give a definition of f(x) and show $\models p$ but $\nvDash q$.
 - b. (The converse.) Is it the case that (regardless of the definition of f), if q is valid then so is p? If so, explain why. If not, give a definition of f(x) and show $\vDash q$ but $\nvDash p$.

CS 536: Solution to Activity 4 (Satisfaction, Validity, and State Updates)

- 1. $\sigma[u \mapsto \alpha][v \mapsto \beta] = \sigma[v \mapsto \beta][u \mapsto \alpha]$ iff $u \neq v$ or $(u \equiv v \text{ and}) \alpha = \beta$. Another way to phrase this is $(\alpha = \beta \text{ or } u \neq v)$
- 2. (Quantified statements over arrays) Let $\sigma(b) = (7, 5, 12, 16)$.
 - a. Yes, $\sigma \models \exists k . 0 \le k \land k+1 < size(b) \land b[k] < b[k+1]$ with 1 and 2 as possible witnesses for k.
 - b. Yes, $\sigma \models \exists k . 0 \le k-1 \land k+1 < size(b) \land b[k-1] < b[k] < b[k+1]$ with 2 as the only witness that works.
 - c. Yes, $\sigma \models \forall k . b[k] > 0$
 - d. Yes, if $\sigma(k) = -5$, we still have $\sigma \models \exists k \, . \, b[k] > 0$, with witnesses 0, 1, 2, 3. The key is that for σ to satisfy the existential with witness call it α , then we need $\sigma[k \mapsto \alpha] \models b[k] > 0$, which doesn't depend on $\sigma(k)$ because the update of σ uses $k = \alpha$, not k = whatever $\sigma(k)$ happens to be. Here's a step-by-step explanation (this is way too much detail for appearing on a test):

$$\begin{split} \sigma[k \mapsto \alpha] &\models b[k] > \\ \text{iff } \sigma[k \mapsto \alpha](b[k]) > \sigma[k \mapsto \alpha](0) \\ \text{iff } (\sigma[k \mapsto \alpha](b))(\sigma[k \mapsto \alpha](k)) > 0 \\ \text{iff } (\sigma(b))(\sigma[k \mapsto \alpha](k)) > 0 \\ k \\ \text{iff } (\sigma(b))(\alpha) > 0 \\ \text{iff } (\sigma(b))(\alpha) > 0 \\ \text{iff } 7, 5, 12, \text{ or } 16 > 0 \end{split}$$

defn state \vDash relational test the value of 0 is zero $\sigma[k \mapsto \alpha](b) = \sigma(b)$ because $b \neq$

 $\sigma[k \mapsto \alpha](k)) = \alpha$ depending on $\alpha = 0, 1, 2, \text{ or } 3$

- 3. (Validity/invalidity of quantified predicates)
 - a. this σ , some α , $\models p$
 - b. this σ , every α , $\models p$
 - c. nothing of $\sigma(x)$
 - d. nothing of $\sigma(x)$
 - e. this σ , every α , $\nvDash p$
 - f. this σ , some α , $\nvDash p$
 - g. some σ , $\nvDash \forall x \in U. p$
 - h. some σ , every α , $\nvDash p$
 - i. some σ , some α , $\nvDash p$
 - j. every σ , some α , every β , $\vDash p$
 - k. some σ , every α , some β , $\nvDash p$
 - I. every σ , every α , some β , $\vDash p$
 - m. some σ , some α , every β , $\nvDash p$

- 4. $(\exists \forall \text{ predicates versus } \forall \exists \text{ predicates, specifically } p \equiv \exists y . \forall x . f(x) > y, \text{ and } q \equiv \forall x . \exists y . f(x) > y)$
 - a. The relation does hold: $\vDash p$ implies $\vDash q$. The short explanation is that for each value α for x, we need to find a value β for y that satisfies the body, but p says that there's a value that works for every α , so we can use that value for β . In more detail, assume p is valid: for every state σ , there is some value β where for every value α , $\sigma[y \mapsto \beta][x \mapsto \alpha] \models f(x) > y$. To show that q is valid, take an arbitrary state τ with value α for x. We need a witness value for the $\exists y$; using p with τ for σ , we get a β for the $\exists y$ of p and use that as the witness for the $\exists y$ in q. So then we need $\tau[x \mapsto \alpha][y \mapsto \beta] \models f(x) > y$. Substituting σ for τ and swapping the order of the updates, we need $\sigma[y \mapsto \beta][x \mapsto \alpha] \models f(x) > y$. But that's exactly what p provided.
 - b. The relation does not hold: We can have $\models q$ but $\not\models p$. The easiest example is f(x) = x, then validity of p would require us to find an integer value for y that is > every possible integer value of x, but no such value exists.

As an aside, you can use an arbitrary predicate over x and y instead of f(x) > y as the body of the $\exists \forall$ and $\forall \exists$ predicates. I use f(x) > y here just because it's nice and concrete.