A. Why

- Nondeterminism can help us avoid unnecessary determinism.
- Nondeterminism can help us develop programs without worrying about overlapping cases.

B. Objectives

At the end of these practice questions you should

- Be able to evaluate nondeterministic conditionals and loops.

C. Nondeterminism

1. Let $IF \equiv if \; B_1 \rightarrow S_1 \; \square \; B_2 \rightarrow S_2 \; \square \; \ldots \; \square \; B_n \rightarrow S_n \; fi$ and $BB \equiv B_1 \; v \; B_2 \; v \; \ldots \; B_n$.

 a. What property does BB have to have for us to avoid a runtime error when executing IF?

 b. Does it matter if we reorder the guarded commands? (E.g., if we swap $B_1 \rightarrow S_1$ and $B_2 \rightarrow S_2$.)

2. Let $U_1 \equiv if \; B_1 \rightarrow S_1 \; \square \; B_2 \rightarrow S_2 \; fi$ and $U_2 \equiv if \; B_1 \; then \; S_1 \; else \; if \; B_2 \; then \; S_2 \; fi \; fi$.

 a. Fill in the table below to describe what happens for each combination of B_1 and B_2 being true or false.

<table>
<thead>
<tr>
<th>$\sigma \models \ldots$</th>
<th>U_1</th>
<th>U_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_1 ; \land ; B_2$</td>
<td>Executes S_1 or S_2</td>
<td></td>
</tr>
<tr>
<td>$B_1 ; \land ; \neg B_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg B_1 ; \land ; B_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg B_1 ; \land ; \neg B_2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
b. For what kinds of states σ can statements U_1 and U_2 behave differently?

3. Let $DO \equiv \text{do } B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 \square ... \square B_n \rightarrow S_n \text{ od}$ and $BB \equiv B_1 \lor B_2 \lor ... \lor B_n$. What property does BB have to have for us to avoid an infinite loop when executing DO?

4. Consider the loop $i := 0; \text{do } i < 1000 \rightarrow S_1; i := i+1 \square i < 1000 \rightarrow S_2; i := i+1 \text{ od}$ (where neither S_1 nor S_2 modifies i). Do we know anything about how many times or in what pattern we will execute S_1 vs S_2?

5. Consider the loop $x := 1; \text{do } x \geq 1 \rightarrow x := x+1 \square x \geq 2 \rightarrow x := x-2 \text{ od}$. Can running it lead to an infinite loop?

6. What are the reasons mentioned in the text for why using nondeterminism might be helpful?

7. What is $M(S, \{x = 1\})$ where $S \equiv \text{do } x \leq 20 \rightarrow x := x*2 \square x \leq 20 \rightarrow x := x*3 \text{ od}$?
Solution to Practice 7 (Nondeterministic Sequential Programs)

1. (Basic properties of nondeterministic if)
 a. We need \(\sigma \models BB \), because if \(\sigma \models \neg BB \), then \(M(\text{IF}, \sigma) = \{ \bot \} \). (In English: At least one guard must be true; if none of them are true, we get a runtime error.)
 b. The order of the guarded commands doesn’t matter: If more than one guard is true, we nondeterministically choose one element from the set of corresponding statements, and in a set, the elements aren’t ordered.

2. (Deterministic vs nondeterministic conditionals) Recall \(U_1 \equiv \text{if } B_1 \rightarrow S_1 \circ\circ B_2 \rightarrow S_2 \text{ fi} \) and \(U_2 \equiv \text{if } B_1 \text{ then } S_1 \text{ else if } B_2 \text{ then } S_2 \text{ fi} \).
 a. Execution of \(U_1 \) and \(U_2 \):
 b. \(U_1 \) and \(U_2 \) behave the same when one of \(B_1 \) and \(B_2 \) is true and the other is false.
 When both are true, \(U_2 \) always executes \(S_1 \) but \(U_1 \) will execute \(S_1 \) or \(S_2 \). When both of \(B_1 \) and \(B_2 \) are false, \(U_1 \) yields a runtime error but \(U_2 \) does nothing.

3. The nondeterministic do-od loop halts if \(BB \) is false at the top of the loop; an infinite loop occurs when \(BB \) is always true at the top of the loop.

4. Say \(S_1 \) is run \(m \) times and \(S_2 \) is run \(n \) times. We know \(0 \leq m, n \leq 1000 \) and \(m+n = 1000 \), but that’s all. At each iteration, the choice is nondeterministic (i.e., unpredictable). The choice does not have to be random (like with a coin flip), and the sequence of choices don’t have to follow an pattern or distribution or be fair, etc. We can’t even assign a probability to any particular sequence of choices (like “always choose \(S_1 \)”).

5. It’s possible that the loop could run forever. There’s no guaranteed fairness in nondeterministic choice, so we could increment \(x \) by 1 many more times than we decrement it by 2.

 Reason 2: Nondeterminism Makes it Easy to Ignore Overlapping Cases