Sequential Nondeterminism

CS 536: Science of Programming, Fall 2021

A.Why

- Nondeterminism can help us avoid unnecessary determinism.
- Nondeterminism can help us develop programs without worrying about overlapping cases.

B.Objectives

At the end of these practice questions you should

• Be able to evaluate nondeterministic conditionals and loops.

C. Nondeterminism

- 1. Let $IF \equiv if B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 \square ... \square B_n \rightarrow S_n fi$ and $BB \equiv B_1 \lor B_2 \lor ... B_n$.
 - a. What property does *BB* have to have for us to avoid a runtime error when executing *IF*?
 - b. Does it matter if we reorder the guarded commands? (E.g., if we swap $B_1 \rightarrow S_1$ and $B_2 \rightarrow S_2$.)
- 2. Let $U_1 \equiv if B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 fi$ and $U_2 \equiv if B_1 then S_1 else if B_2 then S_2 fi fi$.

a. Fill in the table below to describe what happens for each combination of B_1 and B_2 being true or false.

If $\sigma \vDash$	U1	U2
B1 A B2	Executes S1 or S2	
$B_1 \wedge \neg B_2$		
$\neg B_1 \land B_2$		
$\neg B_1 \land \neg B_2.$		

- b. For what kinds of states σ can statements U_1 and U_2 behave differently?
- 3. Let $DO \equiv do B_1 \rightarrow S_1 \Box B_2 \rightarrow S_2 \Box \ldots \Box B_n \rightarrow S_n od$ and $BB \equiv B_1 \lor B_2 \lor \ldots B_n$. What property does *BB* have to have for us to avoid an infinite loop when executing *DO*?
- 4. Consider the loop i := 0; $do i < 1000 \rightarrow S_1$; $i := i+1 \square i < 1000 \rightarrow S_2$; i := i+1 od (where neither S_1 nor S_2 modifies i). Do we know anything about how many times or in what pattern we will execute S_1 vs S_2 ?
- 5. Consider the loop x := 1; $do x \ge 1 \rightarrow x := x+1 \square x \ge 2 \rightarrow x := x-2 od$. Can running it lead to an infinite loop?
- 6. What are the reasons mentioned in the text for why using nondeterminism might be helpful?
- 7. What is $M(S, \{x = 1\})$ where $S \equiv do \ x \le 20 \rightarrow x := x^*2 \square x \le 20 \rightarrow x := x^*3 \ od ?$

Solution to Practice 7 (Nondeterministic Sequential Programs)

- 1. (Basic properties of nondeterministic if)
 - a. We need $\sigma \models BB$, because if $\sigma \models \neg BB$, then $M(IF, \sigma) = \{\perp_e\}$. (In English: At least one guard must be true; if none of them are true, we get a runtime error.)
 - b. The order of the guarded commands doesn't matter: If more than one guard is true, we nondeterministically choose one element from the set of corresponding statements, and in a set, the elements aren't ordered.
- 2. (Deterministic vs nondeterministic conditionals) Recall $U_1 \equiv if B_1 \rightarrow S_1 \square B_2 \rightarrow S_2 fi$ and $U_2 \equiv if B_1 then S_1 else if B_2 then S_2 fi$.
 - a. Execution of U_1 and U_2 :
 - b. U_1 and U_2 behave the same when one of B_1 and B_2 is true and the other is false. When both are true, U_2 always executes S_1 but U_1 will execute S_1 or S_2 . When both of B_1 and B_2 are false, U_1 yields a runtime error but U_2 does nothing.
- 3. The nondeterministic *do-od* loop halts if *BB* is false at the top of the loop; an infinite loop occurs when *BB* is always true at the top of the loop.
- 4. Say S_1 is run *m* times and S_2 is run *n* times. We know $0 \le m, n \le 1000$ and m+n = 1000, but that's all. At each iteration, the choice is nondeterministic (i.e., unpredictable). The choice does not have to be random (like with a coin flip), and the sequence of choices don't have to follow an pattern or distribution or be fair, etc. We can't even assign a probability to any particular sequence of choices (like "always choose S_1 ").
- It's possible that the loop could run forever. There's no guaranteed fairness in nondeterministic choice, so we could increment x by 1 many more times than we decrement it by 2.
- 6. Reason 1: Nondeterminism Makes It Easy to Combine Partial Solutions. Reason 2: Nondeterminism Makes it Easy to Ignore Overlapping Cases