
Illinois Institute of Technology Practice 14

 Proof Rules and Proofs for Correctness Triples
 Part 1: Axioms, Sequencing, and Auxiliary Rules, v.10/17

 CS 536: Science of Programming, Fall 2021

A.Why

• We can't generally prove that correctness triples are valid using truth tables.

• We need proof axioms for atomic statements (skip and assignment) and inference rules for

compound statements like sequencing.

• In addition, we have inference rules that let us manipulate preconditions and postcondi-

tions.

B.Objectives

At the end of this practice activity you should

• Be able to match a statement and its conditions to its proof rule.

C.Problems

Use the vertical format to display rule instances. Below, ^ means exponentiation.

1. Consider the triples {p₁} x := x+x {p₂} and {p₂} k := k+1 {x = 2^k} where p₁ and p₂

are unknown.

a. Find values for p₁ and p₂ that make the triples provable. (Hint: Use wp.)

b. What do you get if you combine the triples using the sequence rule? Show the com-

plete proof. (I.e., include the rules for the two assignments.)

c. Add lines to the proof so that the sequence has precondition x = 2^k.

[Q1 parts d – f added 10/17]

d. Let's strengthen the precondition of x := x+x to be x = 2^k before the use of se-

quence. What is the proof now?

e. Now try using sp on the two assignments instead of wp, plus weakening the postcon-

dition after forming the sequence. What is the proof now?

f. Say we continue using sp but weaken the postcondition of each assignment (to sim-

plify it) before forming the sequence. What is the proof now?

[Q2 part a modified parts b & c added, Q3 added 10/17]

2. Say we want to prove {T} k := 0; x := e {x = 2^k}.

CS 536: Science of Programming – 1 – © James Sasaki, 2021

Illinois Institute of Technology Practice 14

a. Give a proof that calculates p and q for the triples {p} k := 0 {q} and {q} x := e {x 

= 2^k}, forms the sequence, and strengthens the initial precondition to T. Also, sug-

gest a value for e.

b. Repeat, but on the sequence {T} x := e; k := 0 {x = 2^k}. (No change to e is

needed.)

c. Now give a proof for {T} k := 1; x := e {x = 2^k} that uses sp on each assignment

and weakens the final postcondition to x = 2^k. What value do you want for e?

3. The goal is to derive a proof rule with an extended version of the sequence rule:

1. {p} S₁ {q} antecedent 1
2. q → q′ antecedent 2
3. {q′} S₂ {r} antecedent 3
4. {p} S₁; S₂ {r} extended sequence 1, 2, 3

We can do this by taking this framework and adding proof lines to get us from lines 1 – 3

to 4. There are a couple of ways to do this; show one of them.

CS 536: Science of Programming – 2 – © James Sasaki, 2021

Illinois Institute of Technology Practice 14

Solution to Practice 14 (Proof Rules and Proofs, pt.1)

1. (Preconditions for x = 2^k postcondition)

a. p₂ ≡ wp(k := k+1, x = 2^k) ≡ x = 2^(k+1).

p₁ ≡ wp(x := x+x, p₂) ≡ wp(x := x+x, x = 2^(k+1)) ≡ x+x = 2^(k+1).

b. The full proof is:

1. {x = 2^(k+1)} k := k+1 {x = 2^k} assignment (backward)
2. {x+x = 2^(k+1)} x := x+x {x = 2^(k+1)} assignment (backward)
3. {x+x = 2^(k+1)} x := x+x; k := k+1 {x = 2^k} sequence 2, 1

c. To make the precondition x = 2^k, we have to strengthen the precondition of line 3.

We need a predicate logic obligation and a strengthening step:

4. x= 2^k → x+x = 2^(k+1) predicate logic
5. {x = 2^k} x := x+x; k := k+1 {x = 2^k} consequence 4, 3

d. We need to reorder the proof lines to strengthen the precondition of x := x+x before

combining it with k := k+1:

1. {x = 2^(k+1)} k := k+1 {x = 2^k} assignment (backward)
2. {x+x = 2^(k+1)} x := x+x {x = 2^(k+1)} assignment (backward)

3. x= 2^k → x+x = 2^(k+1) predicate logic
4. {x = 2^k} x := x+x {x = 2^(k+1)} consequence 3, 2

5. {x = 2^k} x := x+x; k := k+1 {x = 2^k} sequence 2, 1

e. If we use sp on the assignments and weaken the postcondition of the sequence, we

get:

1. {x = 2^k} x := x+x {x₀ = 2^k ∧ x = x₀+x₀} assignment (forward)
2. {x₀ = 2^k ∧ x = x₀+x₀} k := k+1 {q₀} assignment (forward)

where q₀ ≡ x₀ = 2^k₀ ∧ x = x₀+x₀ ∧ k = k₀+1
3. {x = 2^k} x := x+x; k := k+1 {q₀} sequence 2, 1
4. q₀ → x = 2^k predicate logic
5. {x = 2^k} x := x+x; k := k+1 {x = 2^k} consequence 3, 4

f. If we use sp but weaken the postconditions as we go, we get:

1. {x = 2^k} x := x+x {x₀ = 2^k ∧ x = x₀+x₀} assignment (forward)
2. x₀ = 2^k ∧ x = x₀+x₀ → x / 2 = 2^k predicate logic
3. {x = 2^k} x := x+x {x / 2 = 2^k} consequence1, 2
4. {x / 2 = 2^k} k := k+1 {x / 2 = 2^k₀ ∧ k = k₀+1} assignment (forward)
5. x / 2 = 2^k₀ ∧ k = k₀+1 → x = 2^k predicate logic
6. {x / 2 = 2^k} k := k+1 {x = 2^k} consequence 4, 5
7. {x = 2^k} x := x+x; k := k+1 {x = 2^k} sequence 3, 6

CS 536: Science of Programming – 3 – © James Sasaki, 2021

Illinois Institute of Technology Practice 14

2. (Proofs of {T} k := 0; x := e {x = 2^k}.)

a. (Use wp twice, form the sequence, and strengthen the precondition to T.)

1. {e = 2^k} x := e {x = 2^k) assignment (backward)
2. {e = 2^0} k := 0 {e = 2^k} assignment (backward)
3. {e = 2^0} k := 0; x := e {x = 2^k) sequence 2, 1
4. T → e = 2^0 predicate logic
5. {T} k := 0; x := e {x = 2^k) consequence 4, 3

We can use e ≡ 1.

b. (Prove {T} x := e; k := 0 {x = 2^k} in the same way, with no change to e.)

1. {x = 2^0} k := 0 {x = 2^k) assignment (backward)
2. {e = 2^0} x := e {x = 2^0} assignment (backward)
3. {e = 2^0} x := e; k := 0 {x = 2^k) sequence 2, 1
4. T → e = 2^0 predicate logic
5. {T} k := 0; x := e {x = 2^k) consequence 4, 3

Again, e ≡ 1.

c. (Prove {T} k := 1; x := e {x = 2^k} using sp and ending with postcondition weaken-

ing.)

1. {T} k := 1 {k = 1} assignment (forward)
2. {k = 1} x := e {k = 1 ∧ x = e} assignment (forward)
3. {T} k := 1; x := e {k = 1 ∧ x = e} sequence 1, 2
4. k = 1 ∧ x = e → x = 2^k predicate logic
5. {T} k := 1; x := e {x = 2^k} consequence 3, 4

This time, e = 2, since we need x = 2^k ≡ 2 = 2^1.

d. (Prove {T} k := 1; x := e {x = 2^k} using sp on first assignment, wp on second.)

1. {T} k := 1 {k = 1} assignment (forward)

2. {e = 2^k} x := e {x = 2^k} assignment (backward)
3. k = 1 → e = 2^k predicate logic
4. {e = 2^k} x := e {x = 2^k} consequence 3, 2
5. {T} k := 1; x := e {x = 2^k} sequence 1, 4

CS 536: Science of Programming – 4 – © James Sasaki, 2021

Illinois Institute of Technology Practice 14

3. (Derived proof rule for antecedents {p} S₁ {q}, q → q′, {q′} S₂ {r} and consequent

{p} S₁; S₂ {r}.)

Below, we weaken the postcondition of antecedent 1 and then use sequence with an-

tecedent 3.

(A symmetric proof uses precondition strengthening on antecedent 3 and then uses se-

quence with antecedent 1.)

1. {p} S₁ {q} antecedent 1
2. q → q′ antecedent 2
3. {p} S₁ {q′} postcond. weak. 1, 3
4. {q′} S₂ {r} antecedent 3
5. {p} S₁; S₂ {r} sequence 4, 3

CS 536: Science of Programming – 5 – © James Sasaki, 2021

	Proof Rules and Proofs for Correctness Triples
	Part 1: Axioms, Sequencing, and Auxiliary Rules, v.10/17
	CS 536: Science of Programming, Fall 2021
	A. Why
	B. Objectives
	C. Problems
	[Q1 parts d – f added 10/17]
	[Q2 part a modified parts b & c added, Q3 added 10/17]
	Solution to Practice 14 (Proof Rules and Proofs, pt.1)

