Proof Rules and Proofs for Correctness Triples

Part 1: Axioms, Sequencing, and Auxiliary Rules, v.10/17

CS 536: Science of Programming, Fall 2021

A. Why
• We can't generally prove that correctness triples are valid using truth tables.
• We need proof axioms for atomic statements (skip and assignment) and inference rules for compound statements like sequencing.
• In addition, we have inference rules that let us manipulate preconditions and postconditions.

B. Objectives
At the end of this practice activity you should
• Be able to match a statement and its conditions to its proof rule.

C. Problems
Use the vertical format to display rule instances. Below, ^ means exponentiation.
1. Consider the triples \{p₁\} \texttt{x := x+x \{p₂\}} and \{p₂\} \texttt{k := k+1 \{x = 2^k\}} where \texttt{p₁} and \texttt{p₂} are unknown.
 a. Find values for \texttt{p₁} and \texttt{p₂} that make the triples provable. (Hint: Use \texttt{wp}.)
 b. What do you get if you combine the triples using the sequence rule? Show the complete proof. (I.e., include the rules for the two assignments.)
 c. Add lines to the proof so that the sequence has precondition \texttt{x = 2^k}.

[Q1 parts d – f added 10/17]
 d. Let's strengthen the precondition of \texttt{x := x+x} to be \texttt{x = 2^k} before the use of sequence. What is the proof now?
 e. Now try using \texttt{sp} on the two assignments instead of \texttt{wp}, plus weakening the postcondition after forming the sequence. What is the proof now?
 f. Say we continue using \texttt{sp} but weaken the postcondition of each assignment (to simplify it) before forming the sequence. What is the proof now?

[Q2 part a modified parts b & c added, Q3 added 10/17]
2. Say we want to prove \{T\} \texttt{k := 0; x := e \{x = 2^k\}}.
a. Give a proof that calculates \(p \) and \(q \) for the triples \(\{p\} \ k := 0 \ \{q\} \) and \(\{q\} \ x := e \ \{x = 2^k\} \), forms the sequence, and strengthens the initial precondition to \(T \). Also, suggest a value for \(e \).

b. Repeat, but on the sequence \(\{T\} \ x := e; \ k := 0 \ \{x = 2^k\} \). (No change to \(e \) is needed.)

c. Now give a proof for \(\{T\} \ k := 1; \ x := e \ \{x = 2^k\} \) that uses \(sp \) on each assignment and weakens the final postcondition to \(x = 2^k \). What value do you want for \(e \)?

3. The goal is to derive a proof rule with an extended version of the sequence rule:

1. \(\{p\} \ S_1 \ \{q\} \) \hspace{1cm} antecedent 1
2. \(q \rightarrow q' \) \hspace{1cm} antecedent 2
3. \(\{q'\} \ S_2 \ \{r\} \) \hspace{1cm} antecedent 3
4. \(\{p\} \ S_1; \ S_2 \ \{r\} \) \hspace{1cm} extended sequence 1, 2, 3

We can do this by taking this framework and adding proof lines to get us from lines 1 – 3 to 4. There are a couple of ways to do this; show one of them.
Solution to Practice 14 (Proof Rules and Proofs, pt.1)

1. (Preconditions for \(x = 2^k\) postcondition)
 a. \(p_2 \equiv \text{wp}(k := k+1, x = 2^k) \equiv x = 2^{(k+1)}\).
 \(p_1 \equiv \text{wp}(x := x+x, p_2) \equiv \text{wp}(x := x+x, x = 2^{(k+1)}) \equiv x+x = 2^{(k+1)}\).

b. The full proof is:
 1. \(\{x = 2^{(k+1)}\} \ k := k+1 \ \{x = 2^k\}\) assignment (backward)
 2. \(\{x+x = 2^{(k+1)}\} \ x := x+x \ \{x = 2^{(k+1)}\}\) assignment (backward)
 3. \(x = 2^k \rightarrow x+x = 2^k\) predicate logic
 4. \(\{x = 2^k\} \ x := x+x; \ k := k+1 \ \{x = 2^k\}\) consequence 3, 1

 c. To make the precondition \(x = 2^k\), we have to strengthen the precondition of line 3.
 We need a predicate logic obligation and a strengthening step:
 4. \(x=2^k \rightarrow x+x = 2^{(k+1)}\) predicate logic
 5. \(\{x = 2^k\} \ x := x+x; \ k := k+1 \ \{x = 2^k\}\) consequence 4, 3

 d. We need to reorder the proof lines to strengthen the precondition of \(x := x+x\) before combining it with \(k := k+1\):
 1. \(\{x = 2^{(k+1)}\} \ k := k+1 \ \{x = 2^k\}\) assignment (backward)
 2. \(\{x+x = 2^{(k+1)}\} \ x := x+x \ \{x = 2^{(k+1)}\}\) assignment (backward)
 3. \(x = 2^k \rightarrow x+x = 2^k\) predicate logic
 4. \(\{x = 2^k\} \ x := x+x \ \{x = 2^{(k+1)}\}\) consequence 3, 2
 5. \(\{x = 2^k\} \ x := x+x; \ k := k+1 \ \{x = 2^k\}\) sequence 2, 1

 e. If we use \(sp\) on the assignments and weaken the postcondition of the sequence, we get:
 1. \(\{x = 2^k\} \ x := x+x \ \{x_0 = 2^k \land x = x_0+x_0\}\) assignment (forward)
 2. \(\{x_0 = 2^k \land x = x_0+x_0\} \ k := k+1 \ \{q_0\}\) assignment (forward)
 where \(q_0 \equiv x_0 = 2^k \land x = x_0+x_0 \land k = k_0+1\)
 3. \(\{x = 2^k\} \ x := x+x; \ k := k+1 \ \{q_0\}\) sequence 2, 1
 4. \(q_0 \rightarrow x = 2^k\) predicate logic
 5. \(\{x = 2^k\} \ x := x+x; \ k := k+1 \ \{x = 2^k\}\) consequence 3, 4

 f. If we use \(sp\) but weaken the postconditions as we go, we get:
 1. \(\{x = 2^k\} \ x := x+x \ \{x_0 = 2^k \land x = x_0+x_0\}\) assignment (forward)
 2. \(x_0 = 2^k \land x = x_0+x_0 \rightarrow x/2 = 2^k\) predicate logic
 3. \(\{x = 2^k\} \ x := x+x \ \{x/2 = 2^k\}\) consequence 1, 2
 4. \(\{x/2 = 2^k\} \ k := k+1 \ \{x/2 = 2^k \land k = k_0+1\}\) assignment (forward)
 5. \(x/2 = 2^k \land k = k_0+1 \rightarrow x = 2^k\) predicate logic
 6. \(\{x/2 = 2^k\} \ k := k+1 \ \{x = 2^k\}\) consequence 4, 5
 7. \(\{x = 2^k\} \ x := x+x; \ k := k+1 \ \{x = 2^k\}\) sequence 3, 6
2. (Proofs of $\{T\} k := 0; x := e \{x = 2^k\}$.)
 a. (Use wp twice, form the sequence, and strengthen the precondition to T.)
 1. $\{e = 2^k\} x := e \{x = 2^k\}$ assignment (backward)
 2. $\{e = 2^0\} k := 0 \{e = 2^k\}$ assignment (backward)
 3. $\{e = 2^0\} k := 0; x := e \{x = 2^k\}$ sequence 2, 1
 4. $T \rightarrow e = 2^0$ predicate logic
 5. $\{T\} k := 0; x := e \{x = 2^k\}$ consequence 4, 3

 We can use $e \equiv 1$.

 b. (Prove $\{T\} x := e; k := 0 \{x = 2^k\}$ in the same way, with no change to e.)
 1. $\{x = 2^0\} k := 0 \{x = 2^k\}$ assignment (backward)
 2. $\{e = 2^0\} x := e \{x = 2^0\}$ assignment (backward)
 3. $\{e = 2^0\} x := e; k := 0 \{x = 2^k\}$ sequence 2, 1
 4. $T \rightarrow e = 2^0$ predicate logic
 5. $\{T\} k := 0; x := e \{x = 2^k\}$ consequence 4, 3

 Again, $e \equiv 1$.

 c. (Prove $\{T\} k := 1; x := e \{x = 2^k\}$ using sp and ending with postcondition weakening.)
 1. $\{T\} k := 1 \{k = 1\}$ assignment (forward)
 2. $\{k = 1\} x := e \{k = 1 \land x = e\}$ assignment (forward)
 3. $\{T\} k := 1; x := e \{k = 1 \land x = e\}$ sequence 1, 2
 4. $k = 1 \land x = e \rightarrow x = 2^k$ predicate logic
 5. $\{T\} k := 1; x := e \{x = 2^k\}$ consequence 3, 4

 This time, $e = 2$, since we need $x = 2^k \equiv 2 = 2^1$.

 d. (Prove $\{T\} k := 1; x := e \{x = 2^k\}$ using sp on first assignment, wp on second.)
 1. $\{T\} k := 1 \{k = 1\}$ assignment (forward)
 2. $\{e = 2^k\} x := e \{x = 2^k\}$ assignment (backward)
 3. $k = 1 \rightarrow e = 2^k$ predicate logic
 4. $\{e = 2^k\} x := e \{x = 2^k\}$ consequence 3, 2
 5. $\{T\} k := 1; x := e \{x = 2^k\}$ sequence 1, 4
3. (Derived proof rule for antecedents \(\{p\} S_1 \{q\}, q \rightarrow q', \{q'\} S_2 \{r\} \) and consequent \(\{p\} S_1; S_2 \{r\} \).)

Below, we weaken the postcondition of antecedent 1 and then use sequence with antecedent 3.

(A symmetric proof uses precondition strengthening on antecedent 3 and then uses sequence with antecedent 1.)

\[
\begin{align*}
1. & \quad \{p\} S_1 \{q\} \\
2. & \quad q \rightarrow q' \\
3. & \quad \{p\} S_1 \{q'\} \quad \text{postcond. weak. 1, 3} \\
4. & \quad \{q'\} S_2 \{r\} \quad \text{antecedent 3} \\
5. & \quad \{p\} S_1; S_2 \{r\} \quad \text{sequence 4, 3}
\end{align*}
\]