Basics of Parallel Programs

CS 536: Science of Programming, Fall 2021

A.Why

- Parallel programs are more flexible than sequential programs but their execution is more complicated.
- Parallel programs are harder to reason about because parts of a parallel program can interfere with other parts.

B.Objectives

At the end of this work you should be able to

• Draw evaluation graphs for parallel programs.

C. Problems

In general, for the problems below, if it helps you with the writing, feel free to define other symbols. ("Let $S \equiv some \ program$," for example.)

- 1. What is the sequential nondeterministic program that corresponds to the program from Example 4, [x := v || y := v+2 || z := v*2].
- 2. Let configuration $C_2 \equiv \langle S_2, \sigma \rangle$ where $S_2 \equiv [x := 1 || x := -1]$.
 - a. What is the sequential nondeterministic program that corresponds to S_1 ?
 - b. Draw an evaluation graph for C_2 .
- 3. Repeat Problem 2 on $C_3 \equiv \langle S_3, \sigma[v \mapsto 0] \rangle$ where $S_3 \equiv [x := v+3; v := v*4 || v := v+2]$. Note that in the first thread, the two assignments must be done with x first, then v. Because adding 3 and adding 2 are commutative, two of the (normally-different) nodes will merge.
- 4. Repeat Problem 2 on $C_4 \equiv \langle S_5, \sigma[v \mapsto \delta] \rangle$ where $S_4 \equiv [v := v^*\gamma; v := v + \beta || v := v + \alpha]$. This problem is similar to Problem 3 but is symbolic, and the commutative plus operator has been moved, so the shape of the graph will be different from Problem 3.

- 5. Let $C_5 \equiv \langle W, \sigma \rangle$ where $W \equiv while x \leq n \ do \ [x := x+1 || y := y^*2] \ od$ and let σ of x, y, and z be 0, 1, and 2 respectively. Note the parallel construct is in the body of the loop.
 - a. Draw an evaluation graph for C_5 . (Feel free to to say something like "Let $T \equiv ...$ " for the loop body, to cut down on the writing.
 - b. Draw another evaluation graph for C_5 , but this time, use the \rightarrow ³ notation to get a straight line graph. Concentrate on the configurations of the form (W, \dots).
- 6. In $[S_1 || S_2 || ... || S_n]$ can any of the threads $S_1, S_2, ..., S_n$ contain parallel statements? Can parallel statements be embedded within loops or conditionals?
- 7. Say we know $\{p_1\} S_1 \{q_1\}$ and $\{p_2\} S_2 \{q_2\}$ under partial or total correctness.
 - a. In general, do we know how $\{p_1 \land p_2\} [S_1 || S_2] \{q_1 \land q_2\}$ will execute? Explain briefly.
 - b. What if $p_1 \equiv p_2$? I.e., if we know $\{p\} S_1 \{q_1\}$ and $\{p\} S_2 \{q_2\}$, then do we know how

 ${p} [S_1 || S_2] {q_1 \land q_2}$ will work?

c. What if in addition, $q_1 \equiv q_2$? I.e., If we know $\{p\} S_1 \{q\}$ and $\{p\} S_2 \{q\}$, do we know how

 $\{p\} [S_1 \parallel S_2] \{q\}$ will work? (This problem is harder)

d. For parts (a) – (c), does it make a difference if we use v instead of Λ ?

Solution to Practice 22

Class 22: Basics of Parallel Programs

1. Sequential nondeterministic equivalent of [x := v || y := v+2 || z := v*2]:

if T → x := v; y := v+2; z := v*2 □ T → x := v; z := v*2; y := v+2 □ T → y := v+2; x := v; z := v*2 □ T → y := v+2; z := v*2; x := v □ T → z := v*2; x := v; y := v+2 □ T → z := v*2; y := v+2; x := v *fi*

- 2. (Program [x := 1 || x := -1]; y := y+x])
 - a. Equivalent sequential nondeterministic program if $T \rightarrow x := 1$; $x := -1 \Box T \rightarrow x := -1$; x := 1 fi
 - b. Evaluation graph for $\langle [x := 1 || x := -1]; y := y + x, \sigma \rangle$ $\langle [x := 1 || x := -1]; y := y + x, \sigma \rangle$

- 3. (Program [v := v+3; v := v*4 || v := v+2])
 - a. Equivalent sequential nondeterministic program if $T \rightarrow v := v+3$; if $T \rightarrow v := v*4$; $v := v+2 \Box T \rightarrow v := v+2$; v := v*4 fi $\Box T \rightarrow v := v+2$; v := v+3; v := v*4fi

b. Evaluation graph for $\langle [v := v+3; v := v^*4 || v := v+2], \sigma[v \mapsto 0] \rangle$. Note that two of the execution paths happen to merge, so there are only two final states instead of three.

- 4. (Program $[v := v^*\gamma; v := v + \beta || v := v + \alpha]$).
 - a. Equivalent sequential nondeterministic program if $T \rightarrow v := v^*\gamma$; if $T \rightarrow v := v + \beta$; $v := v + \alpha \Box T \rightarrow v := v + \alpha$; $v := v + \beta$ fi $\Box T \rightarrow v := v + \alpha$; $v := v^*\gamma$; $v := v + \beta$ fi
 - b. Evaluation graph for ($[v := v^*\gamma; v := v + \beta || v := v + 2], \sigma[v \mapsto \delta]$)

5. (while $x \le n$ do [x := x+1 || y := y*2] od, if $\sigma(x) = 0$, $\sigma(y) = 1$, and $\sigma(n) = 2$.) Below, let $T \equiv [x := x+1 || y := y*2]$ (just to cut down on the writing).

a. A full evaluation graph. Just to be explicit, I wrote $\sigma[x \mapsto 0][y \mapsto 1]$ below but just σ is fine.

b. Evaluation graph abbreviated using \rightarrow^3 notation: $\langle W, \sigma[x \mapsto 0][y \mapsto 1] \rangle \rightarrow^3 \langle W, \sigma[x \mapsto 1][y \mapsto 2] \rangle \rightarrow^3 \langle W, \sigma[x \mapsto 2][y \mapsto 4] \rangle$ $\rightarrow^3 \langle W, \sigma[x \mapsto 3][y \mapsto 8] \rangle \rightarrow \langle E, \sigma[x \mapsto 3][y \mapsto 8] \rangle$

- 6. No, in $[S_1 || S_2 || ... || S_n]$ the threads cannot contain parallel statements, but yes, parallel statements can be embedded within loops and conditionals.
- 7. In general, even if $\{p_1\} S_1 \{q_1\}$ and $\{p_2\} S_2 \{q_2\}$ are both valid sequentially, we can't compose them in parallel, even if $p_1 \equiv p_2$ and $q_1 \equiv q_2$. An example is how $\{x > 0\} x := x-1 \{x \ge 0\}$ is valid but $\{x > 0\} [x := x-1] | x := x-1] \{x \ge 0\}$ is not. The first x := x-1 to execute ends with $x \ge 0$, which is too weak for the second x := x-1 to work correctly.