Basics of Parallel Programs
CS 536: Science of Programming, Fall 2021

A. Why
• Parallel programs are more flexible than sequential programs but their execution is more complicated.
• Parallel programs are harder to reason about because parts of a parallel program can interfere with other parts.

B. Objectives
At the end of this work you should be able to
• Draw evaluation graphs for parallel programs.

C. Problems
In general, for the problems below, if it helps you with the writing, feel free to define other symbols. ("Let \(S \equiv \text{some program}, \" for example.)

1. What is the sequential nondeterministic program that corresponds to the program from Example 4, \([x := v || y := v+2 || z := v*2] \).

2. Let configuration \(C_2 \equiv (S_2, \sigma) \) where \(S_2 \equiv [x := 1 || x := -1] \).
 a. What is the sequential nondeterministic program that corresponds to \(S_1 \) ?
 b. Draw an evaluation graph for \(C_2 \).

3. Repeat Problem 2 on \(C_2 \equiv (S_3, \sigma[v \mapsto 0]) \) where \(S_3 \equiv [x := v+3; v := v*4 || v := v+2] \).
 Note that in the first thread, the two assignments must be done with \(x \) first, then \(v \). Because adding 3 and adding 2 are commutative, two of the (normally-different) nodes will merge.

4. Repeat Problem 2 on \(C_2 \equiv (S_4, \sigma[v \mapsto \delta]) \) where \(S_4 \equiv [v := v*y; v := v+\beta || v := v+\alpha] \).
 This problem is similar to Problem 3 but is symbolic, and the commutative plus operator has been moved, so the shape of the graph will be different from Problem 3.
5. Let $C_5 \equiv (W, \sigma)$ where $W \equiv \text{while } x \leq n \text{ do } [x := x+1 \mid \mid y := y*2] \text{ od}$ and let σ of x, y, and z be 0, 1, and 2 respectively. Note the parallel construct is in the body of the loop.
 a. Draw an evaluation graph for C_5. (Feel free to to say something like “Let $T \equiv \ldots$” for the loop body, to cut down on the writing.
 b. Draw another evaluation graph for C_5, but this time, use the \rightarrow^3 notation to get a straight line graph. Concentrate on the configurations of the form (W, \ldots).

6. In $[S_1 \mid \mid S_2 \mid \mid \ldots \mid \mid S_n]$ can any of the threads S_1, S_2, ..., S_n contain parallel statements? Can parallel statements be embedded within loops or conditionals?

7. Say we know $\{p_1\} S_1 \{q_1\}$ and $\{p_2\} S_2 \{q_2\}$ under partial or total correctness.
 a. In general, do we know how $\{p_1 \land p_2\} \ [S_1 \mid \mid S_2] \ {q_1 \land q_2}$ will execute? Explain briefly.
 b. What if $p_1 \equiv p_2$? i.e., if we know $\{p\} S_1 \ {q_1}$ and $\{p\} S_2 \ {q_2}$, then do we know how $\{p\} \ [S_1 \mid \mid S_2] \ {q_1 \land q_2}$ will work?
 c. What if in addition, $q_1 \equiv q_2$? i.e., If we know $\{p\} S_1 \ {q}$ and $\{p\} S_2 \ {q}$, do we know how $\{p\} \ [S_1 \mid \mid S_2] \ {q}$ will work? (This problem is harder)
 d. For parts (a) – (c), does it make a difference if we use \lor instead of \land?
Solution to Practice 22

Class 22: Basics of Parallel Programs

1. Sequential nondeterministic equivalent of \([x := v \parallel y := v+2 \parallel z := v*2]\):

 \[
 \begin{align*}
 & if \ T \rightarrow x := v; y := v+2; z := v*2 \\
 & \quad □ T \rightarrow x := v; z := v*2; y := v+2 \\
 & \quad □ T \rightarrow y := v+2; x := v; z := v*2 \\
 & \quad □ T \rightarrow y := v+2; z := v*2; x := v \\
 & \quad □ T \rightarrow z := v*2; y := v+2; x := v \\
 & fi
 \end{align*}
 \]

2. (Program \([x := 1 \parallel x := -1] ; y := y+x]\)

 a. Equivalent sequential nondeterministic program

 \[
 \begin{align*}
 & if \ T \rightarrow x := 1; x := -1 \quad □ T \rightarrow x := -1; x := 1 fi
 \end{align*}
 \]

 b. Evaluation graph for \(\langle [x := 1 \parallel x := -1]; y := y+x, σ \rangle\)

 \[
 \begin{align*}
 & \langle [x := 1 \parallel x := -1]; y := y+x, σ \rangle \\
 & \quad \downarrow \\
 & \quad \langle [E \parallel x := -1]; y := y+x, σ[x \mapsto 1] \rangle \\
 & \quad \quad \downarrow \\
 & \quad \quad \langle [E \parallel x := -1]; y := y+x, σ[x \mapsto -1] \rangle
 \end{align*}
 \]

3. (Program \([v := v+3; \ v := v*4 \parallel v := v+2]\)

 a. Equivalent sequential nondeterministic program

 \[
 \begin{align*}
 & if \ T \rightarrow v := v+3; \ if \ T \rightarrow v := v*4; \ v := v+2 \quad □ T \rightarrow v := v+2; \ v := v*4 fi \\\n & □ T \rightarrow v := v+2; \ v := v+3; \ v := v*4 fi
 \end{align*}
 \]
b. Evaluation graph for \((v := v+3; \ v := v^*4|| v := v+2), \sigma[{v \mapsto 0}]\). Note that two of the execution paths happen to merge, so there are only two final states instead of three.

\[
(v := v+3; \ v := v^*4|| v := v+2), \sigma[{v \mapsto 0}] \\
\]

- Evaluation graph for \((v := v^*4|| v := v+2), \sigma[{v \mapsto 3}]\)
- Evaluation graph for \((v := v^*4|| E), \sigma[{v \mapsto 2}]\)

- Evaluation graph for \((E|| v := v+2), \sigma[{v \mapsto 12}]\)
- Evaluation graph for \((v := v^*4|| E), \sigma[{v \mapsto 5}]\)

- Evaluation graph for \((E || E), \sigma[{v \mapsto 14}]\)
- Evaluation graph for \((E || E), \sigma[{v \mapsto 20}]\)

4. (Program \([v := v^*γ; \ v := v+β|| v := v+α]\).

a. Equivalent sequential nondeterministic program
 \[
 if \ T \rightarrow v := v^*γ; \ if \ T \rightarrow v := v+β; \ v := v+α \ □ \ T \rightarrow v := v+α; \ v := v+β \ fi
 \]
 \[
 □ \ T \rightarrow v := v+α; \ v := v^*γ; \ v := v+β
 \]
 \[
 fi
 \]

b. Evaluation graph for \((v := v^*γ; \ v := v+β|| v := v+2), \sigma[{v \mapsto δ}]\)

- Evaluation graph for \((v := v^*γ; \ v := v+β|| v := v+α), \sigma[{v \mapsto δ}]\)
- Evaluation graph for \((v := v^*γ; \ v := v+β|| E), \sigma[{v \mapsto δ+α}]\)
- Evaluation graph for \((v := v+β|| E), \sigma[{v \mapsto δγ+β + α}]\)
- Evaluation graph for \((v := v+β|| E), \sigma[{v \mapsto (δ+α)(γ+β)}]\)
- Evaluation graph for \((v := v+β|| E), \sigma[{v \mapsto (δ+α)+γ+β}]\)
- Evaluation graph for \((v := v+β|| E), \sigma[{v \mapsto δγ+β + α}]\)

- Evaluation graph for \((E|| v := v+α), \sigma[{v \mapsto δγ+β}]\)
- Evaluation graph for \((E|| v := v+α), \sigma[{v \mapsto δγ+β + α}]\)
- Evaluation graph for \((E|| E), \sigma[{v \mapsto δγ+β + α}]\)
5. \((\text{while } x \leq n \text{ do } [x := x+1 \ || \ y := y*2] \text{ od, if } \sigma(x) = 0, \ \sigma(y) = 1, \text{ and } \sigma(n) = 2.\) Below, let \(T \equiv [x := x+1 \ || \ y := y*2]\) (just to cut down on the writing).

a. A full evaluation graph. Just to be explicit, I wrote \(\sigma[x \mapsto 0][y \mapsto 1]\) below but just \(\sigma\) is fine.

\[
\begin{align*}
&\langle W, \sigma[x \mapsto 0][y \mapsto 1] \rangle \\
\rightarrow &\langle T; W, \sigma[x \mapsto 0][y \mapsto 1] \rangle \\
&\langle [E || y := y*2]; W, \sigma[x \mapsto 1][y \mapsto 1] \rangle \\
&\langle [x := x+1 || E]; W, \sigma[x \mapsto 0][y \mapsto 2] \rangle \\
\rightarrow &\langle W, \sigma[x \mapsto 1][y \mapsto 2] \rangle \\
&\langle T; W, \sigma[x \mapsto 1][y \mapsto 2] \rangle \\
&\langle [E || y := y*2]; W, \sigma[x \mapsto 2][y \mapsto 2] \rangle \\
&\langle [x := x+1 || E]; W, \sigma[x \mapsto 1][y \mapsto 4] \rangle \\
\rightarrow &\langle W, \sigma[x \mapsto 2][y \mapsto 4] \rangle \\
&\langle T; W, \sigma[x \mapsto 2][y \mapsto 4] \rangle \\
&\langle [E || y := y*2]; W, \sigma[x \mapsto 3][y \mapsto 4] \rangle \\
&\langle [x := x+1 || E]; W, \sigma[x \mapsto 2][y \mapsto 8] \rangle \\
\rightarrow &\langle W, \sigma[x \mapsto 3][y \mapsto 8] \rangle \\
&\langle E, \sigma[x \mapsto 3][y \mapsto 8] \rangle
\end{align*}
\]

b. Evaluation graph abbreviated using \(\rightarrow^3\) notation:

\[
\begin{align*}
&\langle W, \sigma[x \mapsto 0][y \mapsto 1] \rangle \rightarrow^3 \langle W, \sigma[x \mapsto 1][y \mapsto 2] \rangle \rightarrow^3 \langle W, \sigma[x \mapsto 2][y \mapsto 4] \rangle \\
&\rightarrow^3 \langle W, \sigma[x \mapsto 3][y \mapsto 8] \rangle \rightarrow \langle E, \sigma[x \mapsto 3][y \mapsto 8] \rangle
\end{align*}
\]
6. No, in \([S_1 \parallel S_2 \parallel \ldots \parallel S_n]\) the threads cannot contain parallel statements, but yes, parallel statements can be embedded within loops and conditionals.

7. In general, even if \(\{p_1\} S_1 \{q_1\}\) and \(\{p_2\} S_2 \{q_2\}\) are both valid sequentially, we can't compose them in parallel, even if \(p_1 \equiv p_2\) and \(q_1 \equiv q_2\). An example is how \(\{x > 0\} x := x-1 \{x \geq 0\}\) is valid but \(\{x > 0\} [x := x-1]|x := x–1\} \{x \geq 0\}\) is not. The first \(x := x-1\) to execute ends with \(x \geq 0\), which is too weak for the second \(x := x-1\) to work correctly.