CS 536: Science of Programming Practice 19

Finding Invariants

Part 1: Adding Parameters by Replacing Constants by Variables
CS 536: Science of Programming, Fall 2021

A. Why

* It is easier to write good programs and check them for defects than to write bad programs
and then debug them.

* The hardest part of programming is finding good loop invariants.

* There are heuristics for finding them but no algorithms that work in all cases.

B. Objectives

At the end of this activity assignment you should
* Be able to how to generate possible invariants using “replace a constant by a variable” or
more generally “add a parameter”.

C. Problems

1. What are the constants in the postcondition x = max(b[0], b[1], ..., b[n-1])? Using the
technique “replace a constant by a variable,” list the possible invariants for this postcon-
dition. Also, what would the loop tests be? (Assume n-1 is a constant.)

Repeat, on the postcondition x = n!/, where n! is short for a function call product(1, n).
3. Repeat, on the postcondition Vi.0 =i<n - b[i] = 3.
4. Repeat, on the postcondition Vi.Vj.0=i<KAK=j<n-bl[i] <b[j]. (Every value in
b[0...K-1] is < every value in b[K...n-1].)

CS Dept., Illlinois Institute of Technology -1- © J. Sasaki 2021

lllinois Institute of Technology Solution to Practice 19

Solution to Practice 19 (Finding Invariants; Examples)

1. Certainly 0 is a constant; if we replace it by a variable i, we get

{inv x = max(bli], ..., b[n-1]) AO<i=<n-1} whilei=#0 do...

As a constant, n-1 seems better than just n or 1 by themselves:
{inv x =max(b[0], ..., b[j]) AO <j<n-1} whilej#n-1do...

If you want to treat just n as a constant and replace it by a variable j, we get
{inv x =max(b[0], ..., b[j-1]) N1 =j=<n} whilej#n do...

Similarly, if you want replace just the 1 in n-1 by with j, we get
{inv x =max(b[0], ..., b[n-j]) N1 =j=n} whilej=1 do ...

2. We can replace n by a variable and get
invx=iln1l=<i=<n} whilei#ndo...
We can replace 1 and get
{invx = j*(j+1)*..*n A1 <j<n} whilej=1 do ...

3. ForVi.0=i<n-b[i] =3 as the postcondition, we can replace 0 or n or 3.
Replace 0 by k:
{invO<k=n-1AVi.k=<i<n-bli]=3} while k#0 do ...
Replace n by k
{inv0=k=naAVi.0<i<k->bli] =3} while k#n do ...
Replace 3 by k (this doesn’t look useful)
{invVi.0<i<n-bl[i] =k} while k# 3 do ...

4. ForVi.Vj.0=i<KAK=j<n-b[i] <b][j], we have constants 0, n, the two occurrences
of K.

Replace 0 by k:
{inv0=k <KAVi.Vj.k=si<KANK=j<n-Db[i] <b[j]}
while k = 0

Replace left K by k:
{inv0=k <KAVi.Vj.0=si<kANK=j<n-b[i] <b[j]}
while k # K

Replace right K by k:
{invK=sk=naAVi.Vj.0=si<KAnk=j<n-b[i] <b[j]}
while k # K

Replace n by k:
{invK=k=naAVi.Vj.0=si<KAK=j<k-Db[i] <b[j]}
while k # n

CS 536: Science of Programming -2- © James Sasaki, 2021

lllinois Institute of Technology Solution to Practice 19

You could argue that the ranges fork couldbe O =k <n, 0=k <n,0<k=n,and0 =
k = n for the four cases above; it depends on knowing more about the context of the
problem.

CS 536: Science of Programming -3- © James Sasaki, 2021

	Finding Invariants
	Part 1: Adding Parameters by Replacing Constants by Variables
	CS 536: Science of Programming, Fall 2021
	A. Why
	B. Objectives
	C. Problems
	Solution to Practice 19 (Finding Invariants; Examples)

