
 CS 536: Science of Programming Practice 19

 Finding Invariants
 Part 1: Adding Parameters by Replacing Constants by Variables CS 536: Science of Programming, Fall 2021

A.Why
• It is easier to write good programs and check them for defects than to write bad programs

and then debug them.
• The hardest part of programming is finding good loop invariants.
• There are heuristics for finding them but no algorithms that work in all cases.

B.Objectives
At the end of this activity assignment you should
• Be able to how to generate possible invariants using “replace a constant by a variable” or

more generally “add a parameter”.

C.Problems
1. What are the constants in the postcondition x = max(b[0], b[1], ..., b[n-1])? Using the

technique “replace a constant by a variable,” list the possible invariants for this postcon-
dition. Also, what would the loop tests be? (Assume n-1 is a constant.)

2. Repeat, on the postcondition x = n!, where n! is short for a function call product(1, n).
3. Repeat, on the postcondition ∀i . 0 ≤ i < n → b[i] = 3.
4. Repeat, on the postcondition ∀i . ∀j . 0 ≤ i < K ∧ K ≤ j < n → b[i] < b[j]. (Every value in

b[0…K-1] is < every value in b[K…n-1].)

CS Dept., Illinois Institute of Technology - 1 - © J. Sasaki 2021

Illinois Institute of Technology Solution to Practice 19

Solution to Practice 19 (Finding Invariants; Examples)
1. Certainly 0 is a constant; if we replace it by a variable i, we get

{inv x = max(b[i], ..., b[n-1]) ∧ 0 ≤ i ≤ n-1} while i ≠ 0 do …
As a constant, n-1 seems better than just n or 1 by themselves:

{inv x = max(b[0], ..., b[j]) ∧ 0 ≤ j ≤ n-1} while j ≠ n-1 do …
If you want to treat just n as a constant and replace it by a variable j, we get

{inv x = max(b[0], ..., b[j-1]) ∧ 1 ≤ j ≤ n} while j ≠ n do …
Similarly, if you want replace just the 1 in n-1 by with j, we get

{inv x = max(b[0], ..., b[n-j]) ∧ 1 ≤ j ≤ n} while j ≠ 1 do …

2. We can replace n by a variable and get
inv x = i! ∧ 1 ≤ i ≤ n} while i ≠ n do …

We can replace 1 and get
{inv x = j*(j+1)*…*n ∧ 1 ≤ j ≤ n} while j ≠ 1 do …

3. For ∀i . 0 ≤ i < n → b[i] = 3 as the postcondition, we can replace 0 or n or 3.
Replace 0 by k:

{inv 0 ≤ k ≤ n-1 ∧ ∀i . k ≤ i < n → b[i] = 3} while k ≠ 0 do …
Replace n by k

{inv 0 ≤ k ≤ n ∧ ∀i . 0 ≤ i < k → b[i] = 3} while k ≠ n do …
Replace 3 by k (this doesn’t look useful)

{inv ∀i . 0 ≤ i < n → b[i] = k} while k ≠ 3 do …

4. For ∀i .∀j .0 ≤ i < K ∧ K ≤ j < n → b[i] < b[j], we have constants 0, n, the two occurrences
of K.
Replace 0 by k:

{inv 0 ≤ k < K ∧ ∀i . ∀j . k ≤ i < K ∧ K ≤ j < n → b[i] < b[j]}
while k ≠ 0

Replace left K by k:
{inv 0 ≤ k < K ∧ ∀i . ∀j . 0 ≤ i < k ∧ K ≤ j < n → b[i] < b[j]}
while k ≠ K

Replace right K by k:
{inv K ≤ k ≤ n ∧ ∀i . ∀j . 0 ≤ i < K ∧ k ≤ j < n → b[i] < b[j]}
while k ≠ K

Replace n by k:
{inv K ≤ k ≤ n ∧ ∀i . ∀j . 0 ≤ i < K ∧ K ≤ j < k → b[i] < b[j]}
while k ≠ n

CS 536: Science of Programming – 2 – © James Sasaki, 2021

Illinois Institute of Technology Solution to Practice 19

You could argue that the ranges for k could be 0 ≤ k < n, 0 ≤ k < n, 0 ≤ k ≤ n, and 0 ≤ 
k ≤ n for the four cases above; it depends on knowing more about the context of the
problem.

CS 536: Science of Programming – 3 – © James Sasaki, 2021

	Finding Invariants
	Part 1: Adding Parameters by Replacing Constants by Variables
	CS 536: Science of Programming, Fall 2021
	A. Why
	B. Objectives
	C. Problems
	Solution to Practice 19 (Finding Invariants; Examples)

