Correctness ("Hoare") Triples, v 1.1

Part 2: Sequencing, Assignment, Strengthening, and Weakening CS 536: Science of Programming, Fall 2021

A. Why

- To specify a program's correctness, we need to know its precondition and postcondition (what should be true before and after executing it).
- The semantics of a verified program combines its program semantics rule with the stateoriented semantics of its specification predicates.
- To connect correctness triples in sequence, we need to weaken and strengthen conditions.

B. Objectives

At the end of today you should be able to

- Differentiate between different annotations for the same program.
- Determine whether two correctness triples can be joined and to give the result of joining.
- Reason "backwards" about assignment statements.
- Connect correctness triples in sequence by weakening and strengthening intermediate conditions

C. Problems

For all these problems, assume we're working over \mathbb{Z} . There may be more than one correct answer; any right answer will do.

- 1. Find a state σ such that $\sigma \not\models \{T\}$ $y := x*x*x \{y > 4*x\}$. I.e., give a state in which the triple is unsatisfied this proves that the triple is invalid.
- 2. Find the weakest precondition p that makes $\models \{p\} \ y := x^*x^*x \ \{y > 4^*x\}$ valid.
- 3. Find the strongest postcondition q such that $\{T\}$ y := x; if $x \ge 0$ then x := x*x fi $\{q\}$ is valid. (We want q to be satisfied by as many end states as possible.)
- 4. Fill in the missing code to make $\{T\}$ if ??? then y := ??? else y := x*x fi $\{y > 2*x\}$ valid. (There's no unique right answer.)

¹ Note if p is a weakest precondition, then so is anything logically equivalent to p, so "the" weakest precondition is a bit of a misnomer. The same goes for "the" strongest postcondition.

For Problems 5 and 6, use the backward assignment rule discussed in the notes.

- 5a. Find the most general precondition p such that $\{p\}$ x := (x+1)*y $\{x \ge f(y)\}$ is valid.
- 5b. Using p, now find the most general precondition q such that $\{q\}$ y := y+2 $\{p\}$ is valid. (Note parts (a) and (b) together make $\{q\}$ y := y+2; x := (x+1)*y $\{x \ge f(y)\}$ valid.)
- 6. Repeat Problem 5 using $\{p\}$ $x := x*x \{x > 15\}$ and $\{q\}$ $x := x+1 \{p\}$.

Solution to Practice 9 (Hoare Triples, pt. 2)

- 1. For σ to not satisfy $\{p\}$ $y := x^*x^*x$ $\{y > 4^*x\}$, we need $\sigma(x^*x^*x \le 4^*x)$. This happens when $\sigma(x) = 0$, 1, or 2 or $\sigma(x) \le -2$.
- 2. The weakest precondition p for $\models \{p\}$ $y := x*x*x \{y > 4*x\}$ is x*x*x > 4*x.
- 3. The strongest postcondition q for $\{T\}$ y := x; if $x \ge 0$ then x := x*x fi $\{q\}$ valid is $q \equiv y \ge 0 \rightarrow x = y^2$
- 4. If x = 0, 1, or 2, then $x*x \le 2*x$, so in that case we need to set y to something $y \ge 2*x$; the code is $y \ge 2*x$ if $y \ge 2*x$.
- 5a. The weakest p that makes $\{p\}$ x := (x+1)*y $\{x \ge f(y)\}$ valid is $(x+1)*y \ge f(y)$.
- 5b. The weakest q that makes $\{q\}$ y := y+2 $\{p\}$ valid is $(x+1)*(y+2) \ge f(y+2)$.
- 6a. To make $\{p\} \ x := x^*x \ \{x > 15\}$ valid, the weakest p is $x^*x > 15$.
- 6b. To make $\{q\} \ x := x+1 \ \{p\} \ \text{valid}$, the weakest q is (x+1)*(x+1) > 15.