Correctness ("Hoare") Triples, v 1.1

Part 2: Sequencing, Assignment, Strengthening, and Weakening

CS 536: Science of Programming, Fall 2021

A. Why

• To specify a program’s correctness, we need to know its precondition and postcondition (what should be true before and after executing it).
• The semantics of a verified program combines its program semantics rule with the state-oriented semantics of its specification predicates.
• To connect correctness triples in sequence, we need to weaken and strengthen conditions.

B. Objectives

At the end of today you should be able to

• Differentiate between different annotations for the same program.
• Determine whether two correctness triples can be joined and to give the result of joining.
• Reason “backwards” about assignment statements.
• Connect correctness triples in sequence by weakening and strengthening intermediate conditions.

C. Problems

For all these problems, assume we’re working over ℤ. There may be more than one correct answer; any right answer will do.

1. Find a state σ such that σ ‭¬ ‬{T} y := x*x*x {y > 4*x}. I.e., give a state in which the triple is unsatisfied — this proves that the triple is invalid.

2. Find the weakest precondition p that makes ⊨ {p} y := x*x*x {y > 4*x} valid.

3. Find the strongest postcondition q such that {T} y := x; if x ≥ 0 then x := x*x fi {q} is valid. (We want q to be satisfied by as many end states as possible.)

4. Fill in the missing code to make {T} if ?? then y := ?? else y := x*x fi {y > 2*x} valid. (There's no unique right answer.)

1 Note if p is a weakest precondition, then so is anything logically equivalent to p, so “the” weakest precondition is a bit of a misnomer. The same goes for “the” strongest postcondition.
For Problems 5 and 6, use the backward assignment rule discussed in the notes.

5a. Find the most general precondition p such that $\{p\} x := (x+1)y$ $\{x \geq f(y)\}$ is valid.
5b. Using p, now find the most general precondition q such that $\{q\} y := y+2$ $\{p\}$ is valid.
 (Note parts (a) and (b) together make $\{q\} y := y+2; x := (x+1)y$ $\{x \geq f(y)\}$ valid.)

6. Repeat Problem 5 using $\{p\} x := x^x$ $\{x > 15\}$ and $\{q\} x := x+1$ $\{p\}$.
Solution to Practice 9 (Hoare Triples, pt. 2)

1. For σ to not satisfy $\{p\} y := x*x*x \{y > 4*x\}$, we need $\sigma(x)*x <= 4*x$. This happens when $\sigma(x) = 0, 1, or 2 or \sigma(x) <= -2$.

2. The weakest precondition p for $\models \{p\} y := x*x*x \{y > 4*x\}$ is $x*x*x > 4*x$.

3. The strongest postcondition q for $\{T\} y := x; if x >= 0 then x := x*x fi \{q\}$ valid is $q \equiv y \geq 0 \rightarrow x = y^2$.

4. If $x = 0, 1, or 2$, then $x*x \leq 2*x$, so in that case we need to set y to something $> 2*x$; the code is $\{T\} if 0 \leq x \land x \leq 2 then y := 2*x+1 else y := x*x fi \{y > 2*x\}$.

5a. The weakest p that makes $\{p\} x := (x+1)*y \{x \geq f(y)\}$ valid is $(x+1)*y \geq f(y)$.

5b. The weakest q that makes $\{q\} y := y+2 \{p\}$ valid is $(x+1)*(y+2) \geq f(y+2)$.

6a. To make $\{p\} x := x*x \{x > 15\}$ valid, the weakest p is $x*x > 15$.

6b. To make $\{q\} x := x+1 \{p\}$ valid, the weakest q is $(x+1)*(x+1) > 15$.