Correctness ("Hoare") Triples, pt. 1

CS 536: Science of Programming, Fall 2021

For all the questions below, you can assume (unless otherwise said) that $\sigma \in \Sigma$, not Σ_{\perp}. (I.e., we're not trying to start run a program after an infinite loop or runtime failure.)

1. For a loop-free program without runtime errors, is there any difference between partial and total correctness?
2. Say we're given $\sigma \vDash\{x>0\} S\{y>x\}$ for all σ and we're given a state τ where $\tau(x)=-$ 3. Do we know what S will do if we run in τ ? Must it terminate? (With or without a runtime error?) Diverge? Must $y>x$ afterwards? How about $y \leq x$?
3. For which σ does $\sigma \vDash\{x>1\} y:=x^{*} x\{y>x\}$ hold? Is this triple valid?
4. For which σ does $\sigma \models\{x>0\} y:=x^{*} x\{y>x\}$ hold? Is this triple valid?
5. Under partial correctness, does $\sigma \vDash\{F\} S\{q\}$ hold for all σ, q, and S ? What about $\sigma \vDash$ $\{p\} S\{T\}$? Do these triples say anything interesting about S ?
6. Repeat the previous question under total correctness: Does $\sigma \models[F] S$ [q] always hold? Does $\sigma \vDash[p] S[T]$? Do these triples say anything interesting about S ?

For Problems 7-14, say for each statement whether it's true or false and give a brief explanation. (Just a sentence or two is fine.) Assume $\sigma \in \Sigma$. (Remember, if $\sigma \models$ any predicate or triple, then $\sigma \neq \perp$.)
7. If $\sigma \vDash\{p\} S\{q\}$, then $\sigma \vDash p$.
8. If $\sigma \not \vDash\{p\} S\{q\}$, then $\sigma \not \vDash p$.
9. If $M(S, \sigma)=\perp$, then $\sigma \vDash\{p\} S\{q\}$.
10. If $\sigma \vDash p$ and $M(S, \sigma) \cap\{\perp\} \neq \varnothing$, then $\sigma \not \vDash[p] S[q]$.
11. If $\sigma \vDash\{p\} S\{q\}$ and $\sigma \vDash p$, then every state in $M(S, \sigma)$ either is \perp or satisfies q.
12. If $\sigma \vDash\{p\} S\{q\}$ and $\sigma \nRightarrow p$, then every state in $M(S, \sigma)$ is either \perp or satisfies $\neg q$.
15. Let $S \equiv x:=x^{*} x ; y:=y^{*} y$ and let $\sigma(x)=\alpha$ and $\sigma(\xi)=\beta$. Verify that $\sigma \vDash\{x>y>0\}$ $S\{x>y>0\}$. I.e., assume σ satisfies the precondition, calculate $M(S, \sigma)$, and verify that $M(S, \sigma)-\perp$ satisfies the postcondition.

Solution to Practice 8 (Hoare Triples, pt 1)

1. No: For a loop-free, failure-free program, there's no difference between partial and total correctness.
2. No to all the questions: The triple only tells us what will happen if the precondition is satisfied. Since $\tau \not \vDash x>0$, the triple doesn't say anything about what will happen when you run S; it might cause an error or terminate in a state, and that state might satisfy $y>x$, but it might not.
3. All states satisfy the triple, so the triple is valid.
4. States in which $x=1$ do not satisfy the triple; states in which $x>1$ set y appropriately and do satisfy the triple. States in which $\mathrm{x}<1$ satisfy the triple trivially.
5. Under partial correctness, for all $S,\{F\} S\{q\}$ and $\{p\} S\{T\}$ are valid (satisfied in all states), but neither triple says anything useful about the program S.
6. Under total correctness, $\{F\} S\{q\}$ is again valid and doesn't say anything useful about S. Under total correctness, however, $\sigma \vDash[p] S[T]$ if and only if S always terminates when run it in σ. (I.e., it never goes into an infinite loop or fails at runtime.)
7. False; $\sigma \models\{p\} S\{q\}$ does not imply $\sigma \vDash p$. (It doesn't imply $\sigma \not \vDash p$ either.)
8. False; if $\sigma \in \Sigma$ and $\sigma \not \vDash\{p\} S\{q\}$, then $\sigma \vDash p$ (and $M(S, \sigma) \cap \Sigma \vDash \neg q$).
9. True; under partial correctness, if S always causes an error when run in a σ that satisfies p, then $\sigma \vDash\{p\} S\{q\}$.
10. True: If $\sigma \vDash p$, then for $\sigma \vDash[p] S$ [q] to hold, we need $M(S, \sigma) \vDash q$. If $M(S, \sigma) \cap\left\{\perp_{d}, \perp_{e}\right\}$ $\neq \varnothing$, then $M(S, \sigma) \not \vDash q$, so $\sigma \not \vDash[p] S[q]$.
11. True; if $\{p\} S\{q\}$ is partially correct and we run S in a state satisfying p, then either S causes an error or terminates in a state satisfying q.
12. False; if a triple is satisfied in σ but σ doesn't satisfy the precondition, then all possibilities can happen: S might diverge, it might cause a runtime error, and even if it terminates, the final state might satisfy q but it doesn't have to.
13. We're given $S \equiv x:=x^{*} x ; y:=y^{*} y$ and $\sigma(x)=\alpha$ and $\sigma(y)=\beta$. For arbitrary σ,

$$
\begin{aligned}
M(S, \sigma) & =M\left(x:=x^{*} x ; y:=y^{*} y, \sigma\right) \\
& =M\left(y:=y^{*} y, M\left(x:=x^{*} x, \sigma\right)\right) \\
& \left.=M\left(y:=y^{*} y, \sigma\left[x \mapsto \alpha^{2}\right]\right)\right) \\
& =\left\{\sigma\left[x \mapsto \alpha^{2}\right]\left[y \mapsto \beta^{2}\right]\right\} .
\end{aligned}
$$

Since $\sigma(x)=\alpha$ and $\sigma(y)=\beta$., so $\sigma \models x>y>0$ implies $\alpha>\beta>0$, which implies $\alpha^{2}>\beta^{2}>0$, which implies $\sigma\left[x \mapsto \alpha^{2}\right]\left[y \mapsto \beta^{2}\right] \vDash x>y>0$. Thus $\sigma \vDash\{x>y>0\} S\{x>y>0\}$; i.e., if $\sigma \vDash x>y>0$ then $M(S, \sigma)-\perp \vDash x>y>0$.

So if $\sigma \vDash x>y>0$, then $M(S, \sigma)-\perp \neq \varnothing$ and $\vDash x>y>0$. Therefore, $\sigma \vDash\{x>y>$ 0\} $S\{x>y>0\}$.

