Correctness ("Hoare") Triples, pt. 1 CS 536: Science of Programming, Fall 2021

For all the questions below, you can assume (unless otherwise said) that $\sigma \in \Sigma$, not Σ_{\perp} . (I.e., we're not trying to start run a program after an infinite loop or runtime failure.)

- 1. For a loop-free program without runtime errors, is there any difference between partial and total correctness?
- 2. Say we're given $\sigma \models \{x > 0\}$ *S* $\{y > x\}$ for all σ and we're given a state τ where $\tau(x) = -3$. Do we know what *S* will do if we run in τ ? Must it terminate? (With or without a runtime error?) Diverge? Must y > x afterwards? How about $y \le x$?
- 3. For which σ does $\sigma \models \{x > 1\}$ $y := x^*x \{y > x\}$ hold? Is this triple valid?
- 4. For which σ does $\sigma \models \{x > 0\}$ $y := x^*x \{y > x\}$ hold? Is this triple valid?
- 5. Under partial correctness, does $\sigma \models \{F\} \ S \ \{q\}$ hold for all σ , q, and S? What about $\sigma \models \{p\} \ S \ \{T\}$? Do these triples say anything interesting about S?
- 6. Repeat the previous question under total correctness: Does $\sigma \models [F] S [q]$ always hold? Does $\sigma \models [p] S [T]$? Do these triples say anything interesting about S?

For Problems 7 – 14, say for each statement whether it's true or false and give a brief explanation. (Just a sentence or two is fine.) Assume $\sigma \in \Sigma$. (Remember, if $\sigma \models$ any predicate or triple, then $\sigma \neq \bot$.)

- 7. If $\sigma \models \{p\} S \{q\}$, then $\sigma \models p$.
- 8. If $\sigma \nvDash \{p\} S \{q\}$, then $\sigma \nvDash p$.
- 9. If $M(S, \sigma) = \bot$, then $\sigma \vDash \{p\} S \{q\}$.
- 10. If $\sigma \vDash p$ and $M(S, \sigma) \cap \{\bot\} \neq \emptyset$, then $\sigma \nvDash [p] S [q]$.
- 11. If $\sigma \models \{p\} \ S \ \{q\}$ and $\sigma \models p$, then every state in $M(S, \sigma)$ either is \bot or satisfies q.
- 12. If $\sigma \models \{p\} \ S \ \{q\}$ and $\sigma \nvDash p$, then every state in $M(S, \sigma)$ is either \perp or satisfies $\neg q$.
- 15. Let $S \equiv x := x * x$; y := y * y and let $\sigma(x) = \alpha$ and $\sigma(\xi) = \beta$. Verify that $\sigma \models \{x > y > 0\}$ S $\{x > y > 0\}$. I.e., assume σ satisfies the precondition, calculate $M(S, \sigma)$, and verify that $M(S, \sigma) - \bot$ satisfies the postcondition.

Solution to Practice 8 (Hoare Triples, pt 1)

- 1. No: For a loop-free, failure-free program, there's no difference between partial and total correctness.
- 2. No to all the questions: The triple only tells us what will happen if the precondition is satisfied. Since $\tau \nvDash x > 0$, the triple doesn't say anything about what will happen when you run *S*; it might cause an error or terminate in a state, and that state might satisfy y > x, but it might not.
- 3. All states satisfy the triple, so the triple is valid.
- 4. States in which x = 1 do not satisfy the triple; states in which x > 1 set y appropriately and do satisfy the triple. States in which x < 1 satisfy the triple trivially.
- 5. Under partial correctness, for all S, $\{F\} S \{q\}$ and $\{p\} S \{T\}$ are valid (satisfied in all states), but neither triple says anything useful about the program S.
- 6. Under total correctness, $\{F\} S \{q\}$ is again valid and doesn't say anything useful about *S*. Under total correctness, however, $\sigma \models [p] S [T]$ if and only if *S* always terminates when run it in σ . (I.e., it never goes into an infinite loop or fails at runtime.)
- 7. False; $\sigma \models \{p\} S \{q\}$ does not imply $\sigma \models p$. (It doesn't imply $\sigma \not\models p$ either.)
- 8. False; if $\sigma \in \Sigma$ and $\sigma \nvDash \{p\} S \{q\}$, then $\sigma \vDash p$ (and $M(S, \sigma) \cap \Sigma \vDash \neg q$).
- 9. True; under partial correctness, if S always causes an error when run in a σ that satisfies p, then $\sigma \models \{p\} S \{q\}$.
- 10. True: If $\sigma \models p$, then for $\sigma \models [p] S [q]$ to hold, we need $M(S, \sigma) \models q$. If $M(S, \sigma) \cap \{\perp_d, \perp_e\} \neq \emptyset$, then $M(S, \sigma) \nvDash q$, so $\sigma \nvDash [p] S [q]$.
- 11. True; if $\{p\} S \{q\}$ is partially correct and we run S in a state satisfying p, then either S causes an error or terminates in a state satisfying q.
- 12. False; if a triple is satisfied in σ but σ doesn't satisfy the precondition, then all possibilities can happen: *S* might diverge, it might cause a runtime error, and even if it terminates, the final state might satisfy *q* but it doesn't have to.
- 15. We're given $S \equiv x := x * x$; y := y * y and $\sigma(x) = \alpha$ and $\sigma(y) = \beta$. For arbitrary σ ,

 $M(S, \sigma) = M(x := x * x; y := y * y, \sigma)$ $= M(y := y * y, M(x := x * x, \sigma))$ $= M(y := y * y, \sigma[x \mapsto \alpha^{2}]))$ $= \{\sigma[x \mapsto \alpha^{2}][y \mapsto \beta^{2}]\}.$

Since $\sigma(x) = \alpha$ and $\sigma(y) = \beta$, so $\sigma \models x > y > 0$ implies $\alpha > \beta > 0$, which implies $\alpha^2 > \beta^2 > 0$, which implies $\sigma[x \mapsto \alpha^2][y \mapsto \beta^2] \models x > y > 0$. Thus $\sigma \models \{x > y > 0\}$ *S* $\{x > y > 0\}$; i.e., if $\sigma \models x > y > 0$ then *M*(*S*, σ) - $\bot \models x > y > 0$.