Forward Assignment; Strongest Postconditions

CS 536: Science of Programming, Spring 2022

For Questions 2 - 7, syntactically calculate the following, including intermediate sp calculation steps. Omit uses of “T ∧ ” in the calculations but don't otherwise simplify the result unless asked to.

2. $sp(y \geq 0, \text{skip})$

3. $sp(i > 0, i := i+1)$ [Hint: add an $i = i_0$ conjunct to $i > 0$]

4. $sp(k \leq n \land s = f(k, n), k := k+1)$

5. $sp(T, i := 0; k := i)$

6. $sp(i \leq j \land j-i < n, i := i+j; j := i+j)$

7. $sp(0 \leq i < n \land s = \text{sum}(0, i), s := s+i+1; i := i+1)$

8. Let $S \equiv \text{if } x < 0 \text{ then } \{ x := -x \} \text{ else } \{ \text{skip} \}$
 a. Calculate $sp(x = x_0, S)$.
 b. Logically simplify your result from part (a). Feel free to use the function $\text{abs}(\ldots)$ or $\lvert \ldots \rvert$.
 c. Suppose we had calculated $sp(T, \text{if } x < 0 \text{ then } \{ x := -x \} \text{ else } \{ \text{skip} \})$ introducing x_0 in the true branch only. What would we get for the sp and what is the problem with it?
Solution to Practice 13 (Forward Assignment; Strongest Postconditions)

2. \(y \geq 0 \) (For the skip rule, the precondition and postcondition are the same.)

3. Let's implicitly add \(i = i_0 \) to the precondition, to name the starting value of \(i \). Then
 \[
 sp(i > 0, i := i + 1) \\
 \equiv (i > 0)[i_0/i] \land i = (i + 1)[i_0/i] \\
 \equiv i_0 > 0 \land i = i_0 + 1
 \]

4. As in the previous problem, let's introduce a variable \(k_0 \) to name the starting value of \(k \). Then
 \[
 sp(k \leq n \land s = f(k, n), k := k + 1) \\
 \equiv (k \leq n \land s = f(k, n))[k_0/k] \land k = (k + 1)[k_0/k] \\
 \equiv k_0 \leq n \land s = f(k_0, n) \land k = k_0 + 1
 \]

5. We don't need to introduce names for the old values of \(i \) and \(k \) (they're irrelevant).
 \[
 sp(T, i := 0; k := i) \\
 \equiv sp(sp(T, i := 0), k := i) \\
 \iff sp(i = 0, k := i) \quad // \text{We've dropped the "T \land " part of } T \land i = 0) \\
 \equiv i = 0 \land k = i
 \]

6. Let's introduce \(i_0 \) and \(j_0 \) as we need them, then
 \[
 sp(i \leq j \land j - i < n, i := i + j; j := i + j) \\
 \equiv sp(sp(i \leq j \land j - i < n, i := i + j), j := i + j) \\
 \equiv sp(i_0 \leq j \land j - i_0 < n \land i = i_0 + j, j := i + j) \\
 \equiv i_0 \leq j_0 \land j_0 - i_0 < n \land i = i_0 + j_0 \land j = i + j_0
 \]

7. \(sp(0 \leq i < n \land s = \text{sum}(0, i), s := s + i + 1; i := i + 1) \)
 \[
 \equiv sp(sp(0 \leq i < n \land s = \text{sum}(0, i), s := s + i + 1), i := i + 1)
 \]
 For the inner \(sp \),
 \[
 sp(0 \leq i < n \land s = \text{sum}(0, i), s := s + i + 1) \\
 \equiv 0 \leq i < n \land s_0 = \text{sum}(0, i) \land s = s_0 + i + 1 \quad \text{Using } s_0 \text{ to name the old value of } s
 \]
 Returning to the outer \(sp \),
 \[
 sp(sp(0 \leq i < n \land s = \text{sum}(0, i), s := s + i + 1), i := i + 1) \\
 \equiv sp(0 \leq i < n \land s_0 = \text{sum}(0, i) \land s = s_0 + i + 1, i := i + 1) \\
 \equiv 0 \leq i' < n \land s_0 = \text{sum}(0, i') \land s = s_0 + i' + 1 \land i = i' + 1 \\
 \quad \text{Using } i' \text{ to name the old value of } i
 \]
(There's no particular reason I used \(i'\) here except that; any other name like \(i_0\) or \(j\) or \(w\) works fine as long as it's not already being used in the predicate.)

8. (Old value before an if-else)
 a. \(sp(x = x_0, \text{if } x < 0 \text{ then } \{x := -x\} \text{ else } \{\text{skip}\}\)
 \(\equiv sp(x = x_0 \land x < 0, x := -x) \lor sp(x = x_0 \land x \geq 0, \text{skip})\)
 \(\equiv (x_0 < 0 \land x = -x_0) \lor (x \geq 0 \land x = x_0)\)
 b. We can simplify \((x_0 < 0 \land x = -x_0) \lor (x \geq 0 \land x = x_0) \Leftrightarrow x = |x_0|\).
 c. If we had calculated
 \(sp(T, \text{if } x < 0 \text{ then } \{x := -x\} \text{ else } \{\text{skip}\})\)
 \(\equiv sp(T \land x < 0, x := -x) \lor sp(T \land x \geq 0, \text{skip})\)
 \(\equiv (x_0 < 0 \land x = -x_0) \lor x \geq 0\)

Then we would have lost the information about the else clause not changing \(x\), so we wouldn't have been able to conclude \(x = |x_0|\).