Forward Assignment; Strongest Postconditions

CS 536: Science of Programming, Spring 2022

For Questions 2-7, syntactically calculate the following, including intermediate sp calculation steps. Omit uses of "T \wedge " in the calculations but don't otherwise simplify the result unless asked to.
2. $s p(y \geq 0, s k i p)$
3. $s p(i>0, i:=i+1)$ [Hint: add an $i=i o$ conjunct to $i>0$]
4. $s p(k \leq n \wedge s=f(k, n), k:=k+1)$
5. $s p(T, i:=0 ; k:=i)$
6. $s p(i \leq j \wedge j-i<n, i:=i+j ; j:=i+j)$.
7. $s p(0 \leq i<n \wedge s=\operatorname{sum}(0, i), s:=s+i+1 ; i:=i+1)$
8. Let $S \equiv$ if $x<0$ then $\{x:=-x\}$ else \{skip\}
a. Calculate $\operatorname{sp}(x=x o, S)$.
b. Logically simplify your result from part (a). Feel free to use the function abs(...) or | ...|.
c. Suppose we had calculated $\operatorname{sp}\left(T\right.$, if $x<0$ then $\{x:=-x\}$ else \{skip\}) introducing x_{0} in the true branch only. What would we get for the $s p$ and what is the problem with it?

Solution to Practice 13 (Forward Assignment; Strongest Postconditions)

2. $y \geq 0$ (For the skip rule, the precondition and postcondition are the same.)
3. Let's implicitly add $i=i_{o}$ to the precondition, to name the starting value of i. Then

$$
\begin{aligned}
& s p(i>0, i:=i+1) \\
& \quad \equiv(i>0)[i o / i] \wedge i=(i+1)[i o / i] \\
& \quad \equiv i_{o}>0 \wedge i=i_{o}+1
\end{aligned}
$$

4. As in the previous problem, let's introduce a variable k_{o} to name the starting value of k. Then

$$
\begin{aligned}
& s p(k \leq n \wedge s=f(k, n), k:=k+1) \\
& \equiv(k \leq n \wedge s=f(k, n))\left[k_{o} / k\right] \wedge k=(k+1)\left[k_{o} / k\right] \\
& \equiv k_{o} \leq n \wedge s=f\left(k_{o}, n\right) \wedge k=k_{o}+1
\end{aligned}
$$

5. We don't need to introduce names for the old values of i and k (they're irrelevant).

$$
\begin{aligned}
s p(T, i & =0 ; k:=i) \\
& \equiv s p(s p(T, i:=0), k:=i) \\
& \Leftrightarrow s p(i=0, k:=i) \quad / / \text { We've dropped the " } T \wedge " \operatorname{part} \text { of } T \wedge i=0) \\
& \equiv i=0 \wedge k=i
\end{aligned}
$$

6. Let's introduce i_{o} and $j o$ as we need them, then

$$
\begin{aligned}
s p(i \leq j & \wedge j-i<n, i:=i+j ; j:=i+j) \\
& \equiv s p(s p(i \leq j \wedge j-i<n, i:=i+j), j:=i+j) \\
& \equiv s p\left(i_{0} \leq j \wedge j-i_{0}<n \wedge i=i_{o}+j, j:=i+j\right) \\
& \equiv i_{0} \leq j_{0} \wedge j_{o-}-i_{0}<n \wedge i=i_{o}+j_{0} \wedge j=i+j o
\end{aligned}
$$

7. $s p(0 \leq i<n \wedge s=\operatorname{sum}(0, i), s:=s+i+1 ; i:=i+1)$

$$
\equiv s p(s p(0 \leq i<n \wedge s=\operatorname{sum}(0, i), s:=s+i+1, i:=i+1)
$$

For the inner $s p$,

$$
s p(0 \leq i<n \wedge s=\operatorname{sum}(0, i), s:=s+i+1)
$$

$\equiv 0 \leq i<n \wedge \operatorname{so}=\operatorname{sum}(0, i) \wedge s=s o+i+1 \quad$ Using so to name the old value of s
Returning to the outer $s p$,

```
sp(sp(0\leqi<n ^s = sum(0,i), s:= s+i+1),i:= i+1)
    \equivsp(0\leqi<n^so = sum(0,i) ^s=so+i+1,i:= i+1)
    \equiv0\leqi'<n^So=sum(0, i') ^ s= so+i'+1^i= i'+1
```

Using i^{\prime} to name the old value of i
(There's no particular reason I used i^{\prime} here except that; any other name like io or j or w works fine as long as it's not already being used in the predicate.)
8. (Old value before an if-else)
a. $\operatorname{sp}(x=x o$, if $x<0$ then $\{x:=-x\}$ else \{skip\})

$$
\equiv s p\left(x=x_{0} \wedge x<0, x:=-x\right) \vee \operatorname{sp}(x=x o \wedge x \geq 0, \text { skip })
$$

$$
\equiv\left(x_{0}<0 \wedge x=-x_{0}\right) \vee\left(x \geq 0 \wedge x=x_{0}\right)
$$

b. We can simplify $\left(x_{0}<0 \wedge x=-x_{0}\right) \vee\left(x \geq 0 \wedge x=x_{0}\right) \Leftrightarrow x=\left|x_{0}\right|$.
c. If we had calculated

Then we would have lost the information about the else clause not changing x, so we wouldn't have been able to conclude $x=\left|x_{0}\right|$.

$$
\begin{aligned}
& \operatorname{sp}(T, \text { if } x<0 \text { then }\{x:=-x\} \text { else \{skip\}) } \\
& \equiv \operatorname{sp}(T \wedge x<0, x:=-x) \vee \operatorname{sp}(T \wedge x \geq 0 \text {, skip) } \\
& \equiv\left(x_{0}<0 \wedge x=-x_{o}\right) \vee x \geq 0
\end{aligned}
$$

