
CS 536: Science of Programming Practice 13

 Forward Assignment; Strongest Postcondi-

tions
 CS 536: Science of Programming, Spring 2022

For Questions 2 - 7, syntactically calculate the following, including intermediate sp calcula-

tion steps. Omit uses of “T ∧ ” in the calculations but don't otherwise simplify the result un-

less asked to.

2. sp(y ≥ 0, skip)

3. sp(i > 0, i := i+1) [Hint: add an i = i₀ conjunct to i > 0]

4. sp(k ≤ n ∧ s = f(k, n), k := k+1)

5. sp(T, i := 0; k := i)

6. sp(i ≤ j ∧ j-i < n, i := i+j; j := i+j).

7. sp(0 ≤ i < n ∧ s = sum(0, i), s := s+i+1; i := i+1)

8. Let S ≡ if x < 0 then {x := -x} else {skip}

a. Calculate sp(x = x₀, S).

b. Logically simplify your result from part (a). Feel free to use the function abs(…) or |

…|.

c. Suppose we had calculated sp(T, if x < 0 then {x := -x} else {skip}) introducing x₀

in the true branch only. What would we get for the sp and what is the problem with it?

CS Dept., Illinois Institute of Technology – 1 – © James Sasaki, 2020
Ed. Stefan Muller, 2022

CS 536: Science of Programming Practice 13

Solution to Practice 13 (Forward Assignment; Strongest Postconditions)

2. y ≥ 0 (For the skip rule, the precondition and postcondition are the same.)

3. Let's implicitly add i = i₀ to the precondition, to name the starting value of i. Then

sp(i > 0, i := i+1)

≡ (i > 0)[i₀⧸i] ∧ i = (i+1) [i₀⧸i]
≡ i₀ > 0 ∧ i = i₀+1

4. As in the previous problem, let's introduce a variable k₀ to name the starting value of k.

Then

sp(k ≤ n ∧ s = f(k, n), k := k+1)

≡ (k ≤ n ∧ s = f(k, n))[k₀⧸k] ∧ k = (k+1)[k₀⧸k]

≡ k₀ ≤ n ∧ s = f(k₀, n) ∧ k = k₀+1

5. We don't need to introduce names for the old values of i and k (they're irrelevant).

sp(T, i := 0; k := i)

≡ sp(sp(T, i := 0), k := i)

⇔ sp(i = 0, k := i) // We've dropped the "T ∧ " part of T ∧ i = 0)

≡ i = 0 ∧ k = i

6. Let's introduce i₀ and j₀ as we need them, then

sp(i ≤ j ∧ j-i < n, i := i+j; j := i+j)

≡ sp(sp(i ≤ j ∧ j-i < n, i := i+j), j := i+j)

≡ sp(i₀ ≤ j ∧ j-i₀ < n ∧ i = i₀+j, j := i+j)

≡ i₀ ≤ j₀ ∧ j₀-i₀ < n ∧ i = i₀+j₀ ∧ j = i+j₀

7. sp(0 ≤ i < n ∧ s = sum(0, i), s := s+i+1; i := i+1)

≡ sp(sp(0 ≤ i < n ∧ s = sum(0, i), s := s+i+1, i := i+1)

For the inner sp,

sp(0 ≤ i < n ∧ s = sum(0, i), s := s+i+1)

≡ 0 ≤ i < n ∧ s₀ = sum(0, i) ∧ s = s₀+i+1 Using s₀ to name the old value of s

Returning to the outer sp,

sp(sp(0 ≤ i < n ∧ s = sum(0, i), s := s+i+1), i := i+1)

≡ sp(0 ≤ i < n ∧ s₀ = sum(0, i) ∧ s = s₀+i+1, i := i+1)

≡ 0 ≤ i′ < n ∧ s₀ = sum(0, i′) ∧ s = s₀+i′+1 ∧ i = i′+1

Using i′ to name the old value of i

CS Dept., Illinois Institute of Technology – 2 – © James Sasaki, 2020
Ed. Stefan Muller, 2022

CS 536: Science of Programming Practice 13

(There's no particular reason I used i′ here except that; any other name like i₀ or j or w

works fine as long as it's not already being used in the predicate.)

8. (Old value before an if-else)
a. sp(x = x₀, if x < 0 then {x := -x} else {skip})

≡ sp(x = x₀ ∧ x < 0, x := -x) ∨ sp(x = x₀ ∧ x ≥ 0, skip)
≡ (x₀ < 0 ∧ x = -x₀) ∨ (x ≥ 0 ∧ x = x₀)

b. We can simplify (x₀ < 0 ∧ x = -x₀) ∨ (x ≥ 0 ∧ x = x₀) ⇔ x = |x₀|.
c. If we had calculated

sp(T, if x < 0 then {x := -x} else {skip})
≡ sp(T ∧ x < 0, x := -x) ∨ sp(T ∧ x ≥ 0, skip)
≡ (x₀ < 0 ∧ x = -x₀) ∨ x ≥ 0

Then we would have lost the information about the else clause not changing x, so we

wouldn’t have been able to conclude x = |x₀|.

CS Dept., Illinois Institute of Technology – 3 – © James Sasaki, 2020
Ed. Stefan Muller, 2022

	Forward Assignment; Strongest Postconditions
	CS 536: Science of Programming, Spring 2022
	Solution to Practice 13 (Forward Assignment; Strongest Postconditions)

