
CS 536: Science of Programming Practice 18

 Loop Convergence & Total Correctness
 CS 536: Science of Programming, Fall 2021

A.Why
• Runtime errors make our programs not work, so we want to avoid them.
• Diverging programs aren’t useful, so it’s useful to know how to show that loops terminate.

B.Objectives
At the end of this activity you should be able to
• Calculate the domain predicate of an expression.
• Show what domain predicates need to hold within a program.
• Generate possible loop bounds for a given loop.
• State the extra obligations required to prove that a partially correct program is totally cor-

rect.

C.Questions
1. Consider the triple {inv p} {dec e} while k < n do … k := k+1 od {p ∧ k ≥ n}. As-

sume p → n ≥ k. To show that this loop terminates, we need a bound function t such that
(1) p → n – k ≥ 0 (which holds by assumption) and
(2) {p ∧ k < n ∧ t = t₀} k := k+1 {t < t₀}. (Assume loop code before k := k+1

doesn't affect k.)
a. Can we use t ≡ n-k as a bound expression?
b. Can we use t ≡ n–k+1 as a bound expression?
c. Can we use t ≡ 2n–k as a bound expression?

2. Use the same program as in Question 3 but assume p → n ≥ k – 3, not n ≥ k.
a. Why does n–k now fail as a bound expression?
b. Give an example of a bound expression that does work.

3. Consider the loop below. (Assume n is a constant and the omitted code does not
change k.)
a. Why does using just k as the bound function fail?
b. Find an expression that involves k and prove that it's a loop bound. (You'll need to

augment p.)
{n ≥ –1}
k := n;
{inv p ∧ _____ } {dec _____ }

CS Dept., Illinois Institute of Technology - 1 - © J. Sasaki 2021

CS 536: Science of Programming Practice 18

while k ≥ –1
do … k := k–1 … od

4. What is the minimum expression (i.e., closest to zero) that can be used as a loop bound
for

{inv n ≤ x+y} {dec …} while x+y > n do … y := y – 1 od ?

(Assume x and n are constant.)

5. Consider the loop {n > 0} k := n; {inv ???} while k > 1 do … k := k / 2 od {…}

a. Argue that ceiling(log₂ k) is a loop bound. (Augment the invariant as necessary.)
b. Argue that k is a loop bound.
c. Argue that ceiling(log₂ n) is not a loop bound. (Trick question.)

6. Let's look at the general problem of convergence of {inv p} while B do S od {q}. For
each property below, briefly discuss whether it is (1) required, (2) allowable but not re-
quired, or (3) incompatible with the requirements.
a. p → t ≥ 0

b. t < 0 → ¬p

c. {p ∧ B ∧ t = t₀} S {t = t₀ – 1}

d. p ∧ t ≥ 0 → B
e. ¬B → t = 0

f. {p ∧ B ∧ t = t₀} S {t < t₀}

7. Argue briefly that if s and t are loop bounds for W then so is s+t. (Hint: What property or
properties does s+t need?)

CS Dept., Illinois Institute of Technology - 2 - © J. Sasaki 2021

CS 536: Science of Programming Solutions to Practice 18

Solution to Practice 18 (Loop Termination)
1. (Termination of {inv p} {dec n-k} while k < n do … k := k+1 od)

a. Yes: {p ∧ k < n ∧ n – k = t₀} … {n – (k+1) < t₀} k := k+1 {n – k < t₀} requires
n – (k+1) < n – k, which is true.

b. Yes: Decrementing k certainly decreases n – k+1, and n – k+1 > n – k ≥ 0, which is the
other requirement.

c. Yes, but only if n ≥ 0: We know n-k ≥ 0, so 2n – k ≥ n, which is ≥ 0 if n ≥ 0. (If n <
0 then 2n – k might be negative.)

2. If n ≥ k – 3, then we only know n – k ≥ -3. (Note n – k+3 works as a bound, however.)

3. (Decreasing loop variable)
a. We can't just k as the bound expression because we don't know k ≥ 0. In fact, the

loop terminates with k = –2.
b. Since k is initialized to n, we can add –2 ≤ k ≤ n to the invariant and use k+2 as the

bound expression.
c. We need to know that the invariant implies k+2 ≥ 0 and that the loop body de-

creases k+2.

4. The smallest loop bound is x + y – n. We know it's ≥ 0 because n ≤ x + y, and we know it
decreases by 1 each iteration, so at loop termination, x+y – n = 0, which implies that
nothing less than x+y – n can work as a bound.

5. (Θ(log n) loop)
a. Add 0 ≤ k ≤ n ∧ n > 0 to the invariant. Since k > 1, we know ceiling(log₂ k) > 0,

and halving k decreases ceiling(log₂ k) by one and ceiling(log₂ k) – 1 ≥ 0. Thus
ceiling(log₂ k) works as a loop bound.

b. Since k > 1, halving k decreases it but leaves it ≥ 0.
c. ceiling(log₂ n) doesn't decrease because n is a constant. (Constants make terrible

bounds :-)

6. (Loop convergence) Required are (a) p → t ≥ 0, (b) t < 0 → ¬p [i.e., the contrapositive
of (a)], and (f) {p ∧ B ∧ t = t₀} S {t < t₀}. Property (c) {p ∧ B ∧ t = t₀} S {t = t₀-1} is
allowable but not required: It implies (f) but is stronger than we need. Property (e)
¬B → t = 0 is allowable but not required. Property (d) p ∧ t ≥ 0 → B is incompatible with
the requirements (it would cause an infinite loop).

CS Dept., Illinois Institute of Technology - 3 - © J. Sasaki 2021

CS 536: Science of Programming Solutions to Practice 18

7. Sum of two loop bounds. Say s = s₀ and t = t₀ at the beginning of the loop body and
that s₀–∆s and t₀–∆t are the values of s and t at the end of the loop body. If s and t are
loop bounds, then s > ∆s > 0 and t > ∆t > 0. For s+t to be a loop bound, we
need 0 ≤ (s₀–∆s) + (t₀–∆t) < s₀+t₀.
Expanding, (s₀–∆s) + (t₀–∆t) = s₀+t₀ - ∆s+∆t < s₀+t₀ because ∆s and ∆t are positive,
and (s₀–∆s) + (t₀–∆t) ≥ 0 because ∆s < s₀ and ∆t < t₀. So s+t is a bound function.

An interesting question you might think about: is s*t a bound function?

CS Dept., Illinois Institute of Technology - 4 - © J. Sasaki 2021

	Loop Convergence & Total Correctness
	CS 536: Science of Programming, Fall 2021
	A. Why
	B. Objectives
	C. Questions
	Solution to Practice 18 (Loop Termination)

