Loop Convergence & Total Correctness

CS 536: Science of Programming, Fall 2021

A.Why

- Runtime errors make our programs not work, so we want to avoid them.
- Diverging programs aren't useful, so it's useful to know how to show that loops terminate.

B.Objectives

At the end of this activity you should be able to

- Calculate the domain predicate of an expression.
- Show what domain predicates need to hold within a program.
- Generate possible loop bounds for a given loop.
- State the extra obligations required to prove that a partially correct program is totally correct.

C. Questions

- 1. Consider the triple {*inv p*} {*dec e*} *while k < n do ... k* := *k*+1 *od* {*p* \land *k* ≥ *n*}. Assume $p \rightarrow n \ge k$. To show that this loop terminates, we need a bound function t such that
 - (1) $p \rightarrow n k \ge 0$ (which holds by assumption) and
 - (2) $\{p \land k < n \land t = t_0\}$ k := k+1 $\{t < t_0\}$. (Assume loop code before k := k+1 doesn't affect k.)
 - a. Can we use $t \equiv n k$ as a bound expression?
 - b. Can we use $t \equiv n-k+1$ as a bound expression?
 - c. Can we use $t \equiv 2n-k$ as a bound expression?
- 2. Use the same program as in Question 3 but assume $p \rightarrow n \ge k-3$, not $n \ge k$.
 - a. Why does n-k now fail as a bound expression?
 - b. Give an example of a bound expression that does work.
- 3. Consider the loop below. (Assume *n* is a constant and the omitted code does not change *k*.)
 - a. Why does using just k as the bound function fail?
 - b. Find an expression that involves k and prove that it's a loop bound. (You'll need to augment p.)

```
 \{n \ge -1\} \\ k := n; \\ \{inv p \land \} \{dec \}
```

while $k \ge -1$ do ... k := k-1 ... od

4. What is the minimum expression (i.e., closest to zero) that can be used as a loop bound for

```
\{inv \ n \le x+y\} \ \{dec \ ...\} \ while \ x+y > n \ do \ ... \ y := y-1 \ od ?
```

(Assume x and n are constant.)

- 5. Consider the loop $\{n > 0\}$ k := n; $\{inv ???\}$ while k > 1 do ... k := k/2 od $\{...\}$
 - a. Argue that $ceiling(log_2 k)$ is a loop bound. (Augment the invariant as necessary.)
 - b. Argue that k is a loop bound.
 - c. Argue that $ceiling(log_2 n)$ is not a loop bound. (Trick question.)
- Let's look at the general problem of convergence of {*inv p*} while B do S od {*q*}. For each property below, briefly discuss whether it is (1) required, (2) allowable but not required, or (3) incompatible with the requirements.
 - a. $p \rightarrow t \ge 0$ b. $t < 0 \rightarrow \neg p$ c. $\{p \land B \land t = t_0\} S \{t = t_0 - 1\}$ d. $p \land t \ge 0 \rightarrow B$
 - e. $\neg B \rightarrow t = 0$
 - f. $\{p \land B \land t = t_0\} S \{t < t_0\}$
- 7. Argue briefly that if s and t are loop bounds for W then so is s+t. (Hint: What property or properties does s+t need?)

Solution to Practice 18 (Loop Termination)

- 1. (Termination of $\{inv p\}$ $\{dec n-k\}$ while $k < n \ do \dots \ k := k+1 \ od$)
 - a. Yes: $\{p \land k < n \land n-k = t_0\} \dots \{n-(k+1) < t_0\} k := k+1 \{n-k < t_0\}$ requires n-(k+1) < n-k, which is true.
 - b. Yes: Decrementing k certainly decreases n-k+1, and $n-k+1 > n-k \ge 0$, which is the other requirement.
 - c. Yes, but only if $n \ge 0$: We know $n-k \ge 0$, so $2n-k \ge n$, which is ≥ 0 if $n \ge 0$. (If n < 0 then 2n-k might be negative.)
- 2. If $n \ge k-3$, then we only know $n-k \ge -3$. (Note n-k+3 works as a bound, however.)
- 3. (Decreasing loop variable)
 - a. We can't just k as the bound expression because we don't know $k \ge 0$. In fact, the loop terminates with k = -2.
 - b. Since k is initialized to n, we can add $-2 \le k \le n$ to the invariant and use k+2 as the bound expression.
 - c. We need to know that the invariant implies $k+2 \ge 0$ and that the loop body decreases k+2.
- 4. The smallest loop bound is x+y-n. We know it's ≥ 0 because $n \le x+y$, and we know it decreases by 1 each iteration, so at loop termination, x+y-n = 0, which implies that nothing less than x+y-n can work as a bound.
- 5. (Θ(*log n*) loop)
 - a. Add $0 \le k \le n \land n > 0$ to the invariant. Since k > 1, we know $ceiling(log_2 k) > 0$, and halving k decreases $ceiling(log_2 k)$ by one and $ceiling(log_2 k) - 1 \ge 0$. Thus $ceiling(log_2 k)$ works as a loop bound.
 - b. Since k > 1, halving k decreases it but leaves it ≥ 0 .
 - c. $ceiling(log_2 n)$ doesn't decrease because n is a constant. (Constants make terrible bounds :-)
- 6. (Loop convergence) Required are (a) $p \rightarrow t \ge 0$, (b) $t < 0 \rightarrow \neg p$ [i.e., the contrapositive of (a)], and (f) $\{p \land B \land t = t_0\} S \{t < t_0\}$. Property (c) $\{p \land B \land t = t_0\} S \{t = t_0-1\}$ is allowable but not required: It implies (f) but is stronger than we need. Property (e) $\neg B \rightarrow t = 0$ is allowable but not required. Property (d) $p \land t \ge 0 \rightarrow B$ is incompatible with the requirements (it would cause an infinite loop).

7. Sum of two loop bounds. Say $s = s_0$ and $t = t_0$ at the beginning of the loop body and that $s_0 - \Delta s$ and $t_0 - \Delta t$ are the values of s and t at the end of the loop body. If s and t are loop bounds, then $s > \Delta s > 0$ and $t > \Delta t > 0$. For s+t to be a loop bound, we need $0 \le (s_0 - \Delta s) + (t_0 - \Delta t) < s_0 + t_0$.

Expanding, $(s_o - \Delta s) + (t_o - \Delta t) = s_o + t_o - \Delta s + \Delta t < s_o + t_o$ because Δs and Δt are positive, and $(s_o - \Delta s) + (t_o - \Delta t) \ge 0$ because $\Delta s < s_o$ and $\Delta t < t_o$. So s + t is a bound function.

An interesting question you might think about: is s^{*t} a bound function?