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 Loop Convergence & Total Correctness
 CS 536: Science of Programming, Fall 2021

A.Why
• Runtime errors make our programs not work, so we want to avoid them.
• Diverging programs aren’t useful, so it’s useful to know how to show that loops terminate.

B.Objectives
At the end of this activity you should be able to 
• Calculate the domain predicate of an expression.
• Show what domain predicates need to hold within a program.
• Generate possible loop bounds for a given loop.
• State the extra obligations required to prove that a partially correct program is totally cor-

rect.

C.Questions
1. Consider the triple {inv p} {dec e} while k < n do … k := k+1 od {p ∧ k ≥ n}.  As-

sume p → n ≥ k.  To show that this loop terminates, we need a bound function t such that
(1) p →  n – k ≥ 0 (which holds by assumption) and
(2) {p ∧ k < n ∧ t = t₀} k := k+1 {t < t₀}.  (Assume loop code before k := k+1 

doesn't affect k.)
a. Can we use t ≡ n-k as a bound expression?
b. Can we use t ≡ n–k+1 as a bound expression?
c. Can we use t ≡ 2n–k as a bound expression?

2. Use the same program as in Question 3 but assume p → n ≥ k  –  3, not n ≥ k.
a. Why does n–k now fail as a bound expression?
b. Give an example of a bound expression that does work.

3. Consider the loop below. (Assume n is a constant and the omitted code does not 
change k.)
a. Why does using just k as the bound function fail?
b. Find an expression that involves k and prove that it's a loop bound.  (You'll need to 

augment p.)
{n ≥ –1}
k := n;
{inv p ∧ _____ } {dec _____ }
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while k ≥ –1
do … k := k–1 … od

4. What is the minimum expression (i.e., closest to zero) that can be used as a loop bound 
for

{inv n ≤ x+y} {dec …} while x+y > n do … y := y  –  1 od ?

(Assume x and n are constant.)

5. Consider the loop {n > 0} k := n; {inv ???} while k > 1 do … k := k  / 2 od {…}

a. Argue that ceiling(log₂ k) is a loop bound.  (Augment the invariant as necessary.)
b. Argue that k is a loop bound.
c. Argue that ceiling(log₂ n) is not a loop bound.  (Trick question.)

6. Let's look at the general problem of convergence of {inv p} while B do S od {q}.  For 
each property below, briefly discuss whether it is (1) required, (2) allowable but not re-
quired, or (3) incompatible with the requirements.
a. p →  t ≥ 0

b. t < 0  →  ¬p

c. {p ∧ B ∧ t = t₀} S {t = t₀  – 1}

d. p ∧ t ≥ 0  → B 
e. ¬B  → t = 0

f. {p ∧ B ∧ t = t₀} S {t < t₀}

7. Argue briefly that if s and t are loop bounds for W then so is s+t.  (Hint: What property or
properties  does s+t need?)
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Solution to Practice 18 (Loop Termination)
1. (Termination of {inv p} {dec n-k} while k < n do … k := k+1 od)

a. Yes: {p ∧ k < n ∧ n –  k = t₀} … {n  – (k+1) < t₀} k := k+1 {n  – k < t₀} requires 
n –  (k+1) < n  – k, which is true.

b. Yes: Decrementing k certainly decreases n – k+1, and n – k+1 > n – k ≥ 0, which is the
other requirement.

c. Yes, but only if n ≥ 0: We know n-k ≥ 0, so 2n – k ≥ n, which is ≥ 0 if n ≥ 0.  (If n < 
0 then 2n –  k might be negative.)

2. If n ≥ k  – 3, then we only know n –  k ≥ -3.  (Note n –  k+3 works as a bound, however.)

3. (Decreasing loop variable)
a. We can't just k as the bound expression because we don't know k ≥ 0.  In fact, the 

loop terminates with k = –2.
b. Since k is initialized to n, we can add –2 ≤ k ≤ n to the invariant and use k+2 as the 

bound expression.
c. We need to know that the invariant implies k+2 ≥ 0 and that the loop body de-

creases k+2.

4. The smallest loop bound is x +  y –  n.  We know it's ≥ 0 because n ≤ x  +  y, and we know it
decreases by 1 each iteration, so at loop termination, x+y  – n = 0, which implies that 
nothing less than x+y  – n can work as a bound.

5. (Θ(log n) loop)
a. Add 0 ≤ k ≤ n ∧ n > 0 to the invariant.  Since k > 1, we know ceiling(log₂ k) > 0, 

and halving k decreases ceiling(log₂ k) by one and ceiling(log₂ k)  – 1 ≥ 0.  Thus 
ceiling(log₂ k) works as a loop bound.

b. Since k > 1, halving k decreases it but leaves it ≥ 0.
c. ceiling(log₂ n) doesn't decrease because n is a constant.  (Constants make terrible 

bounds :-)

6. (Loop convergence)  Required are (a) p → t ≥ 0, (b) t < 0 → ¬p [i.e., the contrapositive 
of (a)], and (f) {p ∧ B ∧  t =  t₀} S {t < t₀}.  Property (c) {p ∧ B ∧ t = t₀} S {t = t₀-1} is
allowable but not required: It implies (f) but is stronger than we need.  Property (e) 
¬B  → t = 0 is allowable but not required.  Property (d) p ∧  t ≥ 0 →  B is incompatible with
the requirements (it would cause an infinite loop).
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7. Sum of two loop bounds.  Say s = s₀ and t = t₀ at the beginning of the loop body and 
that s₀–∆s and t₀–∆t are the values of s and t at the end of the loop body.  If s and t are 
loop bounds, then s > ∆s > 0 and t > ∆t > 0. For s+t to be a loop bound, we 
need 0 ≤  (s₀–∆s)  + (t₀–∆t) < s₀+t₀.
Expanding, (s₀–∆s)  + (t₀–∆t) = s₀+t₀ - ∆s+∆t < s₀+t₀ because ∆s and ∆t are positive, 
and (s₀–∆s)  + (t₀–∆t) ≥ 0 because ∆s < s₀ and ∆t < t₀.  So s+t is a bound function.

An interesting question you might think about: is s*t a bound function?
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