
CS536 – Concurrent Separation
Logic and Wrap-up

November 29, 2023

Example (last time) – “race condition”

Big-step semantics of parallel programs

• 𝑀 𝑆, 𝜎, ℎ = { 𝜎′, ℎ′ | 𝑠, 𝜎, ℎ →∗ 𝑠𝑘𝑖𝑝, 𝜎′, ℎ′ }

• 𝑀 𝑆, 𝜎, ℎ = {} if all execution paths diverge

(∪ {⊥} if S can raise a runtime error)

Example (last time)

Example 5

𝑀 𝑊, 𝜎, ℎ = ?

⟨𝑤ℎ𝑖𝑙𝑒 𝑥 = 0 𝑑𝑜 [𝑥 ≔ 0 ∥ 𝑥 ≔ 1], {𝑥 = 0}, ℎ ⟩

⟨𝑤ℎ𝑖𝑙𝑒 𝑥 = 0 𝑑𝑜 [𝑥 ≔ 0 ∥ 𝑥 ≔ 1], {𝑥 = 0}, ℎ ⟩

⟨𝑤ℎ𝑖𝑙𝑒 𝑥 = 0 𝑑𝑜 [𝑥 ≔ 0 ∥ 𝑥 ≔ 1], {𝑥 = 0}, ℎ ⟩

⟨ 𝑤ℎ𝑖𝑙𝑒 𝑥 = 0 𝑑𝑜 [𝑥 ≔ 0 ∥ 𝑥 ≔ 1], {𝑥 = 1}, ℎ ⟩

⟨𝑠𝑘𝑖𝑝, {𝑥 = 1}, ℎ ⟩

⟨𝑤ℎ𝑖𝑙𝑒 𝑥 = 0 𝑑𝑜 [𝑥 ≔ 0 ∥ 𝑥 ≔ 1], {𝑥 = 0}, ℎ ⟩

…

𝑀 𝑊, 𝜎, ℎ = (𝑥 = 1, ℎ)

Example 4 No race condition! What happened?

Binary trees

Delete a binary tree (in parallel)

Parallel rule

• For 2 threads, if threads are “disjoint” (p1, s1, and q1 aren’t modified
by s2 and vice versa)

• For n threads (assuming all n are disjoint with all others)

Confluence and the diamond property

Making disjointness formal

• Threads i and j are disjoint if
𝑓𝑟𝑒𝑒 𝑠𝑖 ∪ 𝑓𝑟𝑒𝑒 𝑝𝑖 ∪ 𝑓𝑟𝑒𝑒 𝑞𝑖 ∩ 𝑤𝑟𝑖𝑡𝑒𝑠 𝑠𝑗 = {}

Free variables of
the condition

Variables si might
read or write

Making disjointness formal: reads

Making disjointness formal: writes

Important Dates

• Thursday, 11/30 11:59pm: HW7 Due

• Thursday, 11/30 11:59pm: Extra credit (HW/midterm redos) due
• NO LATE DAYS!

• Saturday, 12/2 11:59pm: HW7 Due (w/ 2 late days)
• No extensions, because…

• Sunday, 12/3: HW7 Solutions posted

• TBA (soon): Review session(s)

• Tuesday, 12/5 2-4pm: Final exam

Final: 12/5 2-4pm

• Rooms:
• Section 1 (in-person students): WH 113

• Sections 2-3 (PhD and online): PH 131

• Important: Make sure you go to the right room

• Seats will be assigned. Come early to find your seat!
• Seat assignments will be posted on Blackboard, like for the midterm

• Section 03: Let me know by Friday if you’re not taking the exam in
person and haven’t already.

Content

• All lectures (including this week)

• All HWs

• Roughly 1/3 material from before the midterm, 2/3 material since the
midterm

Format
• 5-10 short answer

• 2 programs w/ loops to do full proof (Hilbert or full proof
outline) + termination – marked Proof A and Proof B
• You supply loop invariant, bound, full proof outline

• Do one (your choice)

• If you do both, we will choose one to grade nondeterministically

• ~4 other longer answer (possibly multi-part) questions

• Total: 100 points (good rule of thumb: 1 point = 1 minute)

Provided resources

Everything from midterm, plus:

• Additional IMP semantics:
• Small- and big-step semantics for nondeterminism

• Small-step semantics for parallelism

• Rules for simplifying “if e then e else e” expressions

• Algorithm for expanding proof outlines

• Resource (heap) logic laws

• Separation logic inference rules

Allowed:

• Four (4) (double-sided) 8.5x11” sheets of notes
• Content: anything you want

• Blue or black pen or pencil

Not allowed:

• More notes, books, laptops, phones, …

• Green, purple, red, etc., pen

• Anything else (unless approved through disability accommodations)

Practice/Review

• Practice exam posted on Blackboard today/tomorrow

• Same rough format as exam (no guarantees on topic coverage, timing,
difficulty, etc.)

• Additional practice questions posted over the weekend
• Made possible by viewers like you

• Review session(s) TBA (probably Friday + Monday)

Program Verification

Formally checking that a program is correct

Usually: that it meets a specification

gives the right answer
doesn’t take too long
has the right effects
has the right security properties

this course (mostly)

What we’ve seen

Partial Correctness Total Correctness

Loop-free, det., seq. Lec. 7-13

Loops Lec. 14-15 Lec. 17

Pointers Lec. 19

Nondeterminism Lec. 21

Parallelism Lec. 22-23

Where to go from here

Partial Correctness Total Correctness

Loop-free, det., seq. Lec. 7-13

Loops Lec. 14-15 Lec. 17

Pointers Lec. 19

Nondeterminism Lec. 21

Parallelism Lec. 22-23

Quantitative properties, security, etc.
C

o
n

cu
rren

cy, I/O
, …

Credit: Ilya Sergey

Hoare Logic

Separation Logic

…

Some things are important enough to fully
verify
• CompCert – formally verified C compiler

Or, if you don’t fully verify your whole
codebase…
• Program to a specification

• Use assertions (kinda like a proof outline if you squint!)

• Think about loop invariants and bounds

• Informally verify important pieces in your head

But there are other ways of verifying
programs too…

What next?

• CS534: Types and Programming Languages
• First offering: Spring 2024!

• Also meets MS theory requirement

• Prerequisite: CS430

• CS443: Compiler Construction
• Fall 2024, maybe?

• CS440: Programming Languages and Translators
• Semantics, types, interpreters

If you really like this stuff…

• Spring 2024 Programming Languages reading group
• Details to come

	Slide 1: CS536 – Concurrent Separation Logic and Wrap-up
	Slide 2: Example (last time) – “race condition”
	Slide 3: Big-step semantics of parallel programs
	Slide 4: Example (last time)
	Slide 5: Example 5
	Slide 6: Example 4
	Slide 7: Binary trees
	Slide 8: Delete a binary tree (in parallel)
	Slide 9: Parallel rule
	Slide 10: Confluence and the diamond property
	Slide 11: Making disjointness formal
	Slide 12: Making disjointness formal: reads
	Slide 13: Making disjointness formal: writes
	Slide 14
	Slide 15: Important Dates
	Slide 16: Final: 12/5 2-4pm
	Slide 17: Content
	Slide 18: Format
	Slide 19: Provided resources
	Slide 20
	Slide 21: Practice/Review
	Slide 22: Program Verification
	Slide 23: What we’ve seen
	Slide 24: Where to go from here
	Slide 25
	Slide 26: Some things are important enough to fully verify
	Slide 27: Or, if you don’t fully verify your whole codebase…
	Slide 28: But there are other ways of verifying programs too…
	Slide 29: What next?
	Slide 30: If you really like this stuff…

