CS536 — Concurrent Separation
Logic and Wrap-up

November 29, 2023



Example (last time) — “race condition”

([z:=x+T1]z:= I..__*g] (o, h))

/ :

skip|| z:=2 2], (o|lx — n+ 1], h)) x:=x+ 1| skip], (o]z — 2n],h))
| ] / |

{ :

([ skip || skip |, (o[z — 2(n + 1)], h)) ([ skip || skip |, (o|z + 2n + 1], h))



Big-step semantics of parallel programs

* M(S,(0,h) = {(¢',h")|(s, (0, h)) »* {skip, (¢, h'))}
(U {L}if S can raise a runtime error)

- M (S, (o, h)) = {}if all execution paths diverge



Example (last time)

£

T

([skip||z:=2%2],(olz—n+1],h)) ([z:=x+ 1| skip],(c[z+— 2n],h))

#

| |

([ skip || skip |, (o[z — 2(n + 1)], h)) ([ skip || skip |, (o|z + 2n + 1], h))

([z:=xz+T1|z:=2%2],(0,h))

M(Jz:=x+1|z:=2%2],(0,h)) = {(c]z = 2n+2],h), (c]z —= 2n+1],h)}.



Example 5

W E=z:=0;whilez=0do [z:=0|z:=1] od
M(W,(o,h)) = ({x = 1,h})

(Whilex =0do [x =0l x = 1], {x = 0}, h))

(Whilex =0do [x =01l x = 1], {x = 0}, h))

|

(whilex =0do[x=01x =1

(whilex = 0do | x = 1], {x = 1}, h))

l

(skip, ({x =1}, h))

(Whilex =0do [x =01l x = 1], {x = 0}, h))

?



Exa m p ‘ e 4 No race condition! What happened?

([z:=v|p=v+2| 2:=v2] (z,h)



Binary trees

563

rDOtllllllllll*

500

100

500

1005

45

563

nil

50

nil

nil

*
*

1005
[J;O

nil ‘ 742

742 3

nil

nil




Delete a binary tree (in parallel)

deleteTree =

[ wxg:=!(root + 1); 2y :=!l(zg +1); dispose(x
dispose(x
dispose(x

100

) root-lllll""" 2 500 1005

1
1+
1T

l\._J =t
\-_-»-"

_ 500 . 1005,
dispose(xp); -

. 45 | 563 | nil 30 | nil [ 742
dispose(xzg + 1); | . :
dispose(rg + ) 563 . 742 i

50 nil nil
| vo :=!(root + 2);y; :=!(yo +2); dispose(y;);

dispose(y
dispose(y
dispose(yg);
dispose(yo + 1);
dispose(yy + 2)
dispose(root +2) |;

);
2);

1
1 T
1 7

b._J et

(
(
(
(
(
(
dispose(root + 1) 1. 1| it | i
(
(
(
(
(
(
(

dispose(root)



Parallel rule

* For 2 threads, if threads are “disjoint” (p1, s1, and g1 aren’t modified
by s2 and vice versa)

{pi} si e} Ap2} s2 {q2}

{p1 * p2} [51 | 52 ] {a1 * a2}

PAR(2 THREADS)

* For n threads (assuming all n are disjoint with all others)

Vi<i<n {pi} si {ai}
{pr=-xpa} [s1] [ sn]{a* - *aqn}

PAR(n THREADS)



Confluence and the diamond property

Diamond Property: An execution graph has the diamond property iff for any node (s, (o, h)) on the

graph
if (s, (o, h)) — (s1.(01,h1)) and (s, (o, h)) — (s2, (09, hs)), then

there is a state (¢, h') and astatement s’ such that
(s1, (a1, h1)) = (s', (', 1)) and (s2, (02, h2)) — (s', (¢, "))
Note the same s’ and (¢, h’) in both final states.
Confluence Property: An execution graph has the confluence property iff for any node (s, (o.h)) on

the graph
if (s, (o, h)) —* (81, (01, h1)) and (s, (o, h)) —=* (s9, (02, hs)), then
! !

there is a state (¢',h') and astatement s’ such that
(s1, (o1, k1)) =* (', (0", ")) and (s2, (02, h2)) =* (s, (o', 1))



Making disjointness formal

* Threads i and j are disjoint if
(free(si) U free(p;) U free(qi)) N Writes(sj) = {}

Variables si might Free variables of
read or write the condition




Making disjointness formal: reads

reads(z =€) free(e)

reads(z :=le) free(e)

reads(i := cons(ey, -+ ,€,)) free(e;) U ---Ufree(e,)
(

free(e;) U free(es)

free(e)

reads(s;) U reads(ss)
reads(s;) U reads(s;)

free(e) U reads(s;) U reads(ss)
free(e) U reads(s).

(

(

(2 S
(leg == e3)
reads(di spo::e(s))
reads(| s1 || s2 ]
reads(s; s9)
reads(if e then s; else s fi)
reads(while e do s od)



Making disjointness formal: writes

writes(x
writes(x
writes
writes

( e)

(z :=le)

(2 := co

(leq
Writes(d_gpoae())

(

(

(

(

HS(EI Ty En))

writes([ sy || s2 )
writes(si;s2)

writes(if e then s; else s5 fi)
writes(while e do s od)

{}

writes(s;)Uwrites(ss)
writes(s;)Uwrites(ss)
writes(
(s

writes

s1)Uwrites(ss)

)



{root — a, js, 3, = tree(Ty, jo) = tree(T,., j,.) }
{root — a *root + 1 — je * root + 2 — j, x tree(Ty, je) = tree(Tr, jr) }
{root + 1 — jg * root + 2 — j, = tree(Ty, je) * tree(T;, jr )}

{root +1 — jp + tree(Ty, jo)}
xp :=!(root + 1);

xq =(zg + 1);

dispose(z1):

dispose(z; + 1);

dispose(z + 2):
diSpGSE(;’L‘D)
dispose(zg + 1);
dispose(xzg + 2);
dispose(root + 1)
{emp}

{emp * emp}
{root — a * emp * emp }

dispose(root)
{emp * emp * emp}
{emp}

{root + 2+ j, * tree(T, j-)}
yo =!(root + 2);

y1 :=!(yo + 2);

dispose(y );

dispose(y; + 1);
dispose(y; + 2);
dispose(yo):
dispose(yy + 1);
dispose(yo + 2);
dispose(root + 2)
{emp}

(FRAME)

(FRAME)



Important Dates

* Thursday, 11/30 11:59pm: HW7 Due

* Thursday, 11/30 11:59pm: Extra credit (HW/midterm redos) due
 NO LATE DAYS!

e Saturday, 12/2 11:59pm: HW7 Due (w/ 2 late days)

* No extensions, because...
* Sunday, 12/3: HW7 Solutions posted
* TBA (soon): Review session(s)
* Tuesday, 12/5 2-4pm: Final exam



Final: 12/5 2-4pm

* Rooms:
e Section 1 (in-person students): WH 113
» Sections 2-3 (PhD and online): PH 131
* Important: Make sure you go to the right room

* Seats will be assigned. Come early to find your seat!
» Seat assignments will be posted on Blackboard, like for the midterm

* Section 03: Let me know by Friday if you’re not taking the exam in
person and haven’t already.



Content

 All lectures (including this week)

* All HWs

* Roughly 1/3 material from before the midterm, 2/3 material since the
midterm



Format

e 5-10 short answer

2 programs w/ loops to do full proof (Hilbert or full proof
outline) + termination — marked Proof A and Proof B

* You supply loop invariant, bound, full proof outline
* Do one (your choice)
* |f you do both, we will choose one to grade nondeterministically

e ¥4 other longer answer (possibly multi-part) questions

 Total: 100 points (good rule of thumb: 1 point = 1 minute)



Provided resources

Everything from midterm, plus:

* Additional IMP semantics:
* Small- and big-step semantics for nondeterminism
* Small-step semantics for parallelism

* Rules for simplifying “if e then e else e” expressions
* Algorithm for expanding proof outlines

* Resource (heap) logic laws

* Separation logic inference rules



Allowed:

* Four (4) (double-sided) 8.5x11” sheets of notes
* Content: anything you want

* Blue or black pen or pencil

Not allowed:

* More notes, books, laptops, phones, ...

* Green, purple, red, etc., pen

* Anything else (unless approved through disability accommodations)



Practice/Review

* Practice exam posted on Blackboard today/tomorrow

e Same rough format as exam (no guarantees on topic coverage, timing,
difficulty, etc.)

» Additional practice questions posted over the weekend
* Made possible by viewers like you

* Review session(s) TBA (probably Friday + Monday)



Program Verification

this course (mostly)

gives the right answer/

. . doesn’t take too long
Formally checking that a program is correct < s the right effects

has the right security properties

Usually: that it meets a specification



What we’ve seen

Partial Correctness Total Correctness

]
Lec. 14-15 Lec. 17




Where to go from here

Quantitative properties, security, etc.

Partial Correctness Total Correctness

0 5
(@)

Loop-free, det., seq. Lec. 7-13 §
s

Parallelism Lec. 22-23 :




Hoare Logic

Separation Logic

‘//-— Owicki-Gries (1976) —\ /
RSL (2013)

Rely-Guarantee (1983) CSL (2004)

[

Bornat-al (2005) — N
/ RGSep (2007)
SAGL (2007)

Hobor-al (2008) l ~— Deny-Guarantee (2009)
|

/ LRG (2009) ~ ¢\
CAP (2010)

Hobor-Gherghina

Q011)
HOCAP (2013)

N\

FSL (2016)

Concurrent RGRefs (2017)

Bell-al (2010) FoL 4t

(2017)
Gotsman-al (2007)

— Jacobs-Piessens (201 1)

RGSim (2012)

/

Liang-Feng (2013)
CaReSL (2013)

HLRG (2010)
SCSL (2013)
TaDA (2014)

FTCSL (2015)

ICAP (2014)

| / ColoSL (2015) FCSL (2014)
GPS (2014) Iris (2015)
LiLi (2016) 1 / Total-TaDA (2016) l

\ Credit: llya Sergey

Iris 2.0 (2016)___, Iris 3.0 (2017)




Some things are important enough to fully
verity

* CompCert — formally verified C compiler

Security. Performance. Proof. ﬁ




Or, if you don’t fully verify your whole
codebase...

* Program to a specification

* Use assertions (kinda like a proof outline if you squint!)
* Think about loop invariants and bounds

* Informally verify important pieces in your head



But there are other ways of veritying
programs too...

Static types can be seen as a form of Static types can be seen as a form of
verification verification
* OCaml| sort : int list -> int list ... but that’s a whole other class

* Takes an integer list and returns an integer list.
* Valid: sort([8;2;1;6;3]) = [8;2;1,6;3]
* Valid: sort([8;2;1;6;3]) [19;11;12]

sort : forall (11 : list int), exists (12: int list),
* Coq sorted 12 /\ Permutation 11 12

* Takes an integer list and returns a sorted permutation of it.
* Valid: sort([8;2;1;6;3]) = [1;2;3,6;8]
* ... and nothing else



What next?

* CS534: Types and Programming Languages
* First offering: Spring 2024!
* Also meets MS theory requirement
* Prerequisite: CS430

e CS443: Compiler Construction
* Fall 2024, maybe?

* CS440: Programming Languages and Translators
* Semantics, types, interpreters



It you really like this stuff...

* Spring 2024 Programming Languages reading group
* Details to come



	Slide 1: CS536 – Concurrent Separation Logic and Wrap-up
	Slide 2: Example (last time) – “race condition”
	Slide 3: Big-step semantics of parallel programs
	Slide 4: Example (last time)
	Slide 5: Example 5
	Slide 6: Example 4
	Slide 7: Binary trees
	Slide 8: Delete a binary tree (in parallel)
	Slide 9: Parallel rule
	Slide 10: Confluence and the diamond property
	Slide 11: Making disjointness formal
	Slide 12: Making disjointness formal: reads
	Slide 13: Making disjointness formal: writes
	Slide 14
	Slide 15: Important Dates
	Slide 16: Final: 12/5 2-4pm
	Slide 17: Content
	Slide 18: Format
	Slide 19: Provided resources
	Slide 20
	Slide 21: Practice/Review
	Slide 22: Program Verification
	Slide 23: What we’ve seen
	Slide 24: Where to go from here
	Slide 25
	Slide 26: Some things are important enough to fully verify
	Slide 27: Or, if you don’t fully verify your whole codebase…
	Slide 28: But there are other ways of verifying programs too…
	Slide 29: What next?
	Slide 30: If you really like this stuff…

