
Basics of Parallel Programs

Stefan Muller and Farzaneh Derakhshan, based on material by Jim Sasaki

CS 536: Science of Programming, Fall 2023
Lecture 22

1 Introduction

In this lecture, we extend our language to allow parallelism. We add one more construct to our grammar
for the statements

s ::= . . . | [s ‖ · · · ‖ s]

We say [s1 ‖ · · · ‖ sn] is the parallel composition of the threads s1, s2, . . . , sn. We put the limitation
that threads s1, s2, . . . , sn must be sequential: You can’t nest parallel programs1. (You can embed parallel
programs within larger programs, such as in the body of a loop.)

Example 1.

� Valid: [x := x+ 1 ‖ x := x ∗ 2 ‖ y := x2] is a parallel program with 3 threads.

� Invalid: [x := x+ 1 ‖ [x := x ∗ 2 ‖ y := x2]] tries to nest parallel programs.

� Valid: [x := x+ 1 ‖ x := x ∗ 2]; [x := x+ 1 ‖ y := x2] has two threads that then join back together and
split into 2 threads again.

1.1 Interleaving Execution of Parallel Programs

The parallel execution of sequential threads is by interleaving their execution, i.e., we run multiple threads
by interleaving the operational semantics steps for the individual threads. This means that we execute one
thread for some number of operational steps, then execute another thread, and so on. Depending on the
program and the sequence of interleaving, different final states can be reached, or the program can cause an
error in one execution but not in another. For instance, suppose we have [x :=x+ 1 ‖x :=x ∗ 2] to evaluate.
In this case, we would interleave the operational semantics steps of the two threads. One possible execution
could be evaluating x := x+ 1 first and then x := x ∗ 2, while another possible execution could be evaluating
x := x ∗ 2 first and then x := x+ 1. Each of these two possible executions can create different final states 2.

Parallel computation and sequential nondeterminism. The difference between parallel composition
of threads as in

[x := x+ 1 ‖ x := x ∗ 2]

and the nondeterministic branch as in

if T → x := x+ 1� T → x := x ∗ 2 fi

1Some languages, including several that Stefan works with, allow you to do this; we might look at that later, but for now
we’ll say we can’t nest.

2If you’re familiar with writing concurrent programs, you might also know that if we were using a language like C, it would
be possible to calculate both x + 1 and x ∗ 2 before we store either and have one overwrite the other, ending up with either
x + 1 or 2x rather than 2x + 1 or 2(x + 1). In this class, we’ll assume that we interleave at the level of operational steps, so
calculating the expression and doing the assignment happens atomically (all at once).

1

is that the nondeterministic branch executes only one of the two assignments, whereas the parallel composi-
tion executes both assignments but in an unpredictable order. The sequential nondeterministic branch that
simulates the parallel assignments is:

if T → x := x+ 1;x := x ∗ 2� T → x := x ∗ 2;x := x+ 1 fi.

It nondeterministically chooses between the two possible traces of execution for the program. This is a good
use of sequential nondeterminism to understand the nondeterminism that results from parallel interleaving.
However, it doesn’t scale well to large programs. Because of the nondeterminism, re-executions of a parallel
program can use different orders. For example, two executions of while e do [x := x+ 1 ‖ x := x ∗ 2] od can
have the same sequence or different sequences of updates to x.

1.2 What is the Challenge?

The main challenge with parallel programs is that their properties can be very different from the behaviors
of the individual threads. Each thread can change the state in ways that don’t maintain the assumptions
used by other threads.

Example 2: Consider the parallel program [x := x + 1 ‖ x := x ∗ 2] with two threads x := x + 1 and
x := x ∗ 2. If we consider only the local behavior of each thread we get

� {x = 5} x := x+ 1 {x = 6} and � {x = 5} x := x ∗ 2 {x = 10}

but when we consider possible interleaving of both threads we get

� {x = 5} [x := x+ 1 ‖ x := x ∗ 2] {x = 11 ∨ x = 12}.

The reason for having different behavior between individual threads and their parallel composition is that
the interleaving threads can interfere with each other’s data. Full interference can be tricky, so we will start
with simple, limited parallel programs that don’t interact at all. But before we get into that, let’s take a
closer look at the semantics of parallel programs.

2 Semantics of Parallel Programs

2.1 Small-step Semantics

Recall that to execute the sequential composition s1; . . . ; sn for one step, we execute the first statement in
the sequence, i.e., s1, for one step. If s1 is skip, we dismiss it and continue with the next statement in the
sequence, i.e., s2.

Now, to execute the parallel composition [s1 ‖ · · · ‖ sn] for one step, we can choose any one of the
statements (nondeterministically) and execute it for one step. The following small-step semantics formalizes
this behavior.

〈sk, (σ, h)〉 → 〈s′k, (σk, hk)〉
〈[s1 ‖ · · · ‖ sn], (σ, h)〉 → 〈[s1 ‖ · · · ‖ sk−1 ‖ s′k ‖ sk+1 ‖ · · · ‖ sn], (σk, hk)〉

A completely-executed parallel program, i.e., the one that is terminated, looks like [skip‖· · ·‖skip‖skip].
We’ll treat [skip ‖ · · · ‖ skip ‖ skip] as skip, i.e., we have [skip ‖ · · · ‖ skip ‖ skip] ≡ skip.

Notation. The →∗ notation has the same meaning whether the configurations involved have parallel
programs or not: →∗ means →n for some n ≥ 0, and c0 →n cn means that there is actually a sequence of
n+1 configurations, c0 → c1 → . . .→ cn where we’ve omitted writing the intermediate configurations.

Common Mistake. Writing 〈[skip ‖ skip], (σ, h)〉 → 〈skip, (σ, h)〉. The finished parallel program doesn’t
take a step. With parallel programs, since [skip ‖ skip] ≡ skip, we can write

〈[skip ‖ skip](σ, h),→〉0〈skip, (σ, h)〉.

2

2.2 Evaluation Graph

As we saw earlier, each configuration can result in multiple executions. We show all possible executions
of a configuration by building a graph called the evaluation graph. More formally, the evaluation graph
for 〈s, (σ, h)〉 is the directed graph of configurations and evaluation arrows leading from 〈s, (σ, h)〉 such that

� The nodes of the graph are configurations

� An edge from configuration c0 to configuration c1 means that c0 can step to c1, i.e., c0 → c1.

� When drawing evaluation graphs, the configuration nodes need to be different (i.e., if the same config-
uration appears more than once, show multiple arrows into it—-don’t repeat the same node.)

A parallel program with n threads will have n out-arrows from its configuration. A path through the graph
corresponds to an possible evaluation of the program. We call a node sink if it does not have any outgoing
edges. The sink nodes are terminating configurations, i.e., they cannot take any other steps 3.

2.3 Big-step Semantics

The big-step semantics of a program in a state is the set of all possible terminating states (plus possibly the
pseudostate ⊥) reachable from the initial configuration.

M(s, (σ, h)) = {(σ′, h′) | 〈s, (σ, h)〉 →∗ 〈skip, (σ′, h′)〉}
∪ {⊥} if s can produce a runtime error

If all executions of the configuration diverge we get M(s, (σ, h)) = {}.

2.4 Examples

Example 3. The evaluation graph below is for our running example program, starting with a state (σ, h)
where σ(x) = n.

〈[x := x+ 1 ‖ x := x ∗ 2], (σ, h)〉

〈[skip ‖ x := x ∗ 2], (σ[x 7→ n+ 1], h)〉

〈[skip ‖ skip], (σ[x 7→ 2(n+ 1)], h)〉

〈[x := x+ 1 ‖ skip], (σ[x 7→ 2n], h)〉

〈[skip ‖ skip], (σ[x 7→ 2n+ 1], h)〉

The graph has two sinks (possible final states), so

M([x := x+ 1 ‖ x := x ∗ 2], (σ, h)) = {(σ[x 7→ 2n+ 2], h), (σ[x 7→ 2n+ 1], h)}.

Example 4. The evaluation graph in Figure 1 is for 〈[x:=v‖y :=v+2‖z :=v∗2], (σ, h)〉 where σ(v) = n.
We have M([x :=v ‖y :=v+2‖z :=v ∗2], (σ, h)) = (σ[x 7→ n][y 7→ n+2][z 7→ 2n], h). Note that even though
the program is nondeterministic, it produces the same result regardless of the execution path. Just like with
sequential nondeterministic programs, if s is parallel, then M(s, σ) can have more than one element, but
may not.

The reason we end up with one state is that all of the state updates commute, i.e., σ[x 7→ n][y 7→ n+2] =
σ[y 7→ n + 2][x 7→ n], and so on. This isn’t an accident; it’s because the threads are updating different
variables and they read variables that no other thread writes. This guarantees all of the updates commute,
and the program is deterministic, and is therefore a really nice property for parallel programs to have!

Example 5. Let the program W be

W ,= x := 0; while x = 0 do [x := 0 ‖ x := 1] od.

3This observation is not true when we have deadlocks.

3

Then M(W, (σ, h)) = {(σ[x 7→ 1], h)}. The problem here is possible divergence, but it only happens if we
always choose thread 1 when we have to make the nondeterministic choice. This is definitely unfair behavior,
but it’s allowed because of the unpredictability of our nondeterministic choices. In real life, we would want a
fairness mechanism to ensure that all threads get to evaluate once in a while. If each thread is on a separate
processor, then the nondeterministic choice corresponds to which processor is fastest.

If the behavior of a program depends on the relative speed of the processors involved, like the termination
of this example does, we call this a race condition. Generally, this happens when two or more threads access
the same variable and at least one of the accesses is a write (like the two threads writing to x in this example).
In Example 4, there was no race condition: one thread each writes to x, y and z; all threads read v, but
that’s fine. People disagree on the exact definition of the term race condition; we may or may not go into
more detail on this.

Example 6. Let S = [(x :=x+1;x :=x+1)‖x :=x∗2]. Here we’ve added another statement to the first
thread in Example 2, which increases the number of possible interleavings (though some of the execution
paths still result in the same state).

〈[(x := x+ 1;x := x ∗ 2) ‖ x := x ∗ 2], (σ, h)〉

〈[x := x ∗ 2 ‖ x := x ∗ 2], (σ[x 7→ n+ 1], h)〉

〈[skip ‖ x := x ∗ 2], (σ[x 7→ 2(n+ 1)], h)〉

〈[skip ‖ skip], (σ[x 7→ 4(n+ 1)], h)〉

〈[x := x ∗ 2 ‖ skip], (σ[x 7→ 2(n+ 1)], h)〉

〈[(x := x+ 1;x := x ∗ 2) ‖ skip], (σ[x 7→ 2n], h)〉

〈[x := x ∗ 2 ‖ skip], (σ[x 7→ 2n+ 1], h)〉

〈[skip ‖ skip], (σ[x 7→ 2(2n+ 1)], h)〉

So far, our examples only worked with the state. Next, we see an example of a parallel program that
works with the heap.

2.5 Binary trees

A binary tree is a data structure where each element is stored as a separate object in a node. Each node
is stored in three consecutive memory locations. The data entry is stored in the first location. The second
location stores a reference to the left child of the node, and the third location stores a reference to the right
child of the node. A reference, usually called the root, points to the node with the first data entry. If a node
does not have a left child, its second location has value nil. Similarly, if a node does not have a right child,
its third location has value nil. A node with neither a left child nor a right child is called a leaf and has the
value nil in both its second and third locations. See Figure 2.

4

Example 7. deleteTree is a parallel program that works on the tree T from Figure 2 with root value
root and deallocates every node in the tree.

deleteTree ,
[x0 :=!(root + 1);x1 :=!(x0 + 1); dispose(x1);

dispose(x1 + 1);
dispose(x1 + 2);
dispose(x0);
dispose(x0 + 1);
dispose(x0 + 2)
dispose(root + 1)

‖ y0 :=!(root + 2); y1 :=!(y0 + 2); dispose(y1);
dispose(y1 + 1);
dispose(y1 + 2);
dispose(y0);
dispose(y0 + 1);
dispose(y0 + 2)
dispose(root + 2)];

dispose(root)

The program deleteTree has two parallel threads. The first thread in this program deallocates elements
of the left subtree of the first node, and the second thread deallocates the elements of the right subtree of the
first node. After both threads are done, the program deallocates the first element of the tree. We could also
write a sequential program that deallocates all elements of the tree by simply running one of the threads first
and the other one next. However, in a concurrent setting4, where we have multiple cores to run a program,
this parallel implementation of deleteTree is more efficient than the sequential one.

3 Concurrent separation logic (Limited)

We introduce an extension of Separation logic for partial correctness. The logic allows proofs of parallel
programs based on the idea of “ownership .”The idea is that each thread owns part of the state (heap and
store), e.g., having the exclusive right to access, update, or deallocate a pointer. Moreover, the ownership
can be transferred dynamically between threads. Initially, we start with a limited version of Concurrent
Separation Logic (CSL) that deals with programs where threads maintain exclusive ownership throughout
their execution without transferring it to other threads. An example of such a program is the deleteTree
from Example 7, which deallocates a tree. Here, the first thread deals with the left subtree of T and the
second thread with the right subtree of T. This means that the first thread has exclusive ownership of the
left subtree, the second thread has exclusive ownership of the right subtree, and they maintain this exclusive
ownership.

We add a rule to separation logic to handle parallel statements. We first introduce the rule for a statement
with only two threads and then generalize it to n threads:

{p1} s1 {q1} {p2} s2 {q2}
{p1 ∗ p2} [s1 ‖ s2] {q1 ∗ q2}

par(2 threads)

with the condition that the free variables of p1, s1, and q1 are not modified by the statement s2, and vice-
versa. This condition, which we call the disjointness condition, ensures that s1 and s2 work on separate
store variables. The rule also separates the heap into parts that can only be mutated by a single process.
By (i) separating the heap and (ii) the disjointness condition on the store variables, the rule states that we
can combine the postconditions for each process separately to prove a parallel composition. This approach
allows for completely independent reasoning about processes, making it easier to prove processes that do not
share storage access.

4Concurrency and parallelism often are used interchangeably (by mistake), but they are different, and their difference is
subtle. Please read the blog post titled Parallelism Is Not Concurrency by Bob Harper.

5

https://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/

A more general version (but still limited by restricting ownership transfer) of the concurrency rule which
allows for reasoning about multiple threads is:

∀1 ≤ i ≤ n {pi} si {qi}
{p1 ∗ · · · ∗ pn} [s1 ‖ · · · ‖ sn] {q1 ∗ · · · ∗ qn}

Par(n threads)

with the disjointness condition that states for every 1 ≤ k ≤ n, the free variables of pk, sk, and qk are not
modified by any of other threads sj where j 6= k.

3.1 Disjointness, Confluence, and Diamond Property

We mentioned that threads in the deleteTree program are completely separate, i.e., we can run the two
threads sequentially rather than in parallel and get the exact same final state. In fact, the parallelism in
deleteTree is innocuous because the two threads do not interfere with each other’s execution: (1) Each
thread works on a separate part of the heap, i.e., left and right subtrees. (2) If one thread modifies a
store variable, that modification cannot be overwritten by the other thread. For example, consider variable
x0, which is modified by the first thread. Since the second thread will never read from x0, we know the
modification won’t affect how the second threads execute. This is, in fact, true for all variables that are
modified by the first thread: they do not occur in the second thread. Similarly, none of the variables that
are modified by the second thread occur in the first thread. The separation of the heap and disjointness of
the store causes all the evaluation paths to end in the same configuration.

Confluence is a property that arises from separation and disjointness of threads. It states that it does
not matter how the thread executions have been interleaved; in the end, all executions will converge into
a single final state. For example, the execution graph of Example 4 in Figure 1 shows this property as all
execution paths converge into a single final state. The program in Example 4 does not work with the heap,
i.e., none of the threads touch the heap, thus the separation is obvious. It also has the disjointness property,
since the variables modified in one thread do not occur free in other threads: Thread 1 writes on variable x,
but x does not occur free in threads 2 and 3. Thread 2 writes on y, but y does not occur free in threads 1
and 2. Thread 3 writes on z, but z does not occur free in threads 1 and 2.

Having a closer look at Figure 1, we can observe that the graph not only has the confluence property but
also a stronger property that for every node 〈s, (σ, h)〉 on the graph all pairs of nodes diverging out of the
node can be closed into a diamond, i.e., converge in a single step. The property that “the paths can merge
back together in one step” is called the diamond property. (The execution graph in Example 4 looks like a
diamond, hence the name diamond property.)

Note that the inverse of the statement “if a program is disjoint, it is confluent and has the diamond
property” is not true. Part of the execution graph (corresponding to the program [x := x ∗ 2 ‖ x := x ∗ 2] in
Example 6 has the diamond property, even though these threads are not disjoint.

More formally, we can define the confluence and diamond properties as follows.
Diamond Property: An execution graph has the diamond property iff for any node 〈s, (σ, h)〉 on the

graph
if〈s, (σ, h)〉 → 〈s1, (σ1, h1)〉 and 〈s, (σ, h)〉 → 〈s2, (σ2, h2)〉, then

there is a state (σ′, h′) and a statement s′ such that
〈s′1, (σ1, h1)〉 → 〈s′, (σ′, h′)〉 and 〈s2, (σ2, h2)〉 → 〈s′, (σ′, h′)〉

Note the same s′ and (σ′, h′) in both final states.
Confluence Property: An execution graph has the confluence property iff for any node 〈s, (σ, h)〉 on

the graph
if〈s, (σ, h)〉 →∗ 〈s1, (σ1, h1)〉 and 〈s, (σ, h)〉 →∗ 〈s2, (σ2, h2)〉, then

there is a state (σ′, h′) and a statement s′ such that
〈s′1, (σ1, h1)〉 →∗ 〈s′, (σ′, h′)〉 and 〈s2, (σ2, h2)〉 →∗ 〈s′, (σ′, h′)〉

We can observe that the two properties are very similar, the only difference is that confluence states
any two paths will converge eventually, while the diamond property ensures that the two paths converge in
exactly one step. The diamond property is stronger because it implies confluence, but the converse is not
true.

We can prove that the execution graphs of disjoint parallel programs are always confluent, i.e., if an
execution terminates, it always terminates in a unique state.

6

3.2 Disjointness test

Now that we realized the significance of the disjointness condition, we provide an algorithm to determine
whether two threads are disjoint or not. In particular, for every two threads k and j, the algorithm needs to
check whether the free variables of pk, sk, and qk are modified by sj or not. To do so, we define the set of
free variables of pk, sk, and qk sing the function free(), i.e., free(pk) free(qk) and free(sk), and the set of
variables modifies by sj using the function writes(), i.e., writes(sj). Once we have this algorithm, it will
be straightforward to verify the disjointness condition of the parallel rule.

Our algorithm works statically, i.e., at compile-time, since it is used in the condition of a CSL rule.
Therefore, it overapproximates whether two threads can interfere with each other. In particular, writes(s)
only gives an overapproximation of the variables that will be written into by s; not all variables in this
set will necessarily be used at runtime. Similarly, not all variables in free(s) will affect the final result
of the statement s. Failing a disjointedness test simply says we cannot guarantee that thread j interferes
with thread k. Without knowing more about the threads and the starting state, we cannot say anything
about whether interference in fact, does not occur, or occurs only with some start states, or only along some
execution paths. Failing a test certainly does not guarantee that interference is inevitable at runtime.

To define the sets of variables that occur free in an expression e and logic formula p, we assume the
standard structurally inductive definitions of the sets free(e) and free(p). We define reads(s) as the set
of identifiers having a free read occurrence in s, and writes(s) as the set of identifiers having a free write
occurrence in s. The set of free variables of a statement, i.e., free(s), is defined as reads(s) ∪
writes(s).

Definition 1. We define reads(s) inductively as

reads(x := e) = free(e)
reads(x :=!e) = free(e)
reads(i := cons(e1, · · · , en)) = free(e1) ∪ · · · ∪ free(en)
reads(!e1 := e2) = free(e1) ∪ free(e2)
reads(dispose(e)) = free(e)
reads([s1 ‖ s2]) = reads(s1) ∪ reads(s2)
reads(s1; s2) = reads(s1) ∪ reads(s2)
reads(if e then s1 else s2 fi) = free(e) ∪ reads(s1) ∪ reads(s2)
reads(while e do s od) = free(e) ∪ reads(s).

In other words, reads(s) is the set of variables that appear on the right-hand side of statements in s.
Definition 2. We define writes(s) inductively as

writes(x := e) = {x}
writes(x :=!e) = {x}
writes(i := cons(e1, · · · , en)) = {x}
writes(!e1 := e2) = {}
writes(dispose(e)) = {}
writes([s1 ‖ s2]) = writes(s1) ∪ writes(s2)
writes(s1; s2) = writes(s1) ∪ writes(s2)
writes(if e then s1 else s2 fi) = writes(s1) ∪ writes(s2)
writes(while e do s od) = writes(s)

In other words, writes(s) is the set of variables that appear on the left-hand side of assignments in s. In
particular, note that the set is empty for mutation and deallocation of the heap, since these two statements
do not write to a store variable.

Exercise 1. Calculare the write set of the first thread and the free set of the second thread in deleteTree,
i.e.,

writes(x0 :=!(root + 1);x1 :=!(x0 + 1); dispose(x1); dispose(x1 + 1); dispose(x1 + 2);
dispose(x0); dispose(x0 + 1); dispose(x0 + 2)dispose(root + 1))

free(y0 :=!(root + 2); y1 :=!(y0 + 2); dispose(y1); dispose(y1 + 1); dispose(y1 + 2);
dispose(y0); dispose(y0 + 1); dispose(y0 + 2)).

What is the intersection of these two sets?

7

The concurrency rule - revisited Using the above definitions we can rewrite the concurrency rule as

∀1 ≤ i ≤ n {pi} si {qi}
{p1 ∗ · · · ∗ pn} [s1 ‖ · · · ‖ sn] {q1 ∗ · · · ∗ qn}

Par(n threads)

with the disjointness condition that states for every 1 ≤ k, j ≤ n with j 6= k, we have

(free(pk) ∪ free(sk) ∪ free(qk)) ∩ writes(sj) = ∅.

3.3 Proof outline

When writing the proof outlines, it is common to illustrate the premises of the concurrency rule, i.e., the
first and second threads annotated with pre and post conditions, in left and right, respectively. We put the
overall precondition (p1 ∗ p2) at the beginning, followed by the postcondition at the end. Figure 3.3 shows a
partial proof outline for Exapmle 6. Note the application of the frame rule on root 7→ a. The tree predicate
tree(T, j) is defined similar to the list predicate from Lecture 20. It states that tree T and its root at address
j. We can define it by (structural) induction as:

tree(ε, i) , i = nil and tree(a • T` • Tr, i) , i 7→ a, j`, jr ∗ tree(T`, j`) ∗ tree(Tr, jr)

a • T` • T2 describes a tree with root value a, left subtree T1, and right subtree T2. For example the tree
in Figure 2(b) can be written as 2 • (45 • (50 • ε)) • (30 • (ε • 1)).

3.4 Next?

While the disjointness and separation conditions make reasoning simple, if CSL had only been able to
reason about disjoint concurrency, where there is no interthread interaction, then it would have rightly been
considered rather restrictive. We can overcome this limitation by utilizing ownership of resources and the
resource invariant. If you are interested in learning more about this, come talk to us!

8

〈[
x
:=
v
‖
y
:=
v
+

2
‖
z
:=
v
∗
2
],
(σ
,h

)〉

〈[
sk
ip
‖
y
:=
v
+

2
‖
z
:=
v
∗
2
],
(σ

[x
7→
n
],
h
)〉

〈[
sk
ip
‖
sk
ip
‖
z
:=
v
∗
2
],
(σ

[x
7→
n
][
y
7→
n
+

2
],
h
)〉

〈[
sk
ip
‖
y
:=
v
+

2
‖
sk
ip

],
(σ

[x
7→
n
][
z
7→

2
n
],
h
)〉

〈[
sk
ip
‖
sk
ip
‖
sk
ip

],
(σ

[x
7→
n
][
y
7→
n
+

2
][
z
7→

2
n
],
h
)〉

〈[
x
:=
v
‖
sk
ip
‖
z
:=
v
∗
2
],
(σ

[y
7→
n
+

2
],
h
)〉

〈[
x
:=
v
‖
sk
ip
‖
sk
ip

],
(σ

[y
7→
n
+

2
][
z
7→

2
n
],
h
)〉

〈[
x
:=
v
‖
y
:=
v
+

2
‖
sk
ip

],
(σ

[z
7→

2
n
],
h
)〉

Figure 1: Evaluation graph for Example 4.
9

2 500 1005

45 563 nil 30 nil 742

50 nil nil
1 nil nil

500

100

563 742

1005

2

45 30

50 1

(a) Tree T from part (b)
implemented in the heap

(b) A binary tree T with five nodes

root

Figure 2: Binary tree structure

{root 7→ a, j`, jr ∗ tree(T`, j`) ∗ tree(Tr, jr)}
{root 7→ a ∗ root+ 1 7→ j` ∗ root+ 2 7→ jr ∗ tree(T`, j`) ∗ tree(Tr, jr)}
{root+ 1 7→ j` ∗ root+ 2 7→ jr ∗ tree(T`, j`) ∗ tree(Tr, jr)} (FRAME)

{root+ 1 7→ j` ∗ tree(T`, j`)} {root+ 2 7→ jr ∗ tree(Tr, jr)}
x0 :=!(root + 1); y0 :=!(root + 2);
x1 :=!(x0 + 1); y1 :=!(y0 + 2);
dispose(x1); dispose(y1);
dispose(x1 + 1); dispose(y1 + 1);
dispose(x1 + 2); ‖ dispose(y1 + 2);
dispose(x0); dispose(y0);
dispose(x0 + 1); dispose(y0 + 1);
dispose(x0 + 2); dispose(y0 + 2);
dispose(root + 1) dispose(root + 2)
{emp} {emp}

{emp ∗ emp}
{root 7→ a ∗ emp ∗ emp} (FRAME)

dispose(root)
{emp ∗ emp ∗ emp}

{emp}

Figure 3: partial proof outline for deleteTree

10

	Introduction
	Interleaving Execution of Parallel Programs
	What is the Challenge?

	Semantics of Parallel Programs
	Small-step Semantics
	Evaluation Graph
	Big-step Semantics
	Examples
	Binary trees

	Concurrent separation logic (Limited)
	Disjointness, Confluence, and Diamond Property
	Disjointness test
	Proof outline
	Next?

