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In the previous lecture, we introduced addressable memory and pointers in our programming language.
The goal of this lecture is to provide a framework for reasoning about the extended language. We will see
that Hoare logic is not enough for this goal, and we will need to use an extension of it called separation
logic. The reason is that in the new language, we are dealing with shared mutable data structures. These
are structures where an updatable field can be referenced from more than one point. To understand why
shared mutable data structures can be problematic, we first revisit the append program from the previous
lecture, which appends a linked list of length three to another.

append := x0 :=!(head1 + 1);
x1 :=!(x0 + 1);
!(x1 + 1) := head2;
head := head1

We want to prove that if, in the initial state, we start with two linked lists L1 and L2, where L1 has a length
of 3, and its head is stored in the store variable head1, and L2 has an arbitrary length with its head stored
in the store variable head2, then, the program will result in a final state with a single linked list L with its
head stored in store variable head. Let’s define a logical predicate1 list(L1, i, n) to describe L is a list of size
n with its head being the address i:

list(ε, i, 0) , i = nil and list(a;L, i, n+ 1) , i ↪→ a, j ∧ list(L, j, n),

where ε refers an empty list, and ↪→ means points to, i.e., i ↪→ a, j means i and i + 1 are the addresses of
memory cells that contain a and j, respectively. list(ε, i, 0) , i = nil states that the empty set of length 0,

We are interested in proving the partial correctness triple

{list(L1, head1, 3) ∧ ∃n.list(L2, head2, n)} append {∃m.list(L1;L2, head ,m), }

where L1;L2 is simply the result of merging the lists L1 and L2. For example, if L1 = 10; 5; 3 and L2 = 30; 5; 3
then L1;L2 = 10; 5; 3; 30; 5; 3.

At first glance, this partial triple looks correct. However, on a closer look, we realize that the postcondition
only holds if, in the initial state, the two lists L1 and L2 are entirely separate. Let’s take, for example, the
initial state of the heap as shown in Figure 1. If we execute the append program in this initial state, we get
the final state seen in Figure 2. But the structure in Figure 2 is not even a linked list! In particular, there
is no length m for which we have list(L, head ,m). The problem is that in the initial states we have shared
nodes, i.e., the second node is referenced by first nodes of both L1 and L2.

So far, we learned that the append program only works correctly if L1 and L2 do not have any shared
nodes in the heap, i.e., they have to be in separate parts of the heap. But how can we specify this separation
in the precondition? The key is to introduce a new logical operation p ∗ q called separating conjunction,
which was discovered independently by Reynolds, and Ishtiaq and O’Hearn. The separating conjunction p∗q
asserts that the heap can be divided into two (disjoint) parts, such that the first part has property p and
the second part has property q.

1We will modify this definition later.
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Figure 1: Append - initial state
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Figure 2: Append - final state

Using this new operator, we can rewrite the precondition as

list(L1, head1, 3) ∗ ∃n.list(L2, head2, n).

It asserts that the heap can be separated into two disjoint parts: the first part satisfies list(L1, head1, 3)
and the second part satisfies ∃n.list(L2, head2, n), implying that the two linked lists L1 and L2 are disjoint.
In particular, the heap showed in Figure 1 does not satisfy the new precondition with the seaparating
conjunction.

In the rest of this lecture, we first discuss the logical assertions and rules for reasoning about the heap
separation and then build the separation logic by extending the Hoare-triple rules.

1 Assertions

The assertions in this context describe states that now contain heaps as well as stores. In addition to the
usual operations and quantifiers of predicate logic, there are four new forms of assertion that describe the
heap. All of this is based on the idea of separation.

Assertions p ::= · · ·
| emp Empty heap
| e 7→ e′ Singleton heap
| p1 ∗ p2 Separating conjunction
| p1 −* p2 Separating implication

We will explain each of them in more detail below:
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� Empty heap: emp is a (nullary) predicate that asserts the heap is empty.

� Singleton heap: e 7→ e′ states that the heap contains exactly one cell: the address of the cell is e
and its value is e′.

� Separating conjunction p1 ∗p2 states that the heap can be divided into two separate heaps, the first
part satisfying p1 and the second one satisfying p2.

� Separating implication p1 −* p2 states that if we extend the heap by adding a disjoint part that
satisfies p1 holds, then the extended heap satisfies p2.

In this course, we do not discuss the separating implication beyond this 2. Let’s take a look at some examples
involving the singleton heap and separating conjunction:
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Figure 3: Differnt heap configurations (Examples 1-6)

Example 1. x 7→ 3, nil asserts that the heap has exactly two adjacent memory cells, x points to the first
memory cell and the content of the memory cells are 3 and nil. In other words, the store maps x into
some value ` where ` is an address, and the heap maps address ` to value 3 and address ` + 1 to nil (See
Figure 3(a)).
Example 2. x 7→ 3, y asserts that the heap has exactly two adjacent memory cells, x points to the first
memory cell and the content of the memory cells are 3 and y; the store maps y into some value β (See
Figure 3(b)).
Example 3. y 7→ 3, x asserts that the heap has exactly two adjacent memory cells, y points to the first
memory cell and the content of the memory cells are 3 and x. (See Figure 3(c)).
Example 4. x 7→ 3, y ∗ y 7→ 3, x asserts that the heap has exactly four memory cells as in Figure 3(d), i.e.,
the heap can be divided into two parts, for the first part x 7→ 3, y holds and for the second part y 7→ 3, x
holds.
Example 5. x 7→ 3, y∧y 7→ 3, x, on the other hand, descibes a heap with exactly two cells as in Figure 3(e).
It asserts that the heap satisfies both y 7→ 3, x and y 7→ 3, x, meaning the heap is a singleton heap in which
y points to 3, x and x points to 3, y. The only possible topology for such a heap is the one we show in
Figure 3(e) with x being equal to y.

1.1 Precise and Imprecise Assertions

We learned that the assertions built using e 7→ e′ and separating conjunction provide a precise description of
the heap’s domain. For instance, Example 1-3 asserted that the heap contains precisely two locations, while
Example 4 asserted that it has exactly four locations.

Sometimes, we may want to indicate that somewhere in the heap, e points to e′ without being precise
about the heap’s exact domain. In this case, we use the notation e ↪→ e′. We can define e ↪→ e′ as e 7→ e′ ∗T :
the heap can be divided into one singleton in which e maps to e′ and another part for which T holds. Since

2If you wish to learn more about it, please do come and talk to us.
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every heap satisfies T , this gives us that somewhere in the heap e 7→ e′ is correct. The assertion e 7→ e′ is
called a precise assertion, while e ↪→ e′ is called an imprecise assertion.
Example 6.x ↪→ 3, y ∧ y ↪→ 3, x describes that the heap is either as in Figure 3(d) or Figure 3(e).

1.2 Some Abbreviations

There are a couple of helpful abbreviations that we can use:

� We write e 7→ when the heap has exactly one location e but its value is not important for us. It is
defined as ∃x.e 7→ x, where x is not free in e.

� We write e 7→ e1, · · · en when pointing to several consecutive fields. It is defined as e 7→ e1 ∗ e + 1 7→
e2 ∗ · · · ∗ e+ n− 1 7→ en. We already used this notation for n = 2 in Examples 1-5.

� Similarly, we write e ↪→ e1, · · · en, when we mean e ↪→ e1 ∗ e + 1 ↪→ e2 ∗ · · · ∗ e + n − 1 ↪→ en also
equivalent to e 7→ e1, · · · en ∗ T . We already used this notation for n = 2 in Example 6.

1.3 Example - the List Predicate

Now that we are familiar with the concept of separation and precise assertions, we can revisit the definition of
the list provided at the beginning of this lecture. That definition is not quite correct, in particular, because
it doesn’t enforce that different nodes of a list are distinct, thus allowing a circular list (which we don’t
want). So we modify the definition of the predicate list(L1, i, n) using a separating conjunction and precise
description as

list(ε, i, 0) , i = nil and list(a;L, i, n+ 1) , i 7→ a, j ∗ list(L, j, n),

2 Logic of Resources

The predicate logic is not enough to reason about the new assertions we introduced in the previous section.
To address this, in this section, we extend predicate logic to the logic of resources. This new logic accounts
for memory cells, which can be viewed as resources.

The inference rules for predicate logic, which don’t involve the new operators we introduced, still hold
in the new logic. We add new axioms and an inference rule to reason about separating conjunction. These
include commutative and associative laws, the recognition that emp is a neutral element, and (semi-) dis-
tributive laws.

Axioms:
p1 ∗ p2 ⇔ p2 ∗ p1
(p1 ∗ p2) ∗ p3 ⇔ p1 ∗ (p2 ∗ p3)
p ∗ emp ⇔ p
(p1 ∨ p2) ∗ q ⇔ (p1 ∗ q) ∨ (p2 ∗ q)
(p1 ∧ p2) ∗ q ⇔ (p1 ∗ q) ∧ (p2 ∗ q)
(∃x.p1) ∗ p2 ⇔ ∃x.(p1 ∗ p2) when x is not free in p2 .
(∀x.p1) ∗ p2 ⇔ ∀x.(p1 ∗ p2) when x is not free in p2 .

Inference rule:

p1 ⇒ p2 q1 ⇒ q2

p1 ∗ q1 ⇒ p2 ∗ q2
Monotonicity

Note that the separating conjunction behaves differently than regular conjunction. For example, we can
prove p⇒ p ∧ p and p ∧ q ⇒ p, but p⇒ p ∗ p and p ∗ q ⇒ p are both unsound.

Exercise 1. Can you provide a counterexample for p⇒ p ∗ p and p ∗ q ⇒ p?

4



3 Separation Logic

Finally, we get to introduce the rules of separation logic. Beyond the rules of Hoare logic, we need inference
rules for each of the new heap-manipulating commands and also a rule called the frame rule which is the
key to “local reasoning” about the heap.

3.1 Frame Rule

The frame rule is designed based on the idea that reasoning and specification about a program should be
confined to the cells that the program actually accesses. The value of any other cell will remain unchanged
automatically.

Let’s consider a program S that works on an initial heap with a property of p ∗ r. Here, the assertion
p ∗ r divides the heap into two parts: the first part has property p, while the second part has property r. If
we know that the program S doesn’t read or change any cells that occur in the second part, then we can
ignore it while reasoning and only focus on the first part that satisfies property p.

Now, suppose we have {p}S {q}, meaning that given the initial state p, if the program S terminates,
then it creates the final state q. Since we know that the heap locations in r remain untouched by S, we can
conclude that if we start with the initial state p∗ r and run the program S, the final state will be q ∗ r, hence
{p ∗ r}S {q ∗ r}.

With this reasoning, we can write the following rule when no variable occurring free in r is read/modified
by S:

{p}S {q}
{p ∗ r}S {q ∗ r}

Frame

By applying the frame rule, we can extend the local specification of S by adding arbitrary predicates r
about heap cells that are not read or mutated by S. This is possible as long as no variable occurring free in
r is read/modified by S.

3.2 Heap-manipulating Commands

Next, we provide the rules for each of the new heap-manipulating commands. Since we already have the
frame rule, we can design these rules to be local. That is, we only need to consider the parts of the heap
that the program actually accesses. The global version of these rules can be obtained by applying the frame
rule.

Mutation. The local rule for mutation specifies the effect of mutation on the pre-state with a single cell
with address e1. In the post-state, the content of this cell is mutated to be e2:

{e1 7→ } !e1 := e2 {e1 7→ e2}
Mutation

If we apply the frame rule on {e1 7→ } !e1 := e2 {e1 7→ e2}, we get {e1 7→ ∗ r} !e1 := e2 {e1 7→ e2 ∗ r} for
any r:

{e1 7→ } !e1 := e2 {e1 7→ e2}
Mutation

{e1 7→ ∗ r} !e1 := e2 {e1 7→ e2 ∗ r}
Frame

It means that anything in the heap beyond the cell being mutated (e1) is left unchanged.
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Deallocation The local rule for deallocation specifies the effect of deallocation of e on the pre-state with
a single cell with address e. Since e is the only cell in the pre-state, in the post-state, the heap becomes
empty, hence emp:

{e 7→ } dispose(e) {emp}
Deallocation

Again, with an application of the frame rule we get {e1 7→ ∗ r} dispose(e) {emp ∗ r} for any r.
Moreover, by the rules of Section 2, we know that emp ∗ r ⇒ r, so we can apply the consequence rule to get
{e1 7→ ∗ r} dispose(e) {r}:

{e 7→ } dispose(e) {emp}
Deallocation

{e1 7→ ∗ r} dispose(e) {emp ∗ r}
Frame

emp ∗ r ⇒ r

{e1 7→ ∗ r} dispose(e) {r}
Consequence

Exercise 2. Prove emp ∗ r ⇒ r using the rules in Section 2.

Allocation For allocation, we first start with a simple but resticted rule and then generalize it to lift the
restriction. In the pre-state we assume an empty heap, and in the post state, we allocate the address stored
in x to e1 and x+ i− 1 to ei for 1 ≤ i ≤ n, hence x 7→ e1, · · · , en.

x 6∈ FV (e1, · · · , en)

{emp} x := cons(e1, · · · , en) {x 7→ e1, · · · , en}
Allocation-r

The restriction on this rule is that x cannot occur as a free variable in any of e1, · · · en. But why do we
need this restriction? The reason is similar to what we saw in previous lectures when designing the forward
assign rule. For example, consider the program x := cons(x), working on an initial store σ1 , {x = 2} and
an initial empty heap. The program allocates a fresh address, let’s say 5000 and stores the original value
of x which is 2 in that address. Then, it updates the value of x to the fresh allocated address. In the final
state, we have σ1 , {x = 5000} and the heap 5000 7→ 2. However, the Allocation-r rule above, states that
the post state is of the form x 7→ x which is not true.

When the original value of the variable being modified plays a role in the program, we remember the
original value in the pre-state using a ghost variable x0, and then substitute the original value x0 for x in
every ei.

∀1 ≤ i ≤ n. e′i = [x0/x]ei

{x = x0 ∧ emp} x := cons(e1, · · · , en) {x 7→ e′1, · · · , e′n}
Allocation

We can apply a frame rule on both Allocation-R and Allocation rules, to build their global versions.

Lookup For lookup, similar to allocation, we first describe a simple but restricted rule, where the original
value of the variable being modified plays no role in the program:

x 6∈ FV (e)

{e 7→ v} x :=!e {x = v ∧ e 7→ x}
Lookup-r

Given a pre-state in which address e contains value v, the lookup assigns the value v to x and keeps e 7→ v
intact. Note that in the post state, we use a regular conjunction and not a separating conjunction since
x = v is not on a separate part of the heap. Rather, it’s on the stack that coexists with e 7→ x.

Again, the restriction on the rule is that x cannot occur as a free variable in any of e. If it does, then we
have to use a ghost variable x0 to remember the original value of x in the prestate and then substitute the
original value for x in e in the post state:

{x = x0 ∧ e 7→ v} x :=!e {x = v ∧ [x0/x]e 7→ x}
Lookup
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3.3 Summary of the New Rules

{e1 7→ } !e1 := e2 {e1 7→ e2}
Mutation

{e1 7→ } dispose(e) {emp}
Deallocation

x 6∈ FV (e1, · · · , en)

{emp} x := cons(e1, · · · , en) {x 7→ e1, · · · , en}
Allocation-r

∀1 ≤ i ≤ n. e′i = [x′/x]ei

{x = x′ ∧ emp} x := cons(e1, · · · , en) {x 7→ e′1, · · · , e′n}
Allocation

x 6∈ FV (e)

{e 7→ v} x :=!e {x = v ∧ e 7→ x}
Lookup-r

{x = x0 ∧ e 7→ v} x :=!e {x = v ∧ [x0/x]e 7→ x}
Lookup

{p}S {q}
{p ∗ r}S {q ∗ r}

Frame

3.4 Example - Append

We use the rules of separation logic to prove that our append program is correct, i.e., our goal is to prove:

{list(L1, head1, 3) ∗ list(L2, head2, n)} append {list(L1;L2, head ,m), }

Recall the definition of the list predicate from Section 1.3:

list(ε, i, 0) , i = nil and list(a;L, i, n+ 1) , i 7→ a, j ∗ list(L, j, n),

By the definition, we can rewrite the precondition as

list(a1; a2; a3, head1, 3) ∗ list(L2, head2, n),

knowing that L1 of length 3 is equal to a1; a2; a3.
Next, we build the proof outline for this program. The blue lines are the pre/post conditions and the

black lines are the program code. For each line we apply the corresponding local rule combined with the
frame rule.

{list(a1; a2; a3, head1, 3) ∗ list(L2, head2, n)} ⇒(1)

{head1 7→ a1, i1 ∗ i1 7→ a2, i2 ∗ i2 7→ a2, i3 ∗ list(L2, head2, n)}
x0 :=!(head1 + 1);
{(x0 = i1 ∧ head1 7→ a1, i1) ∗ i1 7→ a2, i2 ∗ i2 7→ a2, i3 ∗ list(L2, head2, n)} ⇒(2)

{head1 7→ a1, x0 ∗ x0 7→ a2, i2 ∗ i2 7→ a2, i3 ∗ list(L2, head2, n)}
x1 :=!(x0 + 1);
{head1 7→ a1, x0 ∗ (x1 = i2 ∧ x0 7→ a2, i2) ∗ i2 7→ a2, i3 ∗ list(L2, head2, n)} ⇒(3)

{head1 7→ a1, x0 ∗ x0 7→ a2, x1 ∗ x1 7→ a2, i3 ∗ list(L2, head2, n)}
!(x1 + 1) := head2;
{head1 7→ a1, x0 ∗ x0 7→ a2, x1 ∗ x1 7→ a2, head2 ∗ list(L2, head2, n)}
head := head1

{head 7→ a1, x0 ∗ x0 7→ a1, x1 ∗ x1 7→ a1, head2 ∗ list(L2, head2, n)} ⇒(4)

{list(L1;L2, head , n+ 3)}

In the proof outline above, there are also four applications of the consequence rule, which are numbered
1-4. We need to prove each logical implication using the definition of the predicate list and the rules of the
resource logic in Section 2.
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The 1st consequence rule: By expanding the definition further and emp being the nuetral element we
get

(x0 = i1 ∧ head1 7→ a1, i1) ∗ i1 7→ a2, i2 ∗ i2 7→ a2, i3 ∗ list(L2, head2, n) ⇒
head1 7→ a1, x0 ∗ x0 7→ a2, i2 ∗ i2 7→ a2, i3 ∗ list(L2, head2, n)

head1 7→ a1, i1 ∗ i1 7→ a2, i2 ∗ i2 7→ a2, i3 ∗ list(ε, i3, 0) ∗ list(L2, head2, n) ⇒
head1 7→ a1, i1 ∗ i1 7→ a2, i2 ∗ i2 7→ a2, i3 ∗ emp ∗ list(L2, head2, n) ⇒
head1 7→ a1, i1 ∗ i1 7→ a2, i2 ∗ i2 7→ a2, i3 ∗ list(L2, head2, n)

The 2nd consequence rule: To prove the second and third logical implication, we need a few more rules
in addition to those in Section 2. These rules consider those situations in which one or both of the predicates
are completely independent of the heap. Here, for example, x0 = i1 only refers to the store and does not
refer to any location in the heap.

1. p ∧ q ⇒ p ∗ q when p or q is pure

2. p ∗ q ⇒ p ∧ q when p and q are both pure

3. (p ∧ q) ∗ r ⇒ (p ∗ r) ∧ q when q is pure.

By rule (3) above and the rules of predicate logic, we get

(x0 = i1 ∧ head1 7→ a1, i1) ∗ i1 7→ a2, i2 ∗ i2 7→ a2, i3 ∗ list(L2, head2, n) ⇒
(x0 = i1 ∧ (head1 7→ a1, i1 ∗ i1 7→ a2, i2)) ∗ i2 7→ a2, i3 ∗ list(L2, head2, n) ⇒
(x0 = i1 ∧ (head1 7→ a1, x0 ∗ x0 7→ a2, i2)) ∗ i2 7→ a2, i3 ∗ list(L2, head2, n) ⇒
(head1 7→ a1, x0 ∗ x0 7→ a2, i2) ∗ i2 7→ a2, i3 ∗ list(L2, head2, n)

The 3rd consequence rule: Similarly by rule (3) above and the rules of predicate logic, we get

head1 7→ a1, x0 ∗ (x1 = i2 ∧ x0 7→ a2, i2) ∗ i2 7→ a2, i3 ∗ list(L2, head2, n) ⇒
head1 7→ a1, x0 ∗ (x1 = i2 ∧ (x0 7→ a2, i2 ∗ i2 7→ a2, i3)) ∗ list(L2, head2, n) ⇒
head1 7→ a1, x0 ∗ (x1 = i2 ∧ (x0 7→ a2, x1 ∗ x1 7→ a2, i3)) ∗ list(L2, head2, n) ⇒
head1 7→ a1, x0 ∗ x0 7→ a2, x1 ∗ x1 7→ a2, i3 ∗ list(L2, head2, n)

The 4th consequence rule: This is straightforward and by the definiton of the list predicate.
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