
Pointers and the Heap

Farzaneh Derakhshan
based on material by John C. Reynolds

CS 536: Science of Programming, Fall 2023
Lecture 19

In the next two lectures, we will expand our programming language and reasoning tools to include pointer
structures. Pointer structures allow us to represent lists, trees, etc., and write programs that use addresses
in memory to access data.

1 Store vs Heap

Up until now, we have only been dealing with programs that use states (σ) to map variables to values.
However, to work with pointer structures, we need to add another component to the states called the heap.
The heap (h) is in the form of functions from location addresses to values. In this new setting, the state is
a pair of a store σ, and a heap h.

The store σ, similar to its originial definition, maps variables to their values. For example σ1 , {x =
52, y = 3}, maps variable x to value 52, and variable y to value 3. We can also represent σ as a function from
variables Var to values, i.e. σ : Var → Values. In the example above, we have σ1(x) = 52 and σ1(y) = 3.
We can think of the store (sometimes also called the stack) as a temporary data storage, for example the
contents of the registers.

The heap, on the other hand, describes the contents of an addressable memory. We model it as a function
that maps the address of each location in the memory to a value, i.e., i.e. h : Addresses → Values. These
location addresses are represented by natural numbers. We can perform various operations on the heap,
such as reading from, writing to, extending, or shrinking it.
Example 1. The store σ1 , {x = 52, y = 3} maps x to 52 and y to 3. The heap h1 , {52 7→ 3} maps the
location with address 52 to value 3, i.e., the content of the memory location with address 52 is 3.

To summarize,

state = (store × heap) e.g. (σ1, h1)
store = Var → Values e.g. σ1 = {x = 52, y = 3}
heap = Addresses → Values e.g. h1 = {52 7→ 3}.

2 The Extended Language

The syntax and semantics of expressions are the same as before. In particular, expressions do not depend
upon the heap and never cause any side effects on the heap. But we need to expand the syntax and semantics
of our statements to work with the heap. We add four new constructs to our language as below.

Statements e ::= · · ·
| x :=!e Lookup
| !e1 := e2 Mutation
| x := cons(e1, · · · , en) Allocation
| dispose(e) Deallocation

The notation !e denotes the contents of the storage at address e. For example, in h1 = {52 7→ 3}, we
represent the contents of address 52 as !52 which is equal to 3. Now, Let’s take a closer look at each of these
constructs.

1

2.1 Lookup (x :=!e):

This statement first evaluates e with respect to the store to get an address location and then assigns the
content of the address in variable x.
Example 2. If we start with the store σ1 , {x = 52, y = 3} and heap h1 , {52 7→ 3}, running z :=!x
assigns the contents of the heap location at the address 52 to a variable z in the store. The resulting store
will be σ2 , σ1[z 7→ 3] = {x = 52, y = 3, z = 3} and the heap remains unchanged. We can write this using
the small-step notation as

〈z :=!x, (σ1, h1)〉 → 〈skip, (σ2, h1)〉.

We will provide the rules for the small step semantics of the extended semantics more formally later in this
lecture notes (Section 5), but for now observe that the configuration consists of a statement and a pair of a
store and a heap.

2.2 Mutation (!e1 := e2):

The statement evaluates e1 and e2 using the store to get an address location and a value, respectively. Then
it assigns the value to the location.
Example 3. Consider the store σ2 , {x = 52, y = 3, z = 3} and heap h1 , {52 7→ 3}, running !x := y + 1
assigns value 4 to the location with address 52. The store doesn’t change after running this statement, i.e.,
we still have σ2 , {x = 52, y = 3, z = 3}, but the heap changes to h2 , {52 7→ 4}. We can write this using
the small-step notation as

〈!x := y + 1, (σ2, h1)〉 → 〈skip, (σ2, h2)〉.

2.3 Allocation (x := cons(e1, · · · , en))
This statement is used to allocate new location(s) in the heap. It allocates n fresh consecutive locations in
the heap with the values e1 to en and assigns the address of the first location to the store variable x. A
location is fresh if it not already in use. We assume that there are an infinite number of addresses available,
so fresh locations are always available.
Example 4. Consider the store σ2 , {x = 52, y = 3, z = 3} and heap h2 , {52 7→ 4}. Let’s say that we
want to allocate one location in the heap with value 1 and keep its address in a store variable w. We write
w := cons(1). After running this statement, we get a larger heap h3 , {52 7→ 4, 9584 7→ 1} and a new store
σ3 , {x = 52, y = 3, z = 3, w = 9584}. It is important to notice that the choice of the address for the newly
allocated cell is unpredictable. The system can choose any address as long as it is not in use already. In this
example, we assume that the system gives us the address 9584. Again, we write this using the small-step
notation as

〈w := cons(1), (σ2, h2)〉 → 〈skip, (σ3, h3)〉.

Example 5. We just observed that we cannot predict the address of the newly allocated memory, but we
can use the cons construct to allocate multiple addresses that are next to each other. For example, having
the store σ3 , {x = 52, y = 3, z = 3, w = 9584} and heap h3 , {52 7→ 4, 9584 7→ 1}, we want to allocate two
new memory cells in the heap that are next to each other such that the first one has value 2 and the second
one has value 3. We write u := cons(2, 3). After running this statement, we get a larger heap h4 , {52 7→
4, 9584 7→ 1, 1001 7→ 2, 1002 7→ 3} and a new store σ4 , {x = 52, y = 3, z = 3, w = 9584, u = 1001}. The two
cells are consecutive (1001 and 1002), and we only record the address of the first one in the store variable u.
We write this using the small-step notation as

〈w := cons(2, 3), (σ3, h3)〉 → 〈skip, (σ4, h4)〉.

Exercise 1. Having σ4 and h4, what is the value of !(u+ 1)? What about (!u) + 1?

2.4 Deallocation (dispose(e))

We use this statement to deallocate a location in the heap. We first evaluate the expression e using the store
to find a location and then deallocate the location from the heap.

2

Example 6. Consider the store σ4 , {x = 52, y = 3, z = 3, w = 9584, u = 1001} and the heap h4 , {52 7→
4, 9584 7→ 1, 1001 7→ 2, 1002 7→ 3}, we want to deallocate the location which its address is stored in the
store variable x. We write dispose(x). After running this statement, we get a smaller heap h5 , {9584 7→
1, 1001 7→ 2, 1002 7→ 3} and the same store σ4 , {x = 52, y = 3, z = 3, w = 9584, u = 1001}. We write this
using the small-step notation as

〈dispose(x), (σ4, h4)〉 → 〈skip, (σ4, h5)〉.

3 Run-time Errors

As you may have noticed, working with pointers is very delicate and error-prone. In this section, we will
discuss some scenarios that may lead to runtime errors when using the statements above in a program. For
example, looking up, mutation, or deallocating a dangling address will cause an error.
Example 7. Consider the store σ4 , {x = 52, y = 3, z = 3, w = 9584, u = 1001} and the heap h5 ,
{9584 7→ 1, 1001 7→ 2, 1002 7→ 3}. In this case, !x is a dangling address, i.e., in Example 6 we deallocated
the address stored in x, and thus it is not available in the heap anymore. Statements v :=!x and !x := e and
dispose(x) all result in runtime error, i.e.,

〈v :=!x, (σ4, h5)〉 → 〈skip,⊥〉
〈!x = e, (σ4, h5)〉 → 〈skip,⊥〉
〈dispose(x), (σ4, h5)〉 → 〈skip,⊥〉.

Similarly, using pointer arithmetic may result in run-time error. For example v :=!(u + 2) looks up the
address 1001 + 2 = 1003 which does not exist in the heap h5 and results in a runtime error.

〈v :=!(u+ 2), (σ4, h5)〉 → 〈skip,⊥〉

Moreover, our programming language has a explicit memory managenent, i.e., there is no garbage col-
lection to free up heap locations that have been allocated but are no longer needed by the program.

4 Example - Linked List

A linked list is a linear data structure where each element is stored as a separate object. Unlike an array,
linked list elements are not stored continuously in memory. Instead, each node is stored in two consecutive
memory locations. In the first location the data entry is stored, and the second location stores a reference
to the next node in the sequence. A reference, usually called the head, points to the node with the first data
entry. The last node in the list has the reference nil instead of the next node to signify the end of the list.
See Figure 1.

data

next

Node 1

Head
data

next

Node 2

data

nil

Node 3

Figure 1: Linked list structure

Figure 2 shows an example of a linked list with three nodes with addresses of each memory location being
assigned. Note that each node has two consecutive addresses. The first entry contains the data of the node
and the second entry of the node keeps the address of the data entry of the next node.

Finally, Figure 3 shows a linked list that stores the array [10, 5, 3].

3

data

3525

Node

Head
data

1203

Node

data

nil

Node

0010

0011

3525

3526

1203

1204

Figure 2: Linked list with addresses

10

3525

Node

Head
5

1203

Node

3

nil

Node

0010

0011

3525

3526

1203

1204

Figure 3: Linked list corresponding to the array [10,5,3]

Next, we write some programs to build and manipulate the linked lists in our language.
Example 8. The program S1 builds the linked list in Figure 3, starting from an empty heap (we use

emp for an empty heap) and any stack σ.

S1 := x0 := cons(3, nil);
x1 := cons(5, x0);
head := cons(10, x1)

The first line allocates the last node in Figure 3 and assigns the address of its first location in the variable
x0. The second line allocates the second node in Figure 3 and assigns the address of its first location in the
variable x1. Similarly, the third line allocates the first node and assigns itsfirst location address in a variable
called head .

Running the program using the small step semantics, we get:

〈S1, (σ, emp)〉 →2

〈x1 := cons(5, x0); head := cons(10, x1), (σ[x0 7→ 1203], {1203 7→ 3, 1204 7→ nil})〉 →2

〈head := cons(10, x1), (σ[x0 7→ 1203][x1 7→ 3525], {1203 7→ 3, 1204 7→ nil , 3525 7→ 5, 3526 7→ 1203})〉 →
〈skip, (σ[x0 7→ 1203][x1 7→ 3525][head 7→ 0010], {1203 7→ 3, 1204 7→ nil , 3525 7→ 5, 3526 7→ 1203,

0010 7→ 10, 0011 7→ 3525})〉

The final result is the store σ′ := σ[x0 7→ 1203][x1 7→ 3525][head 7→ 0010] and the heap h′ := {1203 7→
3, 1204 7→ nil , 3525 7→ 5, 3526 7→ 1203, 0010 7→ 10, 0011 7→ 3525}

Example 9. Next, we write a program that increments the value of the 2nd node of the list by one.

S2 := x :=!(head + 1);
y :=!x;
!x := y + 1

Example 10. Next, we write a program that deallocates the first node (but first, it stores the address
of the second node in x so we can make that the new head).

S2 := x :=!(head + 1);
dispose(head);
dispose(head + 1);
head := x

Example 11. Finally, we write a program that appends two lists L1 and L2 into a single list L , when
the first one (L1) has exactly three nodes and its head is stored in store variable head1, the head of the

4

second one (L2) is stored in store variable head2. After merging the two lists, we assign the head of L in the
variable head .

S2 := x0 :=!(head1 + 1);
x1 :=!(x0 + 1);
!(x1 + 1) := head2;
head = head1

This code only works if we know that the two lists L1 and L2 are disjoint, i.e., they don’t have any node
in common. We will see why separation is important and how we can enforce it in the next lecture.

5 Small Step Semantics

In Section 2, we described the small step semantics of each new construct informally. Here, we provide the
more formal rules.

` = σ(e) ` ∈ dom(h) v = h(`) σ′ = σ[x 7→ v]

〈x :=!e, (σ, h)〉 → 〈skip, (σ′, h)〉
` = σ(e1) v = σ(e2) ` ∈ dom(h)

〈!e1 := e2, (σ, h)〉 → 〈skip, (σ, h[` 7→ v])〉

`1, `1 + 1 · · · , `1 + n− 1 6∈ dom(h) ∀i. vi = σ(ei) h′ = h[`i 7→ vi]1≤i≤n σ′ = σ[x 7→ `1]

〈x = cons(e1, · · · , en), (σ, h)〉 → 〈skip, (σ, h′)〉

` = σ(e) h = h′, ` 7→ v

〈dispose(e), (σ, h)〉 → 〈skip, (σ, h′)〉

Since the new configuration also contains the heap, we update the previous set of rules (minimally) to
include the heap in the configurations. (The only interesting rule is the first sequencing rule which allows
the first statement to update both the store and the heap.)

〈x := e, (σ, h)〉 → 〈skip, (σ[x 7→ σ(e)], h)〉
0 ≤ σ(e1) < |σ(a)|

〈a[e1] := e2, (σ, h)〉 → 〈skip, (σ[a[σ(e1)] 7→ σ(e2)], h)〉

〈S1, (σ, h)〉 → 〈S′1, (σ′, h′)〉
〈S1;S2, (σ, h)〉 → 〈S′1;S2, (σ

′, h′)〉 〈skip;S, (σ, h)〉 → 〈S, (σ, h)〉

σ(e) = T

〈if e then S1 else S2 fi, (σ, h)〉 → 〈S1, (σ, h)〉
σ(e) = F

〈if e then S1 else S2 fi, (σ, h)〉 → 〈S2, (σ, h)〉

〈while e do S od, (σ, h)〉 → 〈if e then S; while e do S od else skip fi, (σ, h)〉

Finally, we provide the rules handling runtime error as described in Section 3.

σ(e) =⊥
〈x :=!e, (σ, h)〉 → 〈skip,⊥〉

` = σ(e) ` 6∈ dom(h)

〈x :=!e, (σ, h)〉 → 〈skip,⊥〉
σ(e1) =⊥ or σ(e2) =⊥

〈!e1 := e2, (σ, h)〉 → 〈skip,⊥〉

` = σ(e1) ` 6∈ dom(h)

〈!e1 := e2, (σ, h)〉 → 〈skip,⊥〉
∃i. σ(ei) =⊥

〈x = cons(e1, · · · , en), (σ, h)〉 → 〈skip,⊥〉

σ(e) =⊥
〈dispose(e), (σ, h)〉 → 〈skip,⊥〉

` = σ(e) ` 6∈ dom(h)

〈dispose(e), (σ, h)〉 → 〈skip,⊥〉

5

