
Strongest postcondition

Farzaneh Derakhshan
based on material by Stefan Muller, Jim Sasaki, and Mike Gordon

CS 536: Science of Programming, Fall 2023
Lecture 13

In the last two lectures, we discussed the weakest preconditions and learned that they are calculated
backward, i.e., given a postcondition and a program, we constructed the weakest precondition. There is a
dual concept called the strongest postcondition, which we will construct forward, i.e., given a precondition
and a program, we will constrict the strongest postcondition.

{??} S {Q} {P} S {??}
Forward

wp(S, Q) : sp(S, Q) :

Backward

Figure 1: Weakest precondition: backward, Strongest postcondition: forward

Before introducing the strongest postcondition and an algorithm to construct it, let’s take a different
approach to look at the weakest precondition. Consider the set of all states that satisfy the weakest precon-
dition, i.e., WP− state(S,Q) = {σ ∈ states | σ � wp(S,Q)}. Here, we write states for the set of all states
σ, and use the set builder notation to collect those elements of state that satisfy the weakest precondition
in a smaller set WP− state. On the other hand, we know that the weakest precondition wp(S,Q) holds in
precisely those initial states for which there exists an execution of S that terminates in a final state satisfying
Q. By this observation, we can build an equivalent definition for the set WP− state as follows (in blue):

WP− state(S,Q) = {σ ∈ states | σ � wp(S,Q)}
= {σ ∈ states | ∃σ′.M(S, σ) = σ′ ∧ σ′ � Q}

We can take a similar approach to build the set for the strongest postcondition. The define the set
SP− state, as all states that satisfy the strongest postcondition, i.e., SP− state(S, P) = {σ′ ∈ states | σ′ �
sp(S, P)}. The strongest postcondition sp(S, P) holds in precisely those final states for which there exists
an execution of S that starts from an initial state satisfying P . So we can build an equivalent definition for
the set SP− state (in blue):

SP− state(S, P) = {σ′ ∈ states | σ′ � sp(S, P)}
= {σ′ ∈ states | ∃σ.σ � P ∧M(S, σ) = σ′}

Example 1. What are the elements of the set SP− state(S, F)? Can we find sp(S, F) from the set
SP− state(S, F)?

Let’s rewrite the above definition for program S and precondition F :

SP− state(S, F) = {σ′ ∈ states | σ′ � sp(S, F)}
= {σ′ ∈ states | ∃σ. σ � F ∧M(S, σ) = σ′}

We know that no state that satisfies F – it is a contradiction. So the condition σ � (in red) is never satisfied,
meaning SP− state(S, F) = {}. The set SP− state(S, F) being empty means that no σ′ satisfies the

1

strongest postcondition sp(S, F), and thus sp(S, F) = F . (Exercise 1. Why?—Hint: use line 1 of the
definition.)
Example 2. What are the elements of the set SP− state(x := sqrt(−1), T)?

Again, we rewrite the definition above for program x := sqrt(−1) and precondition T :

SP− state(x := sqrt(−1), T) = {σ′ ∈ states | σ′ � sp(x := sqrt(−1), T)}
= {σ′ ∈ states | ∃σ. σ � T ∧M(x := sqrt(−1), σ) = σ′}

We know that the second condition (in red) is always false. After all, the program x := sqrt(−1) always
results in a runtime error, i.e., we have M(x := sqrt(−1), σ) =⊥ for any σ. So SP− state(x := sqrt(−1), T)
is an empty set and sp(x := sqrt(−1), T) is the contradictory formula F .
Note 1. In Example 2, we have {T}x := sqrt(−1){sp(x := sqrt(−1), T)} which is equal to {T}x :=
sqrt(−1){F}. The reason is the program x := sqrt(−1) never terminates successfully (lecture 7). It turns
out that, in general, we have

� {P} S {sp(S, P)}.

However, [T] x := sqrt(−1) [sp(x := sqrt(−1), T)] does not hold (again because the program never
terminates successfully). We have a counterexample to conclude that [P] S [sp(S, P)] is not always valid,
i.e., 6� [P] S [sp(S, P)].

But, if the program S terminates when the precondition P is satisfied, then the total correctness triple
[P] S [sp(S, P)] is also valid. We can formalize the sentence “if the program S terminates when the
precondition P is satisfied” as the Hoare-triple [P] S [T]. As a result, we have

if � [P] S [T] then � [P] S [sp(S, P)].

Interestingly, the other direction also holds, i.e., if the total correctness triple [P] S [sp(S, P)] is valid,
then the program S terminates when the precondition P is satisfied, i.e.,

if � [P] S [sp(S, P)] then � [P] S [T]

Note 2. In Note 1., we established that sp(S, P) is a postcondition for the partial correctness triple,
i.e., � {P} S {sp(S, P)}. But it is not “any” postcondition for this triple; it is “the strongest” one, meaning
that for any Q such that � {P} S {Q}, we have sp(S, P)⇒ Q.

1 Algorithm for strongest postcondition

So far, we have described the meaning of the strongest postcondition, but we haven’t explained how to
construct the formula. In this section, we introduce an algorithm for constructing the strongest postcondition.

1.1 A forward rule for assignment

It turns out that the algorithm requires another version of the Assign rule. The Assign rule that we saw
earlier, as follows

{[e/x]Q}x := e {Q}
(Assign)

is a backward rule: To apply this rule in the proof, we have to find the precondition [e/x]Q given a postcon-
dition Q.

For building the strongest postcondition, we need to introduce a forward rule for the assignment, i.e., a
rule that, given a precondition, gives us the postcondition. A naive solution (which is not always correct) is
to write the rule as

{P}x := e {P ∧ x = e}
(Assign*)

2

This rule works only when x does not occur as a free variable in P (see Example 3). However, Assign∗ does
not give us a correct postcondition if the variable we are assigned to already exists as a free variable in the
precondition (See Example 4).
Example 3. We prove the valid partial triple {y = 1}x := 2 {y = 1 ∧ x = 2} using the Assign∗ rule:

{y = 1}x := 2 {y = 1 ∧ x = 2}
(Assign*)

Example 4. With Assign∗ rule we can prove an invalid triple {y = 1} y := 2 {y = 1 ∧ y = 2}!!

{y = 1} y := 2 {y = 1 ∧ y = 2}
(Assign*)

The program always terminates successfully, with the value 2 assigned to y, but the triple states that if the
program terminates, we have both y = 1 and y = 2 in the final state. Hence, Assign∗ is an unsound rule.

To make the rule sound, we need to rename any free occurrence of x in P and e to a fresh variable x0,
which is existentially quantified.

{P}x := e {∃x0.[x0/x]P ∧ x = [x0/x]e}
(Assign-fwd)

The existentially quantified variable x0 represents the value of x in the state before executing the assign-
ment, i.e., the value of x0 in the initial state. The postcondition expresses that after the assignment, the
value of x is the value of e evaluated in the initial state (hence [x0/x]e) and the precondition evaluated in
the initial state (hence [x0/x]P) continue to hold. Alternatively, we can understand this rule as the initial
state is represented by the statement (x = x0)∧P , i.e., x0 is a name for the value of x before the assignment.
Then the state after executing x := e is represented by (x = [x0/x]e) ∧ [x0/x]P .
Example 5. using Assign− fwd rule for the program y := 2 and precondition y = 1 in Example 4, we get:

{y = 1} y := 2 {∃y0.[y0/y]y = 1 ∧ y = [y0/y]2}
(Assign-fwd)

The postcondition {∃y0.[y0/y]y = 1 ∧ y = [y0/y]2} can be simplified further to ∃y0.y0 = 1 ∧ y = 2. Since
∃y0.y0 = 1 ∧ y = 2⇒ y = 2, by one application of the consequence rule, we get {y = 1} y := 2 {y = 2}.
Example 6.

{x > 0} x := x− 1 {∃x0.[x0/x]x > 0 ∧ x = [x0/x]x− 1}
(Assign-fwd)

And ∃x0.[x0/x]x > 0 ∧ x = [x0/x]x − 1 can be simplified to ∃x0.x0 > 0 ∧ x = x0 − 1, giving us the triple
{x > 0} x := x− 1 {∃x0.x0 > 0 ∧ x = x0 − 1}. Moreover, we know that ∃x0.x0 > 0 ∧ x = x0 − 1 ⇒ x ≥ 0,
which by the consequence rule gives us {x > 0} x := x− 1 {x ≥ 0}.

1.2 The algorithm

Having the forward assignment rule, it is straightforward to define the algorithm for building the strongest
postcondition. We define the algorithm recursively as:

(1) sp(skip, P) ::= P
(2) sp(x := e, P) ::= ∃x0.[x0/x]P ∧ x = [x0/x]e
(3) sp(S1;S2, P) ::= sp(S2, sp(S1, P))
(4) sp(if e then S2 else S2 fi, P) ::= sp(S1, P ∧ e) ∨ sp(S2, P ∧ ¬e)

The first two lines for skip and x := e, following the rules for these constructs, return the postcondition in
the rules when the precondition is P .

3

Line 3 for sequences states that to find the strongest postcondition of S1;S2 for a given precondition P ,
first find the strongest postcondition of S1 for P , then feed the result as the precondition for S2, and find
the strongest postcondition of S2 with respect to sp(S1, P).

Line 4 is similar to the alternative if rule that we saw in Lecture 9:

{P ∧ e}S1 {Q1} {P ∧ ¬ e}S2 {Q2}
{P} if e then S1 else S2 fi {Q1 ∨Q2}

(If*)

It says that for each branch, find the strongest postcondition, with an extra assumption that e holds in the
first branch and ¬e holds in the second branch. The strongest postcondition of the if-clause is the strongest
postcondition of either of its branches (hence using ∨ to connect the sp of two branches).
Example 7. We want to construct sp(x := x+ k; y := y + k, x > y):

sp(x := x+ k; y := y + k, x > y) := sp(y := y + k, sp(x := x+ k, x > y)) byLine(3)
sp(y := y + k, ∃x0.[x0/x](x > y) ∧ x = [x0/x](x+ k)) byLine(2)
sp(y := y + k, ∃x0.x0 > y ∧ x = x0 + k) by substitution
∃y0.([y0/y](∃x0.x0 > y ∧ x = x0 + k) ∧ y = [y0/y](y + k)) byLine(2)
∃y0.((∃x0.x0 > y0 ∧ x = x0 + k) ∧ (y = y0 + k)) by subsetitution

Example 8. We want to construct sp(if x ≥ 0 then y := x else y :=−x fi, x ≥ 0):

sp(if x ≥ 0 then y := x else y :=−x fi, x ≥ 0) :=
sp(y := x, x ≥ 0 ∧ x ≥ 0) ∧ sp(y :=−x, x ≥ 0 ∧ ¬(x ≥ 0)) byLine(4)
∃y0.([y0/y](x ≥ 0 ∧ x ≥ 0) ∧ y = [y0/y]x) ∧ ∃y0.([y0/y](x ≥ 0 ∧ ¬(x ≥ 0)) ∧ y = [y0/y]− x) byLine(2)
∃y0.((x ≥ 0 ∧ x ≥ 0) ∧ y = x) ∧ ∃y0.((x ≥ 0 ∧ ¬(x ≥ 0)) ∧ y = −x) by substitution

We can simplify the right-hand side of the last line to F, so we can simplify the whole expression to

∃y0.((x ≥ 0 ∧ x ≥ 0) ∧ y = x)

and, because, y0 doesn’t occur free in the expression, we can further simplify to

x ≥ 0 ∧ y = x

4

