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In this lecture, we answer the question of how we can construct the weakest preconditions. We only
consider a loop-free system for now (no while constructs in the program), but the program may still result in
runtime errors. We will first describe how to construct the weakest liberal precondition (WLP) for programs,
as it turns out to be an easier task. Then, we will continue with building the weakest precondition(WP).
In loop-free programs, WP is defined quite similarly to WLP, but WP also ensures that the program is
error-free. We build WP using the constructed WLP and an algorithm that generates a condition of the
program stating it never results in an error.

Note. Based on what we saw in the previous lectures, for error-free and loop-free programs WLP and
WP are equal, and thus the algorithms in Sections 1 and 2 return the same result.

1 Algorithm for weakest liberal precondition

We define a recursive algorithm that takes the statement S and postcondition ) and constructs the

predicate wip(S, Q).
(1) wip(skip, Q) = Q
(2) wip(z:=e,Q) n= [e/x]Q
(3) wlp(S1;52,Q) m= wip(St, wlp(S2, Q))
(4) wlip(if e then Sy else S5 fi,Q) == (e = wip(S1,Q)) A (me = wip(Ss, Q))
Example 1.
wip(r:=x+1,2>0) == [xz+1/z](x >0) by line (2) in the algorithm
=x+1>0 by substitution
Example 2
wply:=y+x;z:=c+1,2>0) == wiply:=y+z,wlplz:=x+1),x>0) by line (3)
=wlp(ly:=y+z,2+12>0) by Example 1
=y+z/ylr+1>0 by line (2)
=x+1>0 by substitution
Example 3.
wply:=y+x;x:=x+lx>y) = whply=y+z,wlplz:=x+1),z>y) by line (3)
=wlp(y:=y+uz,[z+1/z]z > y) by line (2)
=wlp(ly:=y+z,2+1>y) by substitution
=ly+ta/ylr+1>y by line (2)
=r+1>y+x by substitution

We could simplify the condition x + 1 > y 4+ x further to get y < 1.
Exercise 1. Calculate wip(x =2+ L;y:=y+ z,z > y).



Example 4. Put S; to be the program if x > y then m := x else skip fi.

wilp(S1,m = max(z,y)) ==
x >y — wlp(m :=x,m = max(z,y)

)
=z >y — [z/m]m = max(z,y) A ~(
=z >y — [z/m]m = max(z, )/\—|(x>y)%m max(z,y)
=z >y — 2z =max(z,y) A (x> y) - m = max(z,y)

A=z > y) — wip(skip, m = max(x,y))
x > y) — wip(skip,m = max(z,y))

We can simpilfy z > y — = = max(z,y) A ~(z > y) — m = max(z,y) further.
x >y — x = max(z,y) is a tautology, hence equivalent to 7. We can rewrite the condition as
TA=(zx > y) - m = max(x,y), which is equivalent to ~(z > y) — m = max(z,y), and thus

x <y —m=max(x,y).
Exericse 2. Calculate wip(if y > 0 then z :=y else skip fi,z > 0).

2 Algorithm for weakest precondition

by line (4)
by line (2)
by line (1)
by substitution

We know that

To build WLP from WP (for loop-free programs), we also need to rule out errors. We first define a predicate
that ensures the expression/statement never results in an error. Then, we augment it with the WLP, as

explained above, to get WP.

2.1 Error-free predicate for expressions

We define predicate D(e) such that if for any state o we have o F D(e), then o(e) #L. In other words, if a
state o satisfies D(e), then o(e) will not result in an error. We will define the predicate recursively for each

expression in the grammar:

(1) D(e) =T

(2) D(ale]) = D(e) N0 <e < size(a)

(3) D(el/eg) = D(el)/\D(eg)/\eg #O

(4) D(sqrt(e)) = D(e)he>0

(5) D(eiopes) = D(e1) A D(eg) op € {+,—,
6) Di-e) — Do)

(7) D(if etheney elsees) = D(e)A(e— D(er)) A (—e — D(ez))

¢ € {true, false,7, =}

AV, S < =,2>,>)

Lines 2-4 in the algorithm above describe those expressions that are susceptible to errors; they need extra
conditions on the state to ensure that the error does not occur. We only consider these forms of errors,
but the algorithm can be extended to other errors depending on the datatypes and operations being used.
Lines 5 and 6 say that various operations (+, —, <, =, A, V, etc.) don’t cause an error as long as the
subexpressions don’t cause one. Line 7, says that for a conditional expression, we only need safety of the

branch we execute.

Example 5.
D(alafm])) :=  D(a[fi)) A0 < aff] < size(a)

D@) A0 <7 < size(a) N0 < a[n] < size(a)

T A0 <7 < size(a) A0 < a[n] < size(a)

by line 2
by line 2
by line 1

We can simplify the result to the equivalent formula 0 <7 < size(a) A 0 < a[n] < size(a).

Example 6.

D(sqrt(x*y)/(2xx)) := D(sqrt(x+y)) AND2xa) A (2xx) #
Dgaj YA (xxy) >0AD2*xz)A(
D

JAD(y)A(zxy) >0AD2xx

D(x)AD(y) A (z+y) >0A D) AD(x

TATA(xxy)>0ANTATA(2xz)

A2
)

0
*
A

We can simplify the result to the equivalent formula A(z *y) > 0A (2xx) # 0.

by line 3
by line 4
by line 5
by line 5
by line 1



Example 7. D(if 0 < k < size(b) then b[k] else 0)

(if 0 < z < size(b) then bz] else 0) := B B

D(0 <z < size(b)) A ((0 <z < size(b)) — D(b[z])) A (—(0 <z < size(b)) — D(0)) by line 7
D(0) A D(x) A D(size(b)) A ((0 < z < size(b)) — D(b[z])) A (—(0 < = < size(b)) — D(0)) by line 5
TATANTA(0 <z <size(b)) = D(bz])) A (—(0 < z < size(b)) = D(0)) by line 1
TATATA((0<x<size(h)) = (D(z) A0 <z < size(h)) A (—=(0 < x < size(b)) — D(0)) by line 1
TATATA((0<x < size(h)) = (T A0 <z < size(d))) A (=(0 <z < size(b)) — D(0)) by line 1
TATATA((0<z<size(b)) = (TA(0 <z < size(h)) A (=(0 <z < size(h)) = T) by line 1

We can simplify the result to the equivalent formula (0 < z < size(b)) — (0 < x < size(b)) A (—=(0 <
x < size(b)) — T'), and even further to T. When D(e) = T, it means that the expression never results
in a failure. Exercise 2. Why?

2.2 Error-free predicate for statements

Similar to above, we can construct a predicate D(S) that ensures an statement doesn’t result in a runtime
error. We have if o F D(S) then (S,0) + (skip, L), i.e., running the configuration (S, o) won’t result in a
run-time error.

(1) D(skip) = T

(2) D(z:=e) = Dl(e)

(3) D(Sl,SQ) = D(Sl) /\wlp(Sl,D(Sg))

(4) D(if e then Sy else Sy fi) = D(e) A (ex — D(S1)) A (ea — D(S2))

Example 8.

D(if > y then m:=z else skip fi):= D(z >y)A(z >y —= D(m:=2)) A (=(x > y) = D(skip)) by line 4

=D(z 2y)N(z =2y — D(x))A(~(z = y) = D(skip)) by line 2
=D@zy)N(xzy—= D@)A(=~(x=y) =T) by line 1
=TAN@z>y—=>T)AN(~(z>y)—>T) Section 2.1

The result is a tautology and thus logically equivalent to T. When D(S) = T, it means that the statement
S never results in a failure, no matter what the starting state is (after all, every state o satisfies T').

You may wonder wht we don’t define line (3) for sequential composition as
(3/) D(Sl; 52) = D(Sl) A D(SQ)

Let’s look at an example to understand the reason.
Example 9. We want to calculate D(y := 1;x := x/y). If we use the definition (3'), we get

D(y:=1l;z:=xz/y) =D(y:=1) AD(z:=2/y) =y #0.

However, this is not acurrate enough: the condition y # 0 says that the statement y:=1;z:=z/y is error-free
when the initial value of y is not equal to 0, but, in fact, the statement is error-free no matter what the
initial value of y is. The reason is y is first assigned to 1 and only after that we perform the division.

Now, let’s see what the definition given in line (3) gives us:

D(y:=1;x:=x/y) = D(y:=1)Awlp(y:=1, D(z:=x/y)) = wip(y:=1, D(z:=x/y)) = wip(y:=1,y #0) = [1/y](y #0) =1#0=T

This construction correctly returns the condition 7', meaning the program is error-free without any extra
condition on the initial state.

2.3 Weakest precondition

Now that we defined the error-free predicates, it’s easy to extend WLP to WP for loop-free programs. We
can simply write

wp(S, Q) := D(S) A wip(S,Q)



D(S) tells us that running S won’t cause an error, and wip(s, ¢) provides the weakest precondition on the
states such that running S establishes the postcondition @ if no error occurs.

When a statement is error-free on all states, WP and WLP are the same. In this case, we have D(S) =T,
and

wp(S, Q) = wip(S, Q) A D(S) = wip(S, Q) AT = wip(S, Q).

Exercise 3. Build wip(z := y;z := v/x,z > x + 2) using the Algorithm in Section 2. Next use
error-free predicates in Sections 2.2 and 2.1 to calculate D(x := y;z := v/x,z > x + 2). Observe that
wp(S, Q) =wlp(x :=y;z :=v/x,z2>c+2)AND(x:=y;z:=v/x,2 > 2+ 2)



