Weakest precondition I

Farzaneh Derakhshan
based on material by Stefan Muller and Jim Sasaki

CS 536: Science of Programming, Fall 2023
Lecture 11

We learned in Lectures 9 and 10 that a program can be annotated with different conditions and thus be a
part of multiple Hoare triples. In the next couple of lectures, we will explore annotations that are considered
“better” than others.

1 Weakest precondition

Let’s start with an example. Consider the program S to be x :=y 4+ 1. We want to show that the
postcondition > 0 holds for this program. We need to figure out the preconditions P that make the
following total correctness triple valid:

FE[P]S[xz>0]

In other words, we need to answer the question: what precondition on the initial state ensures that the program
will terminate in a state where x has a positive value? It turns out there are many such preconditions, ranging
from the trivial one (F') to y > 100 to y > 0. Although all of the conditions are technically correct, they are
not equally useful. For instance, the conditions F' and y > 100 are more restrictive about the initial state;
they limit the range of values of y for which the postcondition is guaranteed. Generally, we want to find the
precondition that is least restrictive and ensures the postcondition for the largest range of inputs. The least
restrictive precondition that we can choose is indeed y > 0 — the least restriction that we can put on the
initial state to ensure that the post-condition holds. y > 0 is the weakest precondition: the least restrictive
precondition needed to establish the postcondition. The terms “weak” and “strong” refer to how restrictive
an assertion is. The weaker an assertion is, the less restrictive it is; the stronger it is, the more restrictive.

We write P = wp(S, @) to indicate that P is the weakest precondition for statement S and postcondition
Q. In our example, y > 0 is the weakest precondition. The precondition y > 100 is not as weak because
it allows only a subset of the values accepted by y > 0. The precondition F' is the strongest of these three
formulas because it allows no value to be considered.

The strength of formulas coincides with the logical consequence: if P’ = P, then P is weaker than P’ (or
equivalently, P’ is stronger than P). Figure 1 illustrates the concept of the weakest precondition using the
logical consequence. Based on the figure, we can conclude that F [wp(S,Q)] S [Q ] and alsoif E[P]S[Q],
then P = wp(S, Q).

The weakest precondition
that makes the triple valid.

F=>y>100=> y>10=>(y>0> y>2-1=>y>2-10=>T

4We can always make the precondition x b

stronger and the triple remains valid After some point, making the precondition
(but also less useful) weaker makes the triple invalid.

Figure 1: Weakest precondition and logical consequence



More formally for a program S and postcondition @ we define wp(S, Q) = P as:

1. For any state o £ P, we have M (S,0) = ¢’ and ¢’ E Q.
2. For any state o ¥ P, either

(a) M(S,0) =0’ such that o' ¥ Q, or
(b) M(S,0) =1, or ({(S,0) results in an error)
(c) M(S,0)={}. ((S,0) diverges)

Example 1. Consider the program y := x * x, and the postcondition x > 0 Ay > 4.We have
wp(y:=zc*xx,x >0Ay>4)=a>2.
Why? With the definition above we need to show the following two conditions:

1. For any state o F o > 2, we have M(y:=xz *x,0) = o[y — o(z) x o(x)], and we can observe that
oly— o(z)*xo(x)|Fx>0Ay >4, since o(x) > 2.

2. For any state 0 ¥ © > 2, we have M(y .=z *xz,0) = o[y — o(z) * o(z)]. But if o(x) < 0, then
oly = o(z) xo(x)] #2x >0, and if 0 < o(z) < 2, then oy — o(z) * o(x)] ¥y > 4. In both of these
cases, we have oy — o(x) xo(z)|Fz >0Ay >4

The reasoning we used in Example 1 helps us establish whether a given precondition is the weakest
precondition. However, this reasoning doesn’t help us to create the weakest possible precondition. In the
next lecture, we will introduce the rules that will enable us to generate the weakest precondition.

The weakest precondition is unique upto logical equivalence. Let’s put P, = wp(S,Q) and P, =
wp(S, Q). We know that the weakest precondition makes the total correctness triple valid, i.e., E[ P ] S [ Q]
and E[ P2 ] S[ Q] Recall that if E[ P ]S [Q ], then P = wp(S,Q). This gives us P = wp(S,Q) and
P, = wp(S, Q), which we can rewrite as P = P and P, = P;.

2 Weakest liberal precondition

The weakest liberal precondition is the weakest precondition’s counterpart for partial correctness. It is the
weakest precondition P that makes the following partial correctness triple valid:

={P} S {Q}

In other words, wip(S, Q) is called the weakest liberal precondition on the initial state such that S starting
from the initial state either terminates in a final state satisfying the postcondition @), diverges or returns a
run-time error.

More formally for a program S and postcondition @ we define wip(S, Q) = P as

1. For any state o = P either

(a) M(S,0) =0’ and ¢’ EQ, or
(b) M(S,0) =1, or
(c) M(S,0) ={}

2. For any state o ¥ P, we have M (S,0) = ¢’ and o/ ¥ Q.

Exercise 1. Using the definition above, show that wip(y :=x *xx,2 > 0Ay > 4) = z > 2. How is your
reasoning different from Example 17

If the program S always terminates successfully, i.e., it does not diverge or result in a run-time error,
then we have wp(S, Q) = wip(S, Q). In fact, in this case, the definitions of the weakest and weakest liberal
preconditions conincide as wip(S, Q) = P iff:



1. For any state o E P we have M (S,0) = ¢’ and ¢’ F @, and
2. For any state o & P, we have M(S,0) = ¢’ and ¢/ Q.

Example 2. Put program S; to be if y < x then m := x else skip fi. We want to find the weakest
precondition for S; and the postcondition m = max(x,y), i.e., we want to figure out what restrictions on
the initial state are necessary to make sure that S; calculates the maximum of z and y. Our conjecture is:

wp(S1,m = max(z,y)) =y >z —>m=y.

1. Consider the state o such that ¢ &y > x — m = y. The program terminates, so for some ¢’, we have
M(Sy,0) = ¢’. We proceed by cases. First, assume o F y < z, then we know that ¢'(m) = o’(z) =
max(o’(x),0'(y)). Now assume, o F y > x, then by 0 F y > v — m = y, we know that ¢'(m) =
o(m) = o(y) = max(o(z),0(y)) = max(c’'(z),0'(y)). In both cases, we get o’ F m = max(z,y).

2. Consider the state c Hy > > m=y. Fromo Fy >ax > m =y, we get o F =(-y >z Vm = y),
which by the deMorgan’s law and double negation rule is equivalent to o F y > x Am # y. The
program terminates, so for some ¢’, we have M (S1,0) = o’. By the y > x condition, we know that
the program takes the else branch, so o(m) = ¢'(m), and o(z) = ¢'(z), and o(y) = o’'(y). Moreover,
we know that o’ F y = max(z,y). This along with the condition m # y gives us ¢’ E m # max(x,y),
or equivalently ¢’ ¥ m = max(x,y).

Exercise 2. Find wip(S1,y > x — m =y).
Example 3. Consider program S, ::= while z # 0 do z := x — 1 od. It will always ends in the final state
satisfying = 0 unless it doesn’t terminate. For the program to terminate, the initial state must satisfy
x > 0. we have

wp(Se,x=0) =2 >0,

On the other hand, the weakest liberal precondition, which allows the program to diverge, does not need to
put any restriction on the initial state for the same postcondition:

wlp(Se,z =0) =T.

Note 1. In Example 3, since the final state always satisfies the postcondition x = 0, the weakest precondition
wp(Se, z = 0) provides the condition under which S terminates. We can generalize this observation for any
program S, by using the postcondition T' (which always holds in the final state as well): wp(S,T) is the
condition under which S terminates.

Note 2. In Example 3 the weakest precondition and weakest liberal precondition are different, since the
program might be nonterminating for some inputs. However, we can observe that the weakest precondition
(z > 0) implies the weakest liberal precondition (T); we have > 0 = T. We can generalize this observation
to all programs S and postconditions @ as:

wp($, Q) = wip(S, Q).

Note 3. If 0 F wip(S, Q) but o  wp(S, @), then program S starting from the initial state o, either diverges
or results in a run-time error, i.e., M(S,0) = {} or M(S,0) =L. In Example 3, consider the initial state
{x = —1}, the program S5 diverges when starting from this initial state, and we have {x = —1} & wp(Ss, z =
0), but {x = —1} F wip(S2,z = 0).

Exercise 3. Provide a proof for the observation in Note 3.



