Lectures 1-2:
Overview, Propositional and
Predicate Logic

CS536 Science of Programming, Fall 2023

Science of Programming

Specifically, Program Verification

Program Verification

this course (mostly)

gives the right answer/

. . doesn’t take too long
Formally checking that a program is correct < s the right effects

has the right security properties

Usually: that it meets a specification

Quick Survey

* How many of you have written a program of > 100 lines of code in the
last 6 months?

Testing is not enough

... and it matters a lot:

Boeing 737-MAX Therac-25 radiation therapy machine
2017-2019 1985-1987

Testing is not enough

Even if you cover all code:

* Unexpected inputs

* Unexpected user behavior

e Concurrency errors (e.g., race conditions)
* Changes in code

* Changes in requirements

Application of verification: Be done with your
coding homework!

function fib(n:
decreases n
{
if n == @ then @ else
if n == 1 then 1 else
fib(n - 1) + fib(n - 2)

}

method ComputeFib(n:) returns (r:
ensures r == fib(n)

S W & Verification Succeeded

var i := 0;
while (i < n) P
invariant (a == fib(i)) && (b == fib(i¥1)) && (i <= n)

I
L

{

temp := a + b; P
== fib iﬁsz

temp
= b;
temp;
i +/1{/

1L
J

retyrfi a;

}’”’”’”ﬂ”’”ﬂ /
A 0 | Verification Succeeded] —

Verification isn’t perfect

* Difficult to get right, even for small programs
* Automated tools can help (but then you have to trust those!)
* Have to get the specification right

Easy to get specifications wrong

 What should the spec be?

//Argument: a list of integers
//Returns: ????

function sort (1: int list)

Static types can be seen as a form of
verification

° Ocam| sort : int list -> int list

* Takes an integer list and returns an integer list.
e Valid: sort([8;2;1;6;3]) = [8;2;1;6;3]
e Valid: sort([8;2;1;6;3]) = [10;11;12]

sort : forall (11 : list int), exists (12: int list),
* Coq Sorted 12 /\ Permutation 11 12

* Takes an integer list and returns a sorted permutation of it.
e Valid: sort([8;2;1;6;3]) = [1;2;3;6;8]
... and nothing else

Static types can be seen as a form of
verification

... but that’s a whole other class

Verification: connecting logical specs and
formal semantics

'Function 'F(lnt X) { How do we know that’s
what this code does?

if (x > 0) {

y = X * 2;

} else { X<=O(r),yssc\)/:_-:(-)=+

Well, it’s obvious in this
case. But not always (or
even defined) in complex

} languages like C

} Formal semantics: mathematical description of what code does

Course OQutcomes

After taking this class, you should be able to:

* Understand the limits of testing and the importance of verification
* Perform basic verification on programs

e Understand the semantics of programs (including nondeterministic
and parallel ones!)

Course Information

* Website: http://cs.iit.edu/~smuller/cs536-f23/

* Schedule, links, notes
* Check it frequently!

e Blackboard

 Download and submit assignments
* Class recordings

http://cs.iit.edu/~smuller/cs536-f23/

Prerequisites

 Officially: CS331 or CS401 with a min. grade of C

* Informally:
e Familiarity with basic logic
 Comfort with mathematics, formal notations
* Some programming experience

* We'll review some of these concepts quickly today and Wednesday

 BUT: If you are not at all comfortable with mathematical logic, make sure you learn it this
week (not just in class) or consider delaying taking the class

Will there be programming?

* Hard question to answer...

* Will not have to learn a whole new language

* Mostly theory: there will be some proofs
* Will have to express them formally so they can be checked by computer

* Proofs about programs: we will be using a small language with assignment,
if/then/else, while, etc...

* May have to write some small programs in this small language

Grading

* 40% Homework assignments (every 1-2 weeks)
* May not be evenly weighted

* 25% Midterm Exam (Tentatively Oct. 23)
* 35% Final Exam

90-100 80-89 70-79

* | may curve exam grades depending on the course averages

Exams

* Midterm: 75 minutes, normal class time

* Final exam during finals period (date set by Registrar)
* Final exam is cumulative

* Some kind of notes allowed (past semesters: 1-2 sheets of notes)

* Sections 01, 02: In-person
* If you CANNOT take the exam in person, let me know

* Section 03: Will get an email discussing options
* Preferred: take with the in-person students.
* Also possible: take somewhere else with a proctor

Late Days

* 8 late days per student
* Each late day extends the deadline 24 hours

* Can use <=2 per assignment
* Can’t use on exams

e After late days used up: 10% penalty per day late
* No work accepted >2 days late without instructor approval

Academic Honesty

* All submitted work (homework and exams) is to be your own
individual work unless specified otherwise.

* Specifically prohibited (but this list isn’t exhaustive):
* Sharing answers with other students

* Looking online for answers
e Generative Al (e.g., ChatGPT)

* Specifically permitted:
* Getting help from TAs or instructor

* Getting help from the ARC or other official university tutoring resources
* If you want to use an outside tutor, let me know first

Academic Honesty

* Penalties (for every violation):
e Zero on the homework or exam

* Report to academic honesty
* May result in university-level sanctions after first report

Course Staff

* Instructor: Stefan Muller
* TAs: Chaoqi Ma, Gagan Beerappa

 Office hours (info including links will be posted):
 Monday 2pm-3pm SB 218E (Stefan)
* Tuesday 2pm-3pm SB 004 (Chaoqi)
* Wednesday 2pm-3pm Google Meet (Gagan)
* Thursday 10am-11am Zoom (Stefan) AND 2pm-3pm Zoom (Chaoqji)
* Friday 2pm-3pm Google Meet (Gagan)

* We are here to answer your questions! Really! Yes, all of us!

Other ways to get help

* Discord: IIT CS server, cs536 channel
* If you’re not on it, we’ll send an invitation

* Academic Resource Center (ARC): www.iit.edu/arc
* FREE subject matter tutoring and academic coaching

Discord Office Hours | Email ARC
General questions about lectures, logistics, etc. \/ \/
General discussion, clarifications, about HW questions \/ \/
Specific questions about your HW answers \/ \/
More in-depth personal tutoring \/
Personal matters (accommodations, other requests, etc.) \/

http://www.iit.edu/arc

Attendance/Sections

* Section 01: In-person
e Section 02: In-person, PhD section
e Section 03: Online (lectures recorded)

e Also:

e Sections 04, 06: In-person with other instructors
* Section 05: Online with other instructor

PhD Qualifier Section

* A sufficiently high grade in CS536 meets the requirements for the
written qualifier for CS PhDs.
e Only if you are in section 02.

* If you are taking this class to meet this requirement and are not in section 02,
talk to me or switch this ASAP.

e Section 02 is an in-person section. If you’re a PhD student taking 536 for the
qgualifier but can’t attend in person, let me know.

Announcements

e Blackboard fixed

 Office Hours times/links are up on Blackboard
e (times on course website)

* HW1 will be posted today
* On Blackboard

* Due 9/7, 11:59 PM (remember: can use up to 2 late days)
* Submit on Blackboard
 Start early, make sure you can do it

Syntax and Semantics and Equality

* Syntax: How to write down a “program”
» Syntactic Equality (=): written the same (up to, e.g., parentheses)
*2+2-3=2+2-3=(2+2)-3
*2+2-3%1
*1+2F%#2+1

1

* Semantics: What a “program” “means”
* Semantic Equality (=): has the same meaning
e2+2-3=(2+2)-3=4-3=1
e 1+2=2+1

Propositional Logic

e “Atomic” propositions: variables that can be true (T) or false (F)
° P’ Q

* Connectives: make larger propositions p, q, ¢, U
* Negation: —1p (not p)
e Conjunction: pAq (pandq)
* Disjunction: pVaq (poraq)
e Conditional: p—qg (pimplies q, if p then q)
* Biconditional: p< g (piffg, pifandonlyifq)

* Precedence (order of operations): in the above order
pAg-oTVages =[(pAg) > (rv(ag)] <

The semantics of a proposition are their truth
values in different states

State o: Assignment of truth values (T, F) to proposition variables
Written, e.g., {P =T,Q = F}

Only one assignment per variable: {P = T, P=F7}
Only assigns to variables: {P V. Q-=TF3}

A state fitting these requirements is well-formed (opp. ill-formed)

okp: p “satisfied” (true) in state o

Truth value of propositions determined by
truth tables

__°p | o | —» | PAQ__PVQ | _PoQ | PoQ

m m - -
G —
B R I <<

m 4 M -
— < ™ ™
— <4 ™ -
— m M -

* A,V are commutative and associative: PAQ = Q AP PAQAR)=(PAQ)AR
* — is not commutative or associative: F>T+#*T—>F (F->T)->F=+F->(T->F)
* & is commutative and associative: P Q=QeP (Peo Q) R=Po (Q<R)

Some more facts about conditionals

For a conditional P — Q:
e The inverse =P — — Q does not have the same truth value

e The converse Q — P does not have the same truth value
e (But is the same as the inverse)

* The contrapositive =Q — — P has the same truth value

To determine truth value, a state needs to be
proper for the proposition

* Proper: defines truth values for all variables in the proposition

Proposition: PAQ > RV =Q <& S

Proper: Improper:
e {P=T,Q=F,R=F,S=T} e {P=T,0 =F,R=F}
*{Q=T,P=F,S=F,R=T} «{P=F,S=F)}

o {Q:T,P:F,S:F}R:T}T:F}

For a well-formed and proper state, a
proposition is satisfied or unsatistfied
{P=T;0=F;:R=F}e(PAQ) > R?
{P=T;0=F;R=T} = (PAQ) > R?
“{P=T;0=F;R=F}e (PVQ) > R?

A proposition can be a tautology,
contradiction or contingency

Assume o is well-formed and proper
* Tautology: o E p for all ¢ (Also write just & p)

* Contradiction: o ¥ p for all 0 (Equivalent: & —p)
* Note that this is not the same as ¥ p (that just says p is not a tautology)

* Contingency: There exist oy and 0, such that oy E pand o, ¥ p
(Equivalent: ¥ —p and ¥ p)

Logical implication =
P = Qif whenever P is true, so is Q (“P implies Q")

Note: this is not the same as P —» Q:
* They’rerelated: P= Q means EP - Q

* We write — in propositions, we use = to talk about propositions
* (like how we put + in mathematical expressions, we use = to talk about them)

Logical equivalence &

PSS QmeansP=>Q and Q=P

Semantic equality (=) on logical propositions

Some useful facts

Commutativity pvg & qgvp
prgeqap (peq)e(qep)
Associativity (pvq)vrepv(qvr)
(prg)arepa(gar)
Distributivity/Factoring
(pvg)are(par)vigar)
(paqg)vre(pvrya(gvr)
Transitivity [Note: =, not & here]
(p=>q)n(@=>n)=(p—r)
(pegn(@ern=(peor)
Identity: paTe®pandpvFep

Idempotentcy: pvpepandpapep

Domination: pvTeTandpaF&F

Absurdity: (F=2p)eT

Contradiction: p A-p < F

Excluded middle: pv-peT

Double negation: --p & p

DeMorgan’s Laws =(p A q) < (=p v~ Q)
“(pvq)e(-pa-q)

Defn. of = and & (p = q)« (-pv Q)
(peq)e(p=q)alg—=p)

Commutativity pvg & qvp
prqgeqgap (peq)e(ep)
Associativity (pvq)vrepv(qgvr)

-(p>d) = (pPA-Q)

(prg)nrepalgnar)

Distributivity/Factoring
(pvg)are(parnvignar)
(prgq)vre(pvrnal@vr)

Transitivity [Note: =, not < here]
(p=2q)n(@g—=>n=(p—r)
(Peogr(@en=(per)

Identity: paTepandpvFep

Idempotentcy: pvpepandpapep

Domination: pvTsTandpaFeF

Absurdity: (F—2p)eT

Contradiction: p A—~p & F

Excluded middle: pv-peT

Double negation: --p &p

DeMorgan’s Laws =(pArq)e (-pv-Qq)
“(pvqg)e(=pr-q)

Defn. of = and < (p = q) < (=p v q)
(peq)e(p—=q)alg—p)

Commutativity pvg & qvp
prqgeqgap (peq)e(ep)
Associativity (pvq)vrepv(qgvr)
(prg)nrepalgnar)
Distributivity/Factoring
(pvg)are(parnvignar)
(prgq)vre(pvrnal@vr)
Transitivity [Note: =, not < here]
(p=2q)n(@g—=>n=(p—r)
(Peogr(@en=(per)
Identity: paTepandpvFep
Idempotentcy: pvpepandpapep
Domination: pvTsTandpaFeF
Absurdity: (F—2p)eT
Contradiction: p A—~p & F
Excluded middle: pv-peT

Double negation: --p &p

DeMorgan’s Laws =(p A Q)< (=p Vv = q)

“(pvq)e(=pA-q)
Defn. of = and < (p = q) & (-p v q)
(peq)e(p—=qg)alg—p)

((r 2> s) Ar) = s (“Modus ponens”)

T=>PA-(QAR)->((QAR)->-P)

Announcements

* New TA: Param Modi
 Office Hours: Tuesday/Thursday 11:30am-12:30pm (Online)

* HW1 is up on Blackboard.

e Covers material through part of today’s lecture

More facts

elfEpand EgthenEpAg
*IfEpthenEpVgandE qVp(foranyq)
*IfEpAgthen EpandEq
fEp—o>randeEg->randeEpVvqgthenEer

Predicate (First-Order) Logic extends Prop.
Logic with values in a domain

* (e.g. the integers)

* We’ll also use variables like x to hold integers (or values of whatever
domain we’re using)

* Predicate: a function from values or variables in the domainto T or F
* e.g. isEven(x), Greater(x, 0), Greater(x, y)
“Syntactic sugar”: x >0, x >y

We can use predicates with all the existing
connectives

* Greater(x, y) V Greater(y, x) V Equal(x, y)

* Greater(x, y) V Equal(x, y)

* Greater(x, y) = Greater(x, y) V Equal(x, y)

* Greater(x, y) V Equal(x, y) < — Greater(y, x)

States can now have integer vars too

* {x =5,y =5} E Greater(x, y) V Equal(x, y)
* {x = 4,y = 5} ¥ Greater(x,y) vV Equal(x, y)
e {x =5y =5,P =T} E (Greater(x,y) V Equal(x,y)) AP

Quantifiers introduce variables

* Vx € Z.p (for all x, p)
* dx € Z.p (there exists x such that p)
* (may omit the domain if clear)

* = Vx.Vy.Greater(y, x) V Greater(x,y) V Equal(x, y)

* = Vx.Vy.Greater(x,y) V Equal(x,y) < —Greater(y,x)
* = Vx.3y. Greater(y, x)

* F —3x. Greater(x, 2) A isPrime(x) A isEven(x)

Equivalence with quantifiers gets a little tricky

* Vx.P(x) = Vy.P(y) because Vx.P(x) © Vy.P(y)

¢ IsVx.P(x) = Vy.P(y)?
* For now, let’s say no.

* But there are good reasons to consider them equivalent in more-than-just-
semantic ways. We may discuss this later.

DeMorgan’s Laws for quantifiers

e mdx.P © Vx.—P
e Vx.P © dx. P

—3x. Greater(x, 2) A isPrime(x) A isEven(x)
& Vx.aGreater(x, 2) V —isPrime(x) vV —isEven(x)

Vx.3y.Greater(y,x) © —3x.Vy.Greater(y, x)

* How would we actually go about proving & Vx. 3y. Greater(y, x)?

* Formal systems for this kind of proof are complicated (we’d need to
know the semantics of Greater), but here’s an idea:

* To prove E Vx.p(x), p(x) must hold regardless of the choice of x.

* To prove E Jx.p(x) , come up with a witness: a value of x such that
p(x) holds.

Examples

vXxeZ.x 0 — x < x? Tue
axe . X+0AX> X2. True (use 1 as a witness)

2
X > O — 4 y . y <X Tautology (0 works as a witness regardless of choice of x)
x>0 - y2 <X Contingency
Ely . (y <0 A y > XZ) Contradiction (false for every choice of x)

We can define our own predicates
 e.g. Positive(x) = Greater(x, 0) A—=Equal(x, 0)

* The body should be a proposition over the parameters to the
predicate function.

e e.g. not square(x) = x * x
* but: square(x, y) = (y =x * x)

Predicates should be simple

* For an array a, AllPositive(a, m, n), should mean that a[m], ..., a[n] are
all positive.

* First try: AllPositive(a, m, n) = Positive(a[m]) A ... A Positive(a[n])
e Second try: maybe a loop?

* Fine in a regular programming language, but the purpose of our
predicates is debugging programs

* No point if our predicates are as hard to debug as the programs!

* AllPositive(a, m, n) =Vi,(m < i Ai < n) — Positive(ali])

Sorted as a predicate

e Sorted(a, m, n): a[m], ..., a[n] are in sorted order
e (i.e.a[m] <a[m+1] <£...<a[n])
e (i.e., a[m] £a[m+1] and a[m+1] < a[m+2] and...)
 (i.e., foralli, a[i] < a[i+1])

e Sorted(a,m,n) =Vi,(m<iAi<n) - ali] <ali+ 1]

	Slide 1: Lectures 1-2: Overview, Propositional and Predicate Logic
	Slide 2: Science of Programming
	Slide 3: Program Verification
	Slide 4: Quick Survey
	Slide 5: Testing is not enough
	Slide 6: Testing is not enough
	Slide 7: Application of verification: Be done with your coding homework!
	Slide 8: Verification isn’t perfect
	Slide 9: Easy to get specifications wrong
	Slide 10: Static types can be seen as a form of verification
	Slide 11: Static types can be seen as a form of verification
	Slide 12: Verification: connecting logical specs and formal semantics
	Slide 13: Course Outcomes
	Slide 14: Course Information
	Slide 15: Prerequisites
	Slide 16: Will there be programming?
	Slide 17: Grading
	Slide 18: Exams
	Slide 19: Late Days
	Slide 20: Academic Honesty
	Slide 21: Academic Honesty
	Slide 22: Course Staff
	Slide 24: Other ways to get help
	Slide 25: Attendance/Sections
	Slide 26: PhD Qualifier Section
	Slide 27: Announcements
	Slide 28: Syntax and Semantics and Equality
	Slide 29: Propositional Logic
	Slide 30: The semantics of a proposition are their truth values in different states
	Slide 31: Truth value of propositions determined by truth tables
	Slide 32: Some more facts about conditionals
	Slide 33: To determine truth value, a state needs to be proper for the proposition
	Slide 34: For a well-formed and proper state, a proposition is satisfied or unsatisfied
	Slide 35: A proposition can be a tautology, contradiction or contingency
	Slide 36: Logical implication ⇒
	Slide 37: Logical equivalence ⇔
	Slide 38: Some useful facts
	Slide 39
	Slide 40
	Slide 41
	Slide 43: Announcements
	Slide 44: More facts
	Slide 45: Predicate (First-Order) Logic extends Prop. Logic with values in a domain
	Slide 46: We can use predicates with all the existing connectives
	Slide 47: States can now have integer vars too
	Slide 48: Quantifiers introduce variables
	Slide 49: Equivalence with quantifiers gets a little tricky
	Slide 50: DeMorgan’s Laws for quantifiers
	Slide 51:
	Slide 52
	Slide 53: Examples
	Slide 54: We can define our own predicates
	Slide 55: Predicates should be simple
	Slide 56: Sorted as a predicate

