
Lectures 1-2:
Overview, Propositional and 

Predicate Logic
CS536 Science of Programming, Fall 2023



Science of Programming

Specifically, Program Verification



Program Verification

Formally checking that a program is correct

Usually: that it meets a specification

gives the right answer
doesn’t take too long
has the right effects
has the right security properties

this course (mostly)



Quick Survey

• How many of you have written a program of > 100 lines of code in the 
last 6 months?



Testing is not enough

… and it matters a lot:

Boeing 737-MAX
2017-2019

Therac-25 radiation therapy machine
1985-1987



Testing is not enough

Even if you cover all code:

• Unexpected inputs

• Unexpected user behavior

• Concurrency errors (e.g., race conditions)

• Changes in code

• Changes in requirements



Application of verification: Be done with your 
coding homework!



Verification isn’t perfect

• Difficult to get right, even for small programs

• Automated tools can help (but then you have to trust those!)

• Have to get the specification right



Easy to get specifications wrong

• What should the spec be?

//Argument: a list of integers

//Returns: ????

function sort (l: int list)



Static types can be seen as a form of 
verification
• OCaml

• Takes an integer list and returns an integer list.

• Valid: sort([8;2;1;6;3]) = [8;2;1;6;3]

• Valid: sort([8;2;1;6;3]) = [10;11;12]

• Coq
• Takes an integer list and returns a sorted permutation of it.

• Valid: sort([8;2;1;6;3]) = [1;2;3;6;8]

• … and nothing else

sort : int list -> int list

sort : forall (l1 : list int), exists (l2: int list),
              Sorted l2 /\ Permutation l1 l2



Static types can be seen as a form of 
verification
… but that’s a whole other class



Verification: connecting logical specs and 
formal semantics
function f(int x) {

  if (x > 0) {

    y = x * 2;

  } else {

    y = x * -2;

  }

  assert(y >=0)

}

x > 0, so y = + * + = +

x <= 0, so y = - * - = +
or y = 0 * - = 0

How do we know that’s 
what this code does?

Well, it’s obvious in this 
case. But not always (or 

even defined) in complex 
languages like C

Formal semantics: mathematical description of what code does



Course Outcomes

After taking this class, you should be able to:

• Understand the limits of testing and the importance of verification

• Perform basic verification on programs

• Understand the semantics of programs (including nondeterministic 
and parallel ones!)



Course Information

• Website: http://cs.iit.edu/~smuller/cs536-f23/
• Schedule, links, notes

• Check it frequently!

• Blackboard
• Download and submit assignments

• Class recordings

http://cs.iit.edu/~smuller/cs536-f23/


Prerequisites

• Officially: CS331 or CS401 with a min. grade of C

• Informally:
• Familiarity with basic logic

• Comfort with mathematics, formal notations

• Some programming experience

• We’ll review some of these concepts quickly today and Wednesday
• BUT: If you are not at all comfortable with mathematical logic, make sure you learn it this 

week (not just in class) or consider delaying taking the class



Will there be programming?

• Hard question to answer…

• Will not have to learn a whole new language

• Mostly theory: there will be some proofs
• Will have to express them formally so they can be checked by computer

• Proofs about programs: we will be using a small language with assignment, 
if/then/else, while, etc…

• May have to write some small programs in this small language



Grading

• 40% Homework assignments (every 1-2 weeks)
• May not be evenly weighted

• 25% Midterm Exam (Tentatively Oct. 23) 

• 35% Final Exam

• I may curve exam grades depending on the course averages

A B C E

90-100 80-89 70-79 <70



Exams

• Midterm: 75 minutes, normal class time

• Final exam during finals period (date set by Registrar)
• Final exam is cumulative

• Some kind of notes allowed (past semesters: 1-2 sheets of notes)

• Sections 01, 02: In-person
• If you CANNOT take the exam in person, let me know

• Section 03: Will get an email discussing options
• Preferred: take with the in-person students.

• Also possible: take somewhere else with a proctor



Late Days

• 8 late days per student

• Each late day extends the deadline 24 hours

• Can use <= 2 per assignment
• Can’t use on exams

• After late days used up: 10% penalty per day late

• No work accepted >2 days late without instructor approval



Academic Honesty

• All submitted work (homework and exams) is to be your own 
individual work unless specified otherwise.

• Specifically prohibited (but this list isn’t exhaustive):
• Sharing answers with other students

• Looking online for answers

• Generative AI (e.g., ChatGPT)

• Specifically permitted:
• Getting help from TAs or instructor

• Getting help from the ARC or other official university tutoring resources
• If you want to use an outside tutor, let me know first



Academic Honesty

• Penalties (for every violation):
• Zero on the homework or exam

• Report to academic honesty
• May result in university-level sanctions after first report



Course Staff

• Instructor: Stefan Muller

• TAs: Chaoqi Ma, Gagan Beerappa

• Office hours (info including links will be posted):
• Monday 2pm-3pm SB 218E (Stefan)
• Tuesday 2pm-3pm SB 004 (Chaoqi)
• Wednesday 2pm-3pm Google Meet (Gagan)
• Thursday 10am-11am Zoom (Stefan) AND 2pm-3pm Zoom (Chaoqi)
• Friday 2pm-3pm Google Meet (Gagan)

• We are here to answer your questions! Really! Yes, all of us!



Other ways to get help

Discord Office Hours Email ARC

General questions about lectures, logistics, etc.

General discussion, clarifications, about HW questions

Specific questions about your HW answers

More in-depth personal tutoring

Personal matters (accommodations, other requests, etc.)

• Discord: IIT CS server, cs536 channel
• If you’re not on it, we’ll send an invitation

• Academic Resource Center (ARC): www.iit.edu/arc
• FREE subject matter tutoring and academic coaching

http://www.iit.edu/arc


Attendance/Sections

• Section 01: In-person

• Section 02: In-person, PhD section

• Section 03: Online (lectures recorded)

• Also:
• Sections 04, 06: In-person with other instructors

• Section 05: Online with other instructor



PhD Qualifier Section

• A sufficiently high grade in CS536 meets the requirements for the 
written qualifier for CS PhDs.
• Only if you are in section 02.

• If you are taking this class to meet this requirement and are not in section 02, 
talk to me or switch this ASAP.

• Section 02 is an in-person section. If you’re a PhD student taking 536 for the 
qualifier but can’t attend in person, let me know.



Announcements

• Blackboard fixed

• Office Hours times/links are up on Blackboard
• (times on course website)

• HW1 will be posted today
• On Blackboard

• Due 9/7, 11:59 PM (remember: can use up to 2 late days)

• Submit on Blackboard

• Start early, make sure you can do it



Syntax and Semantics and Equality

• Syntax: How to write down a “program”
• Syntactic Equality (≡): written the same (up to, e.g., parentheses)

• 2 + 2 – 3 ≡ 2 + 2 – 3 ≡ (2 + 2) – 3

• 2 + 2 – 3 ≢ 1

• 1 + 2 ≢ 2 + 1

• Semantics: What a “program” “means”
• Semantic Equality (=): has the same meaning

• 2 + 2 – 3 = (2 + 2) – 3 = 4 – 3 = 1

• 1 + 2 = 2 + 1



Propositional Logic

• “Atomic” propositions: variables that can be true (T) or false (F)
• P, Q

• Connectives: make larger propositions p, q, φ, ψ
• Negation: ¬p (not p)

• Conjunction: p ⋀ q (p and q)

• Disjunction: p ⋁ q (p or q)

• Conditional: p → q (p implies q, if p then q)

• Biconditional: p ↔ q (p iff q, p if and only if q)

• Precedence (order of operations): in the above order
𝑝 ∧ 𝑞 → 𝑟 ∨ ¬𝑞 ↔ 𝑠 ≡ [ 𝑝 ∧ 𝑞 → 𝑟 ∨ ¬𝑞 ] ↔ 𝑠



The semantics of a proposition are their truth 
values in different states
State 𝜎: Assignment of truth values (T, F) to proposition variables

Written, e.g., 𝑃 = 𝑇, 𝑄 = 𝐹

Only one assignment per variable: 𝑃 = 𝑇, 𝑃 = 𝐹

Only assigns to variables: 𝑃 ∨ 𝑄 = 𝑇

A state fitting these requirements is well-formed (opp. ill-formed)

𝜎⊨p: p “satisfied” (true) in state 𝜎



Truth value of propositions determined by 
truth tables

P Q ¬P P ⋀ Q P ⋁ Q P → Q P ↔ Q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

• ⋀, ⋁ are commutative and associative: 𝑃 ∧ 𝑄 = 𝑄 ∧ 𝑃 𝑃 ∧ 𝑄 ∧ 𝑅 = 𝑃 ∧ 𝑄 ∧ 𝑅
• → is not commutative or associative: 𝐹 → 𝑇 ≠ 𝑇 → 𝐹 𝐹 → 𝑇 → 𝐹 ≠ 𝐹 → 𝑇 → 𝐹
• ↔ is commutative and associative:       𝑃 ↔ 𝑄 = 𝑄 ↔ 𝑃 𝑃 ↔ 𝑄 ↔ 𝑅 = 𝑃 ↔ 𝑄 ↔ 𝑅



Some more facts about conditionals

For a conditional P → Q:

• The inverse ¬P → ¬ Q does not have the same truth value

• The converse Q → P does not have the same truth value
• (But is the same as the inverse)

• The contrapositive ¬Q → ¬ P has the same truth value



To determine truth value, a state needs to be 
proper for the proposition
• Proper: defines truth values for all variables in the proposition

Proposition: 𝑃 ∧ 𝑄 → 𝑅 ∨ ¬𝑄 ↔ 𝑆 

Proper:
• 𝑃 = 𝑇, 𝑄 = 𝐹, 𝑅 = 𝐹, 𝑆 = 𝑇
• 𝑄 = 𝑇, 𝑃 = 𝐹, 𝑆 = 𝐹, 𝑅 = 𝑇
• 𝑄 = 𝑇, 𝑃 = 𝐹, 𝑆 = 𝐹, 𝑅 = 𝑇, 𝑇 = 𝐹

Improper:
• 𝑃 = 𝑇, 𝑄 = 𝐹, 𝑅 = 𝐹
• 𝑃 = 𝐹, 𝑆 = 𝐹



For a well-formed and proper state, a 
proposition is satisfied or unsatisfied
• 𝑃 = 𝑇; 𝑄 = 𝐹; 𝑅 = 𝐹 ⊨ 𝑃 ∧ 𝑄 → 𝑅? Yes

• 𝑃 = 𝑇; 𝑄 = 𝐹; 𝑅 = 𝑇 ⊨ 𝑃 ∧ 𝑄 → 𝑅? Yes

• 𝑃 = 𝑇; 𝑄 = 𝐹; 𝑅 = 𝐹 ⊨ 𝑃 ∨ 𝑄 → 𝑅? No



A proposition can be a tautology, 
contradiction or contingency
Assume 𝜎 is well-formed and proper

• Tautology: 𝜎 ⊨ 𝑝 for all 𝜎  (Also write just ⊨ 𝑝) 

• Contradiction: 𝜎 ⊭ 𝑝 for all 𝜎  (Equivalent: ⊨ ¬𝑝) 
• Note that this is not the same as ⊭  𝑝 (that just says p is not a tautology)

• Contingency: There exist 𝜎1 and 𝜎2 such that 𝜎1 ⊨ 𝑝 and 𝜎2 ⊭ 𝑝
(Equivalent: ⊭  ¬𝑝 and ⊭  𝑝)



Logical implication ⇒

P ⇒ Q if whenever P is true, so is Q (“P implies Q”)

Note: this is not the same as P → Q:

• They’re related: P ⇒ Q means ⊨ P → Q

• We write → in propositions, we use ⇒ to talk about propositions
• (like how we put + in mathematical expressions, we use = to talk about them)



Logical equivalence ⇔

P ⇔ Q means P ⇒ Q  and Q ⇒ P

Semantic equality (=) on logical propositions



Some useful facts



¬(p → q) ⇒  (p ∧ ¬q)



((r → s) ∧ r) ⇒ s (“Modus ponens”)



T ⇒ P ∧ ¬ (Q ∧ R) -> ((Q ∧ R) -> ¬P)



Announcements

• New TA: Param Modi
• Office Hours: Tuesday/Thursday 11:30am-12:30pm (Online)

• HW1 is up on Blackboard.
• Covers material through part of today’s lecture



More facts

• If ⊨ 𝑝 and ⊨ 𝑞 then ⊨ 𝑝 ∧ 𝑞 

• If ⊨ 𝑝 then ⊨ 𝑝 ∨ 𝑞 and ⊨ 𝑞 ∨ 𝑝 (for any q) 

• If ⊨ 𝑝 ∧ 𝑞 then ⊨ 𝑝 and ⊨ 𝑞

• If ⊨ 𝑝 → 𝑟 and ⊨ 𝑞 → 𝑟 and ⊨ 𝑝 ∨ 𝑞 then ⊨ 𝑟 



Predicate (First-Order) Logic extends Prop. 
Logic with values in a domain
• (e.g. the integers)

• We’ll also use variables like x to hold integers (or values of whatever 
domain we’re using)

• Predicate: a function from values or variables in the domain to T or F
• e.g. isEven(x), Greater(x, 0), Greater(x, y)

“Syntactic sugar”: x >0, x > y



We can use predicates with all the existing 
connectives
• Greater(x, y) ⋁ Greater(y, x) ⋁ Equal(x, y)

• Greater(x, y) ⋁ Equal(x, y) 

• Greater(x, y) → Greater(x, y) ⋁ Equal(x, y) 

• Greater(x, y) ⋁ Equal(x, y) ↔ ¬ Greater(y, x) 



States can now have integer vars too

• 𝑥 = 5, 𝑦 = 5 ⊨ Greater 𝑥, 𝑦 ∨ Equal(𝑥, 𝑦)

• 𝑥 = 4, 𝑦 = 5 ⊭ Greater 𝑥, 𝑦 ∨ Equal(𝑥, 𝑦)

• 𝑥 = 5, 𝑦 = 5, 𝑃 = 𝑇 ⊨ (Greater 𝑥, 𝑦 ∨ Equal(𝑥, 𝑦)) ∧ 𝑃



Quantifiers introduce variables

• ∀𝑥 ∈ ℤ. 𝑝 (for all x, p)

• ∃𝑥 ∈ ℤ. 𝑝 (there exists x such that p)

• (may omit the domain if clear)

• ⊨ ∀𝑥. ∀𝑦. Greater 𝑦, 𝑥 ∨ Greater 𝑥, 𝑦 ∨ Equal(𝑥, 𝑦)

• ⊨ ∀𝑥. ∀𝑦. Greater 𝑥, 𝑦 ∨ Equal(𝑥, 𝑦) ↔ ¬Greater 𝑦, 𝑥

• ⊨ ∀𝑥. ∃𝑦. Greater(𝑦, 𝑥) 

• ⊨ ¬∃𝑥. Greater 𝑥, 2 ∧ isPrime 𝑥 ∧ isEven(𝑥) 



Equivalence with quantifiers gets a little tricky

• ∀𝑥. 𝑃 𝑥 = ∀𝑦. 𝑃(𝑦) because ∀𝑥. 𝑃 𝑥 ⇔ ∀𝑦. 𝑃(𝑦) 

• Is ∀𝑥. 𝑃 𝑥 ≡ ∀𝑦. 𝑃(𝑦)?
• For now, let’s say no.

• But there are good reasons to consider them equivalent in more-than-just-
semantic ways. We may discuss this later.



DeMorgan’s Laws for quantifiers

• ¬∃𝑥. 𝑃 ⇔ ∀𝑥. ¬𝑃

• ¬∀𝑥. 𝑃 ⇔ ∃𝑥. ¬𝑃

¬∃𝑥. Greater 𝑥, 2 ∧ isPrime 𝑥 ∧ isEven(𝑥) 

⇔ ∀𝑥. ¬Greater 𝑥, 2 ∨ ¬isPrime 𝑥 ∨ ¬isEven(𝑥) 



∀𝑥. ∃𝑦. Greater 𝑦, 𝑥 ⇔ ¬∃𝑥. ∀𝑦. ¬Greater 𝑦, 𝑥



• How would we actually go about proving ⊨ ∀𝑥. ∃𝑦. Greater 𝑦, 𝑥 ?

• Formal systems for this kind of proof are complicated (we’d need to 
know the semantics of Greater), but here’s an idea:

• To prove ⊨ ∀𝑥. 𝑝(𝑥) , p(x) must hold regardless of the choice of x.

• To prove ⊨ ∃𝑥. 𝑝(𝑥) , come up with a witness: a value of x such that 
p(x) holds.



Examples
True

True (use 1 as a witness)

Tautology (0 works as a witness regardless of choice of x)

Contingency

Contradiction (false for every choice of x)



We can define our own predicates

• e.g. Positive(x) = Greater(x, 0) ⋀¬Equal(x, 0) 

• The body should be a proposition over the parameters to the 
predicate function.

• e.g. not square(x) = x * x

• but: square(x, y) = (y = x * x)



Predicates should be simple

• For an array a, AllPositive(a, m, n), should mean that a[m], …, a[n] are 
all positive.

• First try: AllPositive(a, m, n) = Positive(a[m]) ⋀ … ⋀ Positive(a[n])

• Second try: maybe a loop?

• Fine in a regular programming language, but the purpose of our 
predicates is debugging programs
• No point if our predicates are as hard to debug as the programs!

• AllPositive(a, m, n) = ∀𝑖, 𝑚 ≤ 𝑖 ∧ 𝑖 ≤ 𝑛 → Positive(𝑎 𝑖 )



Sorted as a predicate

• Sorted(a, m, n): a[m], …, a[n] are in sorted order
• (i.e. a[m] ≤ a[m+1] ≤ … ≤ a[n])

• (i.e., a[m] ≤ a[m+1] and a[m+1] ≤ a[m+2] and…) 

• (i.e., for all i, a[i] ≤ a[i+1])

• Sorted 𝑎, 𝑚, 𝑛 = ∀𝑖, 𝑚 ≤ 𝑖 ∧ 𝑖 < 𝑛 → 𝑎 𝑖 ≤ 𝑎[𝑖 + 1]
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