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In the last two lectures, we introduced two types of triples:

� Partial correctness triple {P}S{Q}, and

� Total correctness triple [P ]S[Q].

We defined the validity of partial and total correctness triples as for all states σ, we have σ 
 {P}S{Q},
and σ 
 [P ]S[Q], respectively. We also saw that to show a triple is valid, we have to consider states σ and
the execution of statement S using our operational semantics.

It turns out that there is an elegant way of deriving valid partial correctness triples without having to
reason about states and program executions. We can use a set of axioms and inference rules called Hoare
rules, originally designed by Hoare. These rules allow us to derive provable partial correctness triples directly,
forming a proof system known as Hoare logic.

We write ` {P}S{Q} to denote that the triple is provable, meaning that we can derive a proof for
{P}S{Q} in Hoare logic. Provable and valid Hoare triples are closely related, which we will discuss later
relation in Section 3.

1 A review to inference rules

A proof system consists of axioms and inference rules. The axioms are rules that have no premises, i.e.,

axiom
(Ax)

The inference rules are of the form

premise 1 · · · premise n

conclusion
(Rule)

It states that the conclusion can be deduced from the premises numbered 1 to n. Premises are also called
the hypotheses of the rule.

A formal proof of a triple is a tree-shaped structure. The triple we want to prove is the root (conclusion),
and axioms are the leaves (premises). We use the rules of inference to derive the root (conclusion) from the
leaves (premises):

...

(Ax)

premise 1
(Rule 1)

· · ·

...

(Ax)

premise n
(Rule n)

conclusion
(Rule)

A line is either an instance of an axiom or follows from previous lines by a rule of inference.
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2 Hoare logic

We define an axiom/rule for each statement built using our grammar:

S := skip | S;S | x := e | a[e] := e | if e then S else S fi | while e do S od

2.1 Skip axiom

The skip axiom states that any property that is true before executing the statement skip is also true after:

{P} skip {P}
(Skip)

Example 1. The follwoing is a proof for ` {x = 2 ∧ y = 3} skip {x = 2 ∧ y = 3}:

{x = 2 ∧ y = 3} skip {x = 2 ∧ y = 3}
(Skip)

2.2 Assign axiom

Let’s start with an example. Is the triple {y = 2} x := 2 {y = x} correct? If initially y is equal to 2, and we
assign the value of x to 2, then finally both x and y have the same value if 2. So, yes, the triple is correct.
We design a general rule based on this example:

{[e/x]P}x := e {P}
(Assign)

We get the (pre)condition [e/x]P from the (post)condition P by substituting the expression e for all (free)
occurences of the variable x. In the triple , P is y=2 and [e/x]P is [2/x]y=x := y=2.
Example 2. The follwoing is a proof for ` {x− 1 > 0} x := x− 1 {x > 0}

` {x− 1 > 0} x := x− 1 {x > 0}
(Assign)

given that [x− 1/x]x− 1>0 := x>0.
We need to define substitution [e/x]P more formally. But first let’s look at one simple example:

[2 + y/x](x = 2 ∧ y ≤ x) := (2 + y = 2 ∧ y ≤ 2 + y).

Next, we define [e/x]P recursively on P :

[e/x]c := c c ∈ {T, F}
[e/x](P ◦Q) := [e/x]P ◦ [e/x]Q ◦ ∈ {∧,∨,→,↔}
[e/x]¬P := ¬[e/x]P

[e/x]P (e1, · · · , en) := P ([e/x]e1, · · · , [e/x]en)

[e/x]Qx.P := Qx.P Q ∈ {∀,∃}
F [e/x]Qy.P := Qy.[e/x]P Q ∈ {∀,∃}, x 6= y,

In Section 2.2.1 we will revisit the last row of the above definition to ensure that substituting a variable in a
predicate with a quantifier is handled correctly. The definition above also uses a substitution for expressions,
[e/x]e1, which we define as

[e/x]x := e

[e/x]y := y x 6= y

[e/x](e1 op e2) := [e/x]e1 op [e/x]e2
[e/x](a[e1]) := a[[e/x]e1]

[e/x](size(a)) := size(a)

[e/x](if e′ then e1 else e2) := if [e/x]e′ then [e/x]e1 else [e/x]e2
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Example 3. [2/x]y = y. In general, if x does not appear in e1, we have [e/x]e1 := e1. Similarly, if x does
not appear in P , we have [e/x]P := P .
Example 4. [2/x]∀x.x > y = ∀x.x > y. In general, if x is not a free variable P , then [e/x]P := P .
Example 5. [e/x]((∀y.y > x→ (∃x.y > x)) ∧ x 6= 0) := (∀y.y > e→ (∃x.y > x)) ∧ e 6= 0.

2.2.1 Substitution and quantifiers

Substituting a variable in a predicate with quantifiers is subtle. For example, consider the predicate ∃y.x < y,
which is true for any value given to x. Can we substitute y + 2 for x? the answer is no! If we do the
substitution, we get [y + 2/x]∃y.x < y := ∃y.y + 2 < y, leading to a contradictory formula. In other words,
the free variable y in the expression (y + 2) got “captured” by the quantifier ∃y. To avoid these form of
substitutions, we define the notion of e beging substitutable for x in P as follows:

� P is atomic or ⊥ then e is substitutable for x in P .

� e is substitutable for x in P ◦Q if e is substitutable for x in P and e is substitutable for x in Q.

� e is substituable for x in ∀y.P , ∃y.P iff either

– x does not occur in ∀y. P , or

– y does not occur in e and e is substituable for x in P .

We can only write [e/x]P if e in indeed substitutable for the variable x in P . For example, with this
definition, y + 2 is not substitutable for x in ∃y.x < y, preventing us from writing the bogus substitution
[y+ 2/x]∃y.x < y. What we can do instead is to rename the variable y in ∃y.x < y first, and then apply the
substitution: we first rewrite ∃y.x < y as an equivalent formula ∃z.x < z, and next apply the substitution
[y + 2/x] to it, i.e., [y + 2/x]∃z.x < z := ∃z.y + 2 < z.

2.3 Sequence rule

The Sequence rule enables proving a partial correctness triple for a sequence S1;S2 given triples for S1

and S2. If the postcondition of S1 matches the precondition of S2, we can derive a specification for their
sequential composition.

{P}S1 {R} {R}S2 {Q}
{P}S1;S2 {Q}

(Seq)

Example 6. Here is a proof for ` {x = a ∧ y = b} z := x;x := y; y := z {x = b ∧ y = a}:

{x = a ∧ y = b} z := x {z = a ∧ y = b}
(Assign)

...
{z = a ∧ y = b}x := y; y := z {x = b ∧ y = a}

{x = a ∧ y = b} z := x;x := y; y := z {x = b ∧ y = a}
(Seq)

The above proof relies on a proof for the premise {z = a ∧ y = b}x := y; y := z {x = b ∧ y = b}, which we
build below:

{z = a ∧ y = b}x := y {z = a ∧ x = b}
(Assign)

{z = a ∧ x = b} y := z {x = b ∧ y = a}
(Assign)

{z = a ∧ y = b}x := y; y := z {x = b ∧ y = a}
...

(Seq)

These two can be merged into one single (complete) proof tree. But we’ve broken them down into two parts
due to limited space. This is the main disadvantage of using proof trees. We will see some alternatives in
the next lecture note.
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2.4 Conditional rule

The rule for conditional is based on the observation that if e is true, then S1 is executed, and if ¬e is true,
then S2 is executed:

{P ∧ e}S1 {Q} {P ∧ ¬ e}S2 {Q}
{P} if e then S1 else S2 fi {Q}

(If)

Example 7. Here is a proof for ` {T} if x ≥ y then z := x else z := y fi{z = max(x, y)}:

{T ∧ x ≥ y} z := x {z = max(x, y)} {T ∧ ¬x ≥ y} z := y {z = max(x, y)}
{P} if e then S1 else S2 fi {Q}

(If)

This proof relies on the proofs for the premises {T ∧ x ≥ y} z := x {z = max(x, y)} and {T ∧ ¬x ≥ y} z :=
y {z = max(x, y)}. But How can we prove these two premises? They are not immediate applications of the
assign rule (Exercise 1. Why not?). It turns out we need another rule called the consequence rule to prove
these two premises. We will look at this rule next.

2.5 Consequence rule

The rule of consequence allows us to strengthen the precondition and weaken the postcondition:

P ⇒ P ′ {P ′}S {Q′} Q′ ⇒ Q

{P}S {Q}
(Consequence)

Here, premises P ⇒ P ′ and Q′ ⇒ Q are different kind of judgments – they are logical implications. The
judgment P ⇒ P ′ says the precondition can always get stronger and Q′ ⇒ Q says the postcondition can
always get weaker.

Example 8. We cannot prove ` {x = 2} z := x {z ≥ 2} using the assign rule, but we can prove
` {x = 2} z := x {z = 2}. By applying the consequence rule, we can prove the former from the latter. For
example, we can weaken the postcondition:

x = 2⇒ x = 2 ` {x = 2} z := x {z = 2}
(Assign)

z = 2⇒ z ≥ 2

{x = 2} z := x {z ≥ 2}
(Consequence)

or alternatively strengthen the precondition:

x = 2⇒ x ≥ 2 ` {x ≥ 2} z := x {z ≥ 2}
(Assign)

z ≥ 2⇒ z ≥ 2

{x = 2} z := x {z ≥ 2}
(Consequence)

Example 9. Having the consequence rule, we can complete the proof of Example 7, by providing a proof
for the premise {T ∧ x ≥ y} z := x {z = max(x, y)}:

T ∧ x ≥ y ⇒ x ≥ x ∧ x ≥ y ∧ (x = x ∨ x = y)
{x ≥ x ∧ x ≥ y ∧ (x = x ∨ x = y)} z := x {z ≥ x ∧ z ≥ y ∧ (z = x ∨ z = y)}

z ≥ x ∧ z ≥ y ∧ (z = x ∨ z = y)⇒ z = max(x, y)

{T ∧ x ≥ y} z := x {z = max(x, y)}
(Consequence)

Exercise 2. Prove the second premise from Example 7, i.e., provide a derivation for ` {T ∧ ¬x ≥ y} z :=
y {z = max(x, y)}.
Exercise 3. An alternative rule for the conditional. Show that the following rule is equivalent to the
If rule introduced in Section 2.4. (Hint: use the consequence rule and the fact that Q1 ⇒ Q1 ∨Q2.)

{P ∧ e}S1 {Q1} {P ∧ ¬ e}S2 {Q2}
{P} if e then S1 else S2 fi {Q1 ∨Q2}

(If*)
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2.6 Summary of the Hoare logic rules – so far

Here is the summary of the Hoare logic rules we have seen so far. We haven’t discussed the while rule yet.
We will talk about it later in the course.

{P} skip {P}
(Skip)

{P [e/x]}x := e {P}
(Assign)

{P}S1 {R} {R}S2 {Q}
{P}S1;S2 {Q}

(Seq)

{P ∧ e}S1 {Q} {P ∧ ¬ e}S2 {Q}
{P} if e then S1 else S2 fi {Q}

(If)
P ⇒ P ′ {P ′}S {Q′} Q′ ⇒ Q

{P}S {Q}
(Consequence)

3 Soundness and completeness

At this point we have two kinds of partial correctness assertions:

1. valid partial correctness triples 
 {P}S{Q}, which hold for all states and according to the operational
semantics of S, and

2. provable partial correctness triples ` {P}S{Q}, which can be derived using the axioms and rules of
Hoare logic.

The question is how do these two assertions relate to each other? More precisely, we have to answer two
questions. First, are provable triples guaranteed to be valid? In other words,

does ` {P}S{Q} imply 
 {P}S{Q} ?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that Hoare
logic doesn’t allow us to derive partial correctness assertions that actually are not valid. We won’t cover the
proof in this course, but for those of you who are interested, the proof is by induction on the derivation of
` {P}S{Q}.

The second question refers to the expressiveness and power of Hoare rules: can we always build a Hoare
logic proof for each valid assertion? In other words,

does 
 {P}S{Q} imply ` {P}S{Q} ?

This is a bit more complicated. But the answer is a qualified yes: if 
 {P}S{Q}, then there is a proof of the
triple, i.e., ` {P}S{Q}, using the rules of Hoare logic, provided there are proofs for the logical implication
of predicates that occur in the rule of consequence, i.e., P ⇒ P and Q′ ⇒ Q. This result is known as
the relative completeness of Hoare logic and is due to Cook 1. Cook also showed that we cannot prove a
standalone completeness result for Hoare logic as the underlying predicate logic with which we reason about
preconditions and postconditions might be incomplete (By Gödel’s incompleteness theorem).

1Cook, Stephen A. ”Soundness and completeness of an axiom system for program verification.” SIAM Journal on Computing
7.1 (1978): 70-90.
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