Big-Step Semantics and Errors

Stefan Muller, based on material by Jim Sasaki
CS 536: Science of Programming, Fall 2023
Lecture 6

1 Big-Step Operational Semantics

So far, we've seen two kinds of operational semantics:

- Small-step operational semantics, $\langle S, \sigma\rangle \rightarrow\left\langle S^{\prime}, \sigma^{\prime}\right\rangle$ where we show each step the evaluation takes.
- $\sigma(e)$ for expressions, where we only care about the result and we get there in "one big step." This is a big step semantics.

It turns out we can also define a big-step semantics for statements (and a small-step semantics for expressions, but we won't do that one). We'll write it a little differently from the expression one, though:

$$
M(S, \sigma)=\left\{\sigma^{\prime}\right\}
$$

means that if we start running S in state σ, the result is σ^{\prime} (we don't care about the final statement, because it's always skip).

- Why is the result a set? (We'll use Σ to refer to sets of states)
- Intuitively, if $M(S, \sigma)=\Sigma$, then Σ is the set of states that might result from the evaluation.
- We'll see today cases where the evaluation doesn't result in a state, and the set is empty. We might see later in the course cases where there are multiple states.

We have:

$$
M(S, \sigma)=\left\{\sigma^{\prime}\right\} \Leftrightarrow\langle S, \sigma\rangle \rightarrow^{*}\left\langle\text { skip }, \sigma^{\prime}\right\rangle
$$

We'll define this like a function, like we did with the big-step semantics for expressions. We could use inference rules too, but this is a little more concise. The cases for everything except while are pretty straightforward:

$$
\begin{aligned}
M(\text { skip }, \sigma) & =\{\sigma\} & \\
M\left(S_{1} ; S_{2}, \sigma\right) & =\bigcup_{\sigma^{\prime} \in M\left(S_{1}, \sigma\right)} M\left(S_{2}, \sigma^{\prime}\right) & \\
M(x:=e, \sigma) & =\{\sigma[x \mapsto \sigma(e)]\} & \\
M\left(a\left[e_{1}\right]:=e_{2}, \sigma\right) & =\left\{\sigma\left[a\left[\sigma\left(e_{1}\right)\right] \mapsto \sigma\left(e_{2}\right)\right]\right\} & 0 \leq \sigma\left(e_{1}\right)<|\sigma(a)| \\
M\left(\text { if } e \text { then } S_{1} \text { else } S_{2} \mathrm{fi}, \sigma\right) & =M\left(S_{1}, \sigma\right) & \sigma(e)=T \\
M\left(\text { if } e \text { then } S_{1} \text { else } S_{2} \mathrm{fi}, \sigma\right) & =M\left(S_{2}, \sigma\right) & \sigma(e)=F
\end{aligned}
$$

Let's try a first (wrong) attempt at defining M (while e do S od, σ). We'll use the same trick of turing it into a conditional:

$$
M(\text { while } e \text { do } S \text { od, } \sigma)=M(\text { if } e \text { then } S \text {; while } e \text { do } S \text { od else skip fi, } \sigma)
$$

But this isn't a valid recursive definition! ${ }^{1}$

[^0]Instead, let's look at progressive iterations of the loop. Let Σ_{k} be the set of states we might have after running the loop k times:

$$
\begin{aligned}
\Sigma_{0} & =\{\sigma\} \\
\Sigma_{k}+1 & =\bigcup_{\sigma \in \Sigma_{k}} M(S, \sigma)
\end{aligned}
$$

Take while $x \geq \overline{0}$ do $x:=x-\overline{1}$ od in the state $\{x=3\}$.

$$
\begin{aligned}
& \Sigma_{0}=\{\{x=3\}\} \\
& \Sigma_{1}=\bigcup_{\sigma \in \Sigma_{0}} M(x:=x-\overline{1}, \sigma)=M(x:=x-\overline{1},\{x=3\})=\{\{x=2\}\} \\
& \Sigma_{2}=\bigcup_{\sigma \in \Sigma_{1}} M(x:=x-\overline{1}, \sigma)=M(x:=x-\overline{1},\{x=2\})=\{\{x=1\}\} \\
& \Sigma_{3}=\bigcup_{\sigma \in \Sigma_{2}} M(x:=x-\overline{1}, \sigma)=M(x:=x-\overline{1},\{x=1\})=\{\{x=0\}\} \\
& \Sigma_{4}=\bigcup_{\sigma \in \Sigma_{3}} M(x:=x-\overline{1}, \sigma)=M(x:=x-\overline{1},\{x=0\})=\{\{x=-1\}\}
\end{aligned}
$$

We could keep going like this forever, but note that (in this case) we don't have to. Once we reach a Σ_{k} such that for all $\sigma \in \Sigma_{k}$, the conditional expression is false, the loop stops, and so can we.

This gives us the formal definitions:

$$
M(\text { while } e \text { do } S \text { od, } \sigma)=\Sigma_{k} \quad \Sigma_{k} \text { is the lowest } k \text { such that if } \sigma \in \Sigma_{k} \text {, then } \sigma(e)=F
$$

Of course, there may not be such a k (e.g., if $S=$ while $x \geq \overline{0}$ do $x:=x+\overline{1}$ od). In this case, $M(S, \sigma)=\emptyset$.

Example

$$
\begin{aligned}
M(x:=\overline{5} ; y:=x+\overline{1}, \emptyset) & =\bigcup_{\sigma \in M(x:=\overline{5}, \emptyset)} M(y:=x+\overline{1}, \sigma) \\
& =\bigcup_{\sigma \in\{\{x=5\}\}} M(y:=x+\overline{1}, \sigma) \\
& =M(y:=x+\overline{1},\{x=5\}) \\
& =\{x=5, y=6\}
\end{aligned}
$$

2 Runtime Errors

Fill in the blank: $\sigma(\overline{42} / \overline{0})=$?
It has to be a semantic integer, but there... isn't one. In any reasonable programming language (and a lot of unreasonable ones), this is an error/exception. So we should model those. We'll say $\sigma(\overline{42} / \overline{0})=\perp$. So now $\sigma(e)$ is either a semantic value or \perp.

Other things that raise errors:

- $\{x=[1 ; 2]\}(a[\overline{3}])=\perp$
- $\{x=-1\}(\operatorname{sqrt}(x))=\perp$ (if we assume we have a sqrt function).
- $\sigma($ true + false $)=\perp($ runtime type error $)$

2.1 Hereditary Failure

Fill in the blank: $\sigma(3+(\overline{42} / \overline{0}))=$?
This still fails even though the failure isn't at the "outer level." Let's add some cases to handle this:

$$
\begin{aligned}
\sigma\left(e_{1} \text { op } e_{2}\right) & =\perp \quad \sigma\left(e_{1}\right)=\perp \vee \sigma\left(e_{2}\right)=\perp \\
\sigma\left(\text { if } e_{1} \text { then } e_{2} \text { else } e_{3}\right) & =\perp \sigma\left(e_{1}\right)=\perp
\end{aligned}
$$

This is called hereditary failure: we propagate errors up to outer expressions.
Note: We don't fail if the not-taken branch fails. This lets us do things like

$$
\sigma(\text { if } x=\overline{0} \text { then } \overline{1} \text { else } y / x)
$$

2.2 Errors in Statements

For small-step semantics, we'll write $\langle S, \sigma\rangle \rightarrow\langle$ skip, $\perp\rangle$ if a step leads to an error.

$$
\begin{array}{cc}
\frac{\left\langle s_{1}, \sigma\right\rangle \rightarrow\langle\text { skip }, \perp\rangle}{\left\langle s_{1} ; s_{2}, \sigma\right\rangle \rightarrow\langle\text { skip }, \perp\rangle} & \frac{\sigma(e)=\perp}{\langle x:=e, \sigma\rangle \rightarrow\langle\text { skip }, \perp\rangle} \\
\frac{\sigma\left(e_{1}\right) \geq|\sigma(a)| \vee \sigma\left(e_{1}\right)<0}{\left\langle a\left[e_{1}\right]:=e_{2}, \sigma\right\rangle \rightarrow\langle\text { skip }, \perp\rangle} \\
\left\langle a\left[e_{1}\right]:=e_{2}, \sigma\right\rangle \rightarrow\langle\text { skip }, \perp\rangle & \frac{\sigma(e)=\perp}{\left\langle\text { if } e \text { then } S_{1} \text { else } S_{2} \text { fi, } \sigma\right\rangle \rightarrow\langle\text { skip }, \perp\rangle}
\end{array}
$$

Note: \perp appears in some of the places a state does, but it's not a state (or a value). In particular, here are some things we'll never write:

- $\perp[x \mapsto 0]$
- $\perp(x)$
- $\perp(e)$
- $\sigma[x \mapsto \perp]$
- $M(S, \perp)$

We'll do something equivalent in big-step semantics:

$$
\begin{aligned}
& M(x:=e, \sigma)=\{\perp\} \\
& M\left(a\left[e_{1}\right]:=e_{2}, \sigma\right)=\{\perp(e)=\perp \\
& M\left(\text { if } e \text { then } S_{1} \text { else } S_{2} \text { fi, } \sigma\right)=\{\perp\} \\
&\left\{\left(e_{1}\right)=\perp \vee \sigma\left(e_{2}\right)=\perp \vee \sigma\left(e_{1}\right)<0 \vee \sigma\left(e_{1}\right) \geq|\sigma(a)|\right. \\
& \sigma(e)=\perp
\end{aligned}
$$

Or equivalently, we can say that $\sigma(S)=\{\perp\}$ if $\langle S, \sigma\rangle \rightarrow^{*}\langle$ skip, $\perp\rangle$.

[^0]: ${ }^{1}$ It would be fine in programming, but in math, if you define something recursively, the "argument" needs to get smaller in "recursive calls."

