
Big-Step Semantics and Errors

Stefan Muller, based on material by Jim Sasaki

CS 536: Science of Programming, Fall 2023
Lecture 6

1 Big-Step Operational Semantics

So far, we’ve seen two kinds of operational semantics:

� Small-step operational semantics, 〈S, σ〉 → 〈S′, σ′〉 where we show each step the evaluation takes.

� σ(e) for expressions, where we only care about the result and we get there in “one big step.” This is
a big step semantics.

It turns out we can also define a big-step semantics for statements (and a small-step semantics for
expressions, but we won’t do that one). We’ll write it a little differently from the expression one, though:

M(S, σ) = {σ′}

means that if we start running S in state σ, the result is σ′ (we don’t care about the final statement, because
it’s always skip).

� Why is the result a set? (We’ll use Σ to refer to sets of states)

� Intuitively, if M(S, σ) = Σ, then Σ is the set of states that might result from the evaluation.

� We’ll see today cases where the evaluation doesn’t result in a state, and the set is empty. We might
see later in the course cases where there are multiple states.

We have:
M(S, σ) = {σ′} ⇔ 〈S, σ〉 →∗ 〈skip, σ′〉

We’ll define this like a function, like we did with the big-step semantics for expressions. We could
use inference rules too, but this is a little more concise. The cases for everything except while are pretty
straightforward:

M(skip, σ) = {σ}
M(S1;S2, σ) =

⋃
σ′∈M(S1,σ)M(S2, σ

′)

M(x := e, σ) = {σ[x 7→ σ(e)]}
M(a[e1] := e2, σ) = {σ[a[σ(e1)] 7→ σ(e2)]} 0 ≤ σ(e1) < |σ(a)|

M(if e then S1 else S2 fi, σ) = M(S1, σ) σ(e) = T
M(if e then S1 else S2 fi, σ) = M(S2, σ) σ(e) = F

Let’s try a first (wrong) attempt at defining M(while e do S od, σ). We’ll use the same trick of turing it
into a conditional:

M(while e do S od, σ) = M(if e then S; while e do S od else skip fi, σ)

But this isn’t a valid recursive definition!1

1It would be fine in programming, but in math, if you define something recursively, the “argument” needs to get smaller in
“recursive calls.”

1

Instead, let’s look at progressive iterations of the loop. Let Σk be the set of states we might have after
running the loop k times:

Σ0 = {σ}
Σk + 1 =

⋃
σ∈Σk

M(S, σ)

Take while x ≥ 0 do x := x− 1 od in the state {x = 3}.

Σ0 = {{x = 3}}
Σ1 =

⋃
σ∈Σ0

M(x := x− 1, σ) = M(x := x− 1, {x = 3}) = {{x = 2}}
Σ2 =

⋃
σ∈Σ1

M(x := x− 1, σ) = M(x := x− 1, {x = 2}) = {{x = 1}}
Σ3 =

⋃
σ∈Σ2

M(x := x− 1, σ) = M(x := x− 1, {x = 1}) = {{x = 0}}
Σ4 =

⋃
σ∈Σ3

M(x := x− 1, σ) = M(x := x− 1, {x = 0}) = {{x = −1}}
. . .

We could keep going like this forever, but note that (in this case) we don’t have to. Once we reach a Σk
such that for all σ ∈ Σk, the conditional expression is false, the loop stops, and so can we.

This gives us the formal definitions:

M(while e do S od, σ) = Σk Σk is the lowest k such that if σ ∈ Σk, then σ(e) = F

Of course, there may not be such a k (e.g., if S = while x ≥ 0 do x :=x+1 od). In this case, M(S, σ) = ∅.

Example
M(x := 5; y := x+ 1, ∅) =

⋃
σ∈M(x:=5,∅)M(y := x+ 1, σ)

=
⋃
σ∈{{x=5}}M(y := x+ 1, σ)

= M(y := x+ 1, {x = 5})
= {x = 5, y = 6}

2 Runtime Errors

Fill in the blank: σ(42/0) =?
It has to be a semantic integer, but there... isn’t one. In any reasonable programming language (and a

lot of unreasonable ones), this is an error/exception. So we should model those. We’ll say σ(42/0) = ⊥. So
now σ(e) is either a semantic value or ⊥.

Other things that raise errors:

� {x = [1; 2]}(a[3]) = ⊥

� {x = −1}(sqrt(x)) = ⊥ (if we assume we have a sqrt function).

� σ(true + false) = ⊥ (runtime type error)

2.1 Hereditary Failure

Fill in the blank: σ(3 + (42/0)) =?
This still fails even though the failure isn’t at the “outer level.” Let’s add some cases to handle this:

σ(e1 op e2) = ⊥ σ(e1) = ⊥ ∨ σ(e2) = ⊥
σ(if e1 then e2 else e3) = ⊥ σ(e1) = ⊥

This is called hereditary failure: we propagate errors up to outer expressions.
Note: We don’t fail if the not-taken branch fails. This lets us do things like

σ(if x = 0 then 1 else y/x)

2

2.2 Errors in Statements

For small-step semantics, we’ll write 〈S, σ〉 → 〈skip,⊥〉 if a step leads to an error.

〈s1, σ〉 → 〈skip,⊥〉
〈s1; s2, σ〉 → 〈skip,⊥〉

σ(e) = ⊥
〈x := e, σ〉 → 〈skip,⊥〉

σ(e1) = ⊥ ∨ σ(e2) = ⊥
〈a[e1] := e2, σ〉 → 〈skip,⊥〉

σ(e1) ≥ |σ(a)| ∨ σ(e1) < 0

〈a[e1] := e2, σ〉 → 〈skip,⊥〉
σ(e) = ⊥

〈if e then S1 else S2 fi, σ〉 → 〈skip,⊥〉

Note: ⊥ appears in some of the places a state does, but it’s not a state (or a value). In particular, here
are some things we’ll never write:

� ⊥[x 7→ 0]

� ⊥(x)

� ⊥(e)

� σ[x 7→ ⊥]

� M(S,⊥)

We’ll do something equivalent in big-step semantics:

M(x := e, σ) = {⊥} σ(e) = ⊥
M(a[e1] := e2, σ) = {⊥} σ(e1) = ⊥ ∨ σ(e2) = ⊥ ∨ σ(e1) < 0 ∨ σ(e1) ≥ |σ(a)|

M(if e then S1 else S2 fi, σ) = {⊥} σ(e) = ⊥

Or equivalently, we can say that σ(S) = {⊥} if 〈S, σ〉 →∗ 〈skip,⊥〉.

3

