
Statements and Operational Semantics

Stefan Muller, based on material by Jim Sasaki

CS 536: Science of Programming, Fall 2023
Lecture 5

1 A Simple Programming Language, continued

Today, we’ll talk about the syntax and semantics of another part of the language, statements. Below, we’ll
use e for expressions. When we know an expression is going to be a Boolean, we might use B instead (but
the syntax of these expressions is still the same).

Statements e ::= x := e Assignment
| a[e] := e Array Assignment
| if B then S else S fi Conditional
| while B do S od Loop
| S;S Sequence
| skip Skip

A few notes on the syntax:

� We can sequence statements together using semicolons: e.g. S1;S2. We can continue this with multiple
statements—while it rarely matters semantically, we’ll say that sequencing is right-associative, i.e.
S1;S2;S3 ≡ S1; (S2;S3).

� This makes a sequence of statements look almost like in C/C++/Java, where a semicolon ends a state-
ment. Technically though, we shouldn’t have a semicolon at the end (e.g., S1;S2; is not syntactically
valid).

� skip is a no-op statement. Why is this useful? Maybe you don’t want an “else” branch of a conditional:

if x < 0 then x := x+ 1 else skip fi

� x := e evaluates e and assigns the value to variable x. a[e1] := e2 evaluates e2 and assigns the value to
the eth1 element of array a (a can also be multi-dimensional; recall the syntactic sugar from last class).

� If and while statements work like in most major programming languages.

� As with expressions, we’ve omitted a lot in the name of keeping the language simple, but there’s a
lot of room for syntactic sugar. For example, want for loops? We can represent for (x = 0; x < n;

x++) { S } as:
x := 0; while x < n do S;x := x+ 1 od

Examples.

� The following program computes the Factorial of n (assuming n is positive): at the end of the pro-
gram, n ≥ 0→ r = n!.

1

r := 1;
while n ≥ 1
do
r := r ∗ n;
n := n− 1

od

� Remember, we don’t have assignment expressions (like in C, where y = x++ assigns x + 1 to x and
returns the old x which is assigned to y. However, we can express this as

y := x;x := x+ 1

2 (Small-step) Operational Semantics of Programs

Last time, we defined the semantics of expressions (i.e., what expressions mean or how they evaluate)
with σ(e). Evaluating statements is a bit more complicated. We’ll evaluate them using a “small-step
operational semantics”. To unpack that a bit:

� Semantics are what a program/expression/statement/etc. means.

� Operational semantics describes how a program executes.

� Small-step operational semantics describes a program executing one step at a time, like how a computer
does. Next time, we’ll contrast this with big-step operational semantics.

We’ll actually define the semantics not just over statements, but over “configurations”, which are a pair
of a statement and a state, which we’ll write as 〈S, σ〉. This is because we need the state to evaluate the
statement, and also evaluating the statement might change the state. We’ll write

〈S1, σ1〉 → 〈S2, σ2〉

to mean that in one step, if we’re in state σ1 and we execute S1, the program changes to S2 (this is a bit
confusing; it’ll become clearer in a bit) and the state changes to σ2.

As an example,
〈x := 1; y := 2, {x = 0, y = 0}〉 → 〈y := 2, {x = 1, y = 0}〉

(technically, this will actually be two steps with the rules we’ll give, but this is just to give an idea).
We can keep going:

〈x := 1; y := 2, {x = 0, y = 0}〉 → 〈y := 2, {x = 1, y = 0}〉 → 〈skip, {x = 1, y = 2}〉

How do we know when we’re done? When we reach 〈skip, σ〉 for some σ, which is the final result of the
program.

We specify the operational semantics using inference rules. These are written with a horizontal line, and
a statement (called a conclusion) about a configuration stepping to another configuration below the line.
Above the line are zero or more premises that say when we can apply the rule. If all the premises are true
(determining whether they’re true may require applying more rules), then we can apply the rule to determine
that the conclusion is true.

〈x := e, σ〉 → 〈skip, σ[x 7→ σ(e)]〉
0 ≤ σ(e1) < |σ(a)|

〈a[e1] := e2, σ〉 → 〈skip, σ[a[σ(e1)] 7→ σ(e2)]〉

〈S1, σ〉 → 〈S′1, σ〉
〈S1;S2, σ〉 → 〈S′1;S2, σ〉 〈skip;S, σ〉 → 〈S, σ〉

σ(e) = T

〈if e then S1 else S2 fi, σ〉 → 〈S1, σ〉

σ(e) = F

〈if e then S1 else S2 fi, σ〉 → 〈S2, σ〉 〈while e do S od, σ〉 → 〈if e then S; while e do S od else skip fi, σ〉

2

Example 1 Let’s formally apply the rules to the example above.

〈x := 1; y := 2, {x = 0, y = 0}〉
→ 〈skip; y := 2, {x = 0, y = 0}[x 7→ 1]〉
→ 〈y := 2, {x = 1, y = 0}〉
→ 〈skip, {x = 1, y = 2}〉

Note that we write {x = 0, y = 0}[x 7→ 1] for clarity. This doesn’t step to {x = 1, y = 0}, it is equal
to {x = 1, y = 0}. We could just as easily have written it this way instead.

As we see, the first assignment actually steps to skip and then we use another rule (and another step) to
remove that skip. This will get a little tiresome, so we can also write

〈x := 1; y := 2, {x = 0, y = 0}〉
→2 〈y := 2, {x = 1, y = 0}〉
→ 〈skip, {x = 1, y = 2}〉

where →2 means that this is actually 2 steps. (More generally, we’ll use →n to mean n steps and →∗ to
mean any number of steps, including 0.) We can use this to skip over “boring” steps. How do we know if a
step is “boring”? There’s no hard and fast rule, but if a step doesn’t update the state, check a condition or
do something else of interest like that, it’s probably safe to skip. When in doubt, write out the steps.

Example 2 Below, let W = while x ≥ 0 do x := x− 1 od.

〈W, {x = 1}〉
→ 〈if x ≥ 0 then x := x− 1;W else skip fi, {x = 1}〉
→ 〈x := x− 1;W, {x = 1}〉
→2 〈W, {x = 1}[x 7→ 0]〉
→ 〈if x ≥ 0 then x := x− 1;W else skip fi, {x = 0}〉
→ 〈x := x− 1;W, {x = 0}〉
→2 〈W, {x = 0}[x 7→ −1]〉
→ 〈if x ≥ 0 then x := x− 1;W else skip fi, {x = −1}〉
→ 〈skip, {x = −1}〉

3

