
IMP: Modeling Imperative Languages

Stefan Muller, partially based on material by Jim Sasaki (for CS536)

CS 534: Types and Programming Languages, Spring 2024
Lectures 6-7

1 IMP Syntax

Today, we’ll take our E language and add another layer of syntax, statements, to make more of a real
programming language, IMP. Below, we’ll use e for expressions.

Expressions e ::= . . . (everything from before)
| x Variables

Types τ ::= int | string
Statements s ::= x := e Assignment

| if e then s else s fi Conditional
| while e do s od Loop
| s; s Sequence
| skip Skip

A few notes on the syntax:

� We can sequence statements together using semicolons: e.g. s1; s2. We can continue this with multiple
statements—while it rarely matters semantically, we’ll say that sequencing is right-associative, i.e.
s1; s2; s3 ≡ s1; (s2; s3).

� This makes a sequence of statements look almost like in C/C++/Java, where a semicolon ends a
statement. Technically though, we shouldn’t have a semicolon at the end (e.g., s1; s2; is not syntactically
valid).

� skip is a no-op statement. Why is this useful? Maybe you don’t want an “else” branch of a conditional:

if x < 0 then x := x+ 1 else skip fi

� x := e evaluates e and assigns the value to variable x.

� If and while statements work like in most major programming languages.

� As with expressions, we’ve omitted a lot in the name of keeping the language simple, but there’s a
lot of room for syntactic sugar. For example, want for loops? We can represent for (x = 0; x < n;

x++) { s } as:
x := 0; while x < n do s;x := x+ 1 od

Examples.

� The following program computes the Factorial of n (assuming n is positive): at the end of the pro-
gram, n ≥ 0→ r = n!.

1

r := 1;
while (n ≥ 1)
do
r := r ∗ n;
n := n− 1

od

� We don’t have assignment expressions (like in C, where y = x++ assigns x + 1 to x and returns the
old x which is assigned to y. However, we can express this as

y := x;x := x+ 1

2 Small-step Operational Semantics of Programs

We have a small-step semantics for expressions (other than variables) already, so today we’ll define one for
statements. We’ll actually define the semantics not just over statements, but over “configurations”, which
are a pair of a statement and a state, which we’ll write as 〈S, σ〉. A state σ is a mapping from variables
to their values. We’ll write a state as a set of variable-value pairs, e.g., σ = {x = 1, y = “Hello”}. Like
with sets, we’ll write the empty state as ∅. We’ll write σ(x) to mean the value of x in state σ. For the σ
above, σ(x) = 1. We’ll also use the following syntax to update or extend a state with a new value (or an
updated value for a variable that’s already in the state:

σ[x 7→ e]

Note this doesn’t actually change σ in any way. If σ is the state above, then (σ[x 7→ 2])(x) = 2, but σ(x) is
still 1.

We’ll write
〈s1, σ1〉 7→ 〈s2, σ2〉

to mean that in one step, if we’re in state σ1 and we execute S1, the program changes to S2 (this is a bit
confusing; it’ll become clearer in a bit) and the state changes to σ2.

As an example,
〈x := 1; y := 2, {x = 0, y = 0}〉 7→ 〈y := 2, {x = 1, y = 0}〉

(technically, this will actually be two steps with the rules we’ll give, but this is just to give an idea).
We can keep going:

〈x := 1; y := 2, {x = 0, y = 0}〉 7→ 〈y := 2, {x = 1, y = 0}〉 7→ 〈skip, {x = 1, y = 2}〉

We also have a judgment corresponding to e val for configurations: 〈s, σ〉 final means that the configuration
has finished evaluating. Finally, we need to add the state σ to the semantics for expressions, since we’ll need
it to evaluate variables:

e 7→σ e

We don’t need configurations on both sides because evaluating expressions doesn’t change the state.
Nothing’s stopping us from putting them, this is just less writing. Let’s start off with the added rule for

variables:

x 7→σ σ(x)
(S-9)

Note this gives us a new way to have a “stuck state” (and a violation of Progress): an unbound variable.
All of the other small step rules for expressions are the same as before, they just thread the state through.
Now for the rules for statements.

2

〈skip, σ〉 final
(F-1)

e 7→σ e
′

〈x := e, σ〉 7→ 〈x := e′, σ〉
(IS-1)

e val

〈x := e, σ〉 7→ 〈skip, σ[x 7→ e]〉
(IS-2)

〈s1, σ〉 7→ 〈s′1, σ′〉
〈s1; s2, σ〉 7→ 〈s′1; s2, σ

′〉
(IS-3)

〈skip; s, σ〉 7→ 〈s, σ〉
(IS-4)

e 7→σ e
′

〈if e then s1 else s2 fi, σ〉 7→ 〈if e′ then s1 else s2 fi, σ〉
(IS-5)

n > 0

〈if n then s1 else s2 fi, σ〉 7→ 〈s1, σ〉
(IS-6)

n ≤ 0

〈if n then s1 else s2 fi, σ〉 7→ 〈s2, σ〉
(IS-7)

〈while e do s od, σ〉 7→ 〈if e then s; while e do s od else skip fi, σ〉
(IS-8)

Example 1 Let’s formally apply the rules to the example above.

〈x := 1; y := 2, {x = 0, y = 0}〉
7→ 〈skip; y := 2, {x = 0, y = 0}[x 7→ 1]〉
7→ 〈y := 2, {x = 1, y = 0}〉
7→ 〈skip, {x = 1, y = 2}〉

Note that we write {x = 0, y = 0}[x 7→ 1] for clarity. This doesn’t step to {x = 1, y = 0}, it is equal
to {x = 1, y = 0}. We could just as easily have written it this way instead.

As we see, the first assignment actually steps to skip and then we use another rule (and another step) to
remove that skip. This will get a little tiresome, so we can also write

〈x := 1; y := 2, {x = 0, y = 0}〉
7→2 〈y := 2, {x = 1, y = 0}〉
7→ 〈skip, {x = 1, y = 2}〉

where 7→2 means that this is actually 2 steps. (More generally, we’ll use 7→n to mean n steps and 7→∗ to
mean any number of steps, including 0.) We can use this to skip over “boring” steps. How do we know if a
step is “boring”? There’s no hard and fast rule, but if a step doesn’t update the state, check a condition or
do something else of interest like that, it’s probably safe to skip. When in doubt, write out the steps.

Example 2 Below, let W = while x do x := x− 1 od.

〈W, {x = 1}〉
7→ 〈if x then x := x− 1;W else skip fi, {x = 1}〉
7→ 〈if 1 then x := x− 1;W else skip fi, {x = 1}〉
7→ 〈x := x− 1;W, {x = 1}〉
7→ 〈x := 1− 1;W, {x = 1}〉
7→ 〈x := 0;W, {x = 1}〉
7→2 〈W, {x = 1}[x 7→ 0]〉
7→ 〈if x then x := x− 1;W else skip fi, {x = 0}〉
7→ 〈if 0 then x := x− 1;W else skip fi, {x = 0}〉
7→ 〈skip, {x = 0}〉

3

3 Typing rules for IMP

We’ll now present a type system for IMP. The most interesting part is the type system for expressions, but
that now needs to change from what we’ve seen before for an important reason: what’s the type of the
expression x? Well, it depends on what the type of the variable x is. We have no way of knowing this
without additional information, so we need a context to give us this information. The typing judgment for
expressions now has an extra context Γ, which maps variables to their types (in much the same way a state
maps variables to their values). We’ll write a context without the set notation though, like this:

x : int, y : string

We’ll write the empty context as · (you’ll also sometimes see ∅). We’ll write Γ, x : τ to mean “the context Γ
but extended with x having type τ .” Generally, we’ll only write this if x isn’t already in Γ (more on what
to do if it is later in the course...) The order of variables in a context doesn’t matter, so we can write any
context that has x : τ in it in this way. The new typing judgment is Γ ` e : τ . We need the context for all of
the rules, even though it’s only useful for the variable rule:

Γ, x : τ ` x : τ
(T-0)

Γ ` n : int
(T-1)

Γ ` “s” : string
(T-2)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int
(T-3)

Γ ` e1 : string Γ ` e2 : string

Γ ` e1 ˆ e2 : string
(T-4)

Γ ` e : string

Γ ` |e| : int
(T-5)

Statements don’t really have a type, but we still want to make sure they “make sense”, e.g., if x has
type int, we don’t want to do x := “Hello”. We’ll use the judgment Γ ` s ok to say that s is well-typed under
the context Γ.

Γ ` skip ok
(IT-1)

Γ, x : τ ` e : τ

Γ, x : τ ` x := e ok
(IT-2)

Γ ` e : int Γ ` s1 ok Γ ` s2 ok

Γ ` if e then s1 else s2 fi ok
(IT-3)

Γ ` e : int Γ ` s ok

Γ ` while e do s od ok
(IT-4)

Γ ` s1 ok Γ ` s2 ok

Γ ` s1; s2 ok
(IT-5)

We also need to know that a state is well-typed, i.e., that all the values have the right types. We’ll say
that Γ ` σ if for all x : τ ∈ Γ, we have x = e ∈ σ for some e and · ` e : τ . Note that we don’t need a context
to type these values because they shouldn’t have any variables in them (we say they are closed). So, for
example,

x : int, y : string ` {x = 5, y = “Hello”}

but the following are not true:
x : int, y : string ` {x = 5}

x : int ` {x = 5, y = “Hello”}

4 Type Safety

We have an extra typing rule and extra small-step rule for expressions, so that means we have another case
each for Progress and Preservation for expressions (and, technically, every other case has to change slightly,
but it just means writing σs and Γs in the right places). We also need an extra assumption on preservation
and progress, and an additional lemma:

Lemma 1 (Weakening). If Γ ` e : τ and x 6∈ Dom(Γ), then Γ, x : τ ′ ` e : τ .

4

Proof. By induction on the derivation of Γ ` e : τ .

� T-0. Then e = y and Γ = Γ′, y : τ and so Γ, x : τ ′ = Γ′, x : τ ′, y : τ (because order doesn’t matter).
Apply T-0.

� T-1. Then e = n and τ = int. Apply T-1.

� T-2. Similar.

� T-3. Then e = e1 + e2 and τ = int and Γ ` e1 : int and Γ ` e2 : int. By induction, Γ, x : τ ′ ` e1 : int
and Γ, x : τ ′ ` e2 : int. Apply rule T-3.

� T-4, T-5. Similar.

Note, as a corollary, we can apply weakening as many times as we want to add more variables to the
context as long as they’re all different and none of them were there before. In particular, if · ` e : τ ,
then Γ ` e : τ for any Γ (that doesn’t repeat variables).

The reverse (that e is well-typed under the empty context if it’s well-typed under a non-empty context)
is true for values (which in IMP are just integer and string literals).

Lemma 2. If Γ ` e : τ and e val then · ` e : τ .

Proof. By induction on the derivation of e val.

� V-1. Then e = n. By inversion, τ = int. Apply T-1.

� V-2. Then e = “s”. By inversion, τ = string. Apply T-2.

Lemma 3 (Preservation). If Γ ` e : τ and Γ ` σ and e 7→σ e
′ then Γ ` e′ : τ .

� S-9. Then e = x and e′ = σ(x). By inversion on T-0, Γ(x) = τ . By the definition of Γ ` σ, we
know · ` σ(x) : τ . By weakening, Γ ` σ(x) : τ .

Lemma 4 (Progress). If Γ ` e : τ and Γ ` σ then either e val or there exists e′ such that e 7→σ e
′.

� T-0. Then e = x and Γ(x) = τ . By the definition of Γ ` σ, we know that there exists some e′ such
that σ(x) = e′. By S-9, e 7→σ e

′.

We’ve set things up so that type safety now also implies there are no unbound variables at runtime
(assuming we start with a well-typed state)!

We need preservation and progress results for statements too. They’ll use the progress and preservation
results for expressions from above.

Lemma 5 (Preservation for Statements). If Γ ` s ok and Γ ` σ and 〈s, σ〉 7→ 〈s′, σ′〉 then Γ ` s′ ok
and Γ ` σ′

Proof. By induction on the derivation of 〈s, σ〉 7→ 〈s′, σ′〉.

� IS-1. Then s = x := e and s′ = x := e′ and e 7→σ e
′ and σ′ = σ. By inversion, x : τ ∈ Γ and Γ ` e : τ .

By Lemma 3, Γ ` e′ : τ . Apply IT-2. We have Γ ` σ′ because σ′ = σ.

� IS-2. Then s = x := e and e val and s′ = skip and σ′ = σ[x 7→ e]. By inversion, x : τ ∈ Γ and Γ ` e : τ .
By Lemma 2, we have · ` e : τ . We therefore have Γ ` σ′. We have Γ ` skip ok by IT-1.

� IS-3. Then s = s1; s2 and s = s′1; s2 and 〈s1, σ〉 7→ 〈s′1, σ′〉. By inversion on IT-5, Γ ` s1 ok
and Γ ` s2 ok. By induction, Γ ` s′1 ok and Γ ` σ′. Apply rule IT-5.

� IS-4. Then s = skip; s′ and σ′ = σ, so Γ ` σ′. By inversion on IT-5, Γ ` s′ ok.

5

� IS-5. Then s = if e then s1 else s2 fi and s′ = if e′ then s1 else s2 fi and e 7→σ e
′ and σ′ = σ. By

inversion, Γ ` e : int and Γ ` s1 ok and Γ ` s2 ok. By Lemma 3, Γ ` e′ : int. Apply IT-3.

� IS-6. Then s = if n then s′ else s2 fi and σ′ = σ. By inversion, Γ ` s′ ok.

� IS-7. Similar to above.

� IS-8. Then s = while e do s od and σ′ = σ. and s′ = if e then (s; while e do s od) else skip fi.
By inversion, Γ ` e : int and Γ ` s ok. By assumption, Γ ` while e do s od ok. By IT-5, Γ `
s; while e do s od ok. By IT-1, Γ ` skip ok. By IT-3, Γ ` s′ ok.

Lemma 6 (Progress for statements). If Γ ` s ok and Γ ` σ, then either 〈s, σ〉 final or there exist s′ and σ′

such that 〈s, σ〉 7→ 〈s′, σ′〉.

Proof. By induction on the derivation of Γ ` s ok.

� IT-1. Then s = skip. By F-1, 〈s, σ〉 final.

� IT-2. Then s = x := e and Γ = Γ′, x : τ and Γ ` e : τ . By Lemma 4, either e val or e 7→σ e
′.

– If e val, then 〈s, σ〉 7→ 〈skip, σ[x 7→ e]〉 by IS-2.

– If e 7→σ e
′, then 〈s, σ〉 7→ 〈x := e′, σ〉 by IS-1.

� IT-3. Then s = if e then s1 else s2 fi and Γ ` e : int and Γ ` s1 ok and Γ ` s2 ok. By Lemma 4,
either e val or e 7→σ e

′.

– If e val, then 〈s, σ〉 steps by IS-6 or IS-7 depending on the value of n.

– If e 7→σ e
′, then 〈s, σ〉 7→ 〈if e′ then s1 else s2 fi, σ〉 by IS-5.

� IT-4. Then s = while e do s od, and 〈s, σ〉 steps by IS-8.

� IT-5. Then s = s1; s2 and Γ ` s1 ok and Γ ` s2 ok. By induction, either 〈s1, σ〉 final or 〈s1, σ〉 7→ 〈s′1, σ〉.

– If 〈s1, σ〉 final, then by inversion on F-1, s1 = skip. By IS-4, 〈s, σ〉 7→ 〈s2, σ〉.
– If 〈s1, σ〉 7→ 〈s′1, σ′〉, then 〈s, σ〉 7→ 〈s′1; s2, σ

′〉 by IS-3.

6

