Type Safety

Last time: type system to prevent programs like (1+2) + "Hello"
How do we know we got it right, i.e. well-typed programs
don't have type errors at runtime?

"Type Safety"! "Well-typed programs can't go wrong" - Robin Milner

2 components (theorems we'll prove):
- Progress: If e is well-typed, it's a value or can take a step
- Preservation: If a well-typed exp takes a step, it's still
 well-typed (with the same type)

\[
\begin{align*}
& e^i \gamma \rightarrow e^2 \gamma \rightarrow e^3 \gamma \rightarrow \ldots \rightarrow v \\
& \text{Prog} \quad \text{Pres} \quad \text{Pres}
\end{align*}
\]

Preservation: If \(e : \tau \) and \(e \rightarrow e' \) then \(e' : \tau \)
Pf: By induction on the derivation of \(e \rightarrow e' \)

S-1 Then \(e = \bar{n}_1 + \bar{n}_2 \) and \(e' = \bar{n}_1 + \bar{n}_2 \).
Need to show \(e' : \tau \).
But how do we know what \(\tau \) is?

Inversion: Use inference rules "upside down"
How do we know \(e = \bar{n}_1 + \bar{n}_2 : \tau \)? Must be the
typing rules.
We now have a case for every rule whose
conclusion can match \(\bar{n}_1 + \bar{n}_2 : \tau \).
There's only one: T-3
\[e_1 : \text{int} \quad e_2 : \text{int} \quad (T-3) \]

\[e_1 + e_2 : \text{int} \]

So \(e : \text{c} \) is only possible if \(\text{c} = \text{int} \).
(We also get that \(\overline{\text{r}}_1 : \text{int} \) and \(\overline{\text{n}}_2 : \text{int} \) but we knew that already and also don't really need it.)

Now for the proof:

5-1. Then \(e = \overline{\text{n}}_1 + \overline{\text{n}}_2 \) and \(e' = \overline{\text{n}}_1 + \overline{\text{n}}_2 \).

By inversion on \(T-3 \), \(\text{c} = \text{int} \). By \(T-1 \), \(e' : \text{int} \).

5-2. Then \(e = \overline{s}_1 \text{^} \overline{s}_2 \) and \(e' = \overline{s}_1 \text{^} \overline{s}_2 \).

By inversion on \(T-4 \), \(\text{c} = \text{string} \). By \(T-2 \), \(e' : \text{string} \).

5-3. Then \(e = \overline{1}'' \text{^} \overline{1}'' \text{^} \overline{1}'' \text{^} \overline{1}'' \) and \(e' = 151 \).

By inversion on \(T-3 \), \(\text{c} = \text{int} \). By \(T-1 \), \(151 : \text{int} \).

5-4. By inversion on \(T-3 \): \(\text{c} = \text{int} \), \(e_1 : \text{int} \), \(e_2 : \text{int} \).

By induction, \(e_1' : \text{int} \). By \(T-3 \), \(e_1 + e_2 : \text{int} \).

5-5. Then \(e = \overline{1}_1 + e_2 \) and \(e' = \overline{1}_1 + e_2' \) and \(e_2' = e_2' \).

By inversion on \(T-3 \): \(\text{c} = \text{int} \), \(\overline{1}_1 : \text{int} \), \(e_2 : \text{int} \).

By induction, \(e_2' : \text{int} \). By \(T-3 \), \(e' : \text{int} \).

5-6. Then \(e = e_1 \text{^} e_2 \) and \(e' = e_1' \text{^} e_2' \) and \(e_1 = e_1' \).

By inversion on \(T-4 \): \(\text{c} = \text{string} \), \(e_1 : \text{string} \), and \(e_2 : \text{string} \).

By induction, \(e_1' : \text{string} \). By \(T-4 \), \(e' : \text{string} \).

5-7. Then \(e = \overline{s}_1 \text{^} e_2 \) and \(e' = \overline{s}_1 \text{^} e_2' \) and \(e_2' = e_2' \).

By inversion on \(T-4 \): \(\text{c} = \text{string} \), \(e_2 : \text{string} \).

By induction, \(e_2' : \text{string} \). By \(T-4 \), \(e' : \text{string} \).

5-8. Then \(e = [e_0] \) and \(e' = [e_0'] \) and \(e_0 \rightarrow e_0' \).

By inversion on \(T-5 \), \(\text{c} = \text{int} \) and \(e_0 : \text{string} \).

By induction, \(e_0' : \text{string} \). By \(T-5 \), \(e' : \text{int} \). \(\Box \)
Lemma: Canonical Forms
1. If \(e \) val and \(e : \text{int} \), then \(e = \overline{n} \) for some \(n \).
2. If \(e \) val and \(e : \text{string} \), then \(e = \text{"s"} \) for some \(s \).

Proof:
1. By "induction" on the derivation of \(e \) val.
 \(V-1: \) Then \(e = \overline{n} \).
 \(V-2: \) Doesn't apply because then \(e : \text{string} \).

2. Similar.

Progress: If \(e : \text{z} \), then \(e \) val or there exists \(e' \), s.t. \(e \Rightarrow e' \).

Proof:
By induction on the derivation of \(e : \text{z} \).
1. Then \(e = \overline{n} \). By \(V-1 \), \(e \) val.
2. Then \(e = \text{"s"} \). By \(V-2 \), \(e \) val.
3. Then \(e = e_1 + e_2 \) and \(e = \text{int} \) and \(e : \text{int} \) and \(e_2 : \text{int} \).
 By induction, \(e_1 \) val or \(e_1 \Rightarrow e_1' \) for some \(e_1' \).
 - \(e_1 \) val. By canonical forms, \(e_1 = \overline{n_1} \) for some \(n_1 \).
 - By induction, \(e_2 \) val or \(e_2 \Rightarrow e_2' \) for some \(e_2' \).
 - \(e_2 \) val. By canonical forms, \(e_2 = \overline{n_2} \) for some \(n_2 \).
 By \(V-1 \), \(e = \overline{n_1 + n_2} \Rightarrow \overline{n_1} + \overline{n_2} \).
 - \(e_2 \Rightarrow e_2' \). By \(V-2 \), \(e = \overline{n_1 + n_2} \Rightarrow \overline{n_1} + \overline{n_2} \).
 - \(e_1 \Rightarrow e_1' \). By \(V-1 \), \(e = e_1 + e_2 \Rightarrow e_1' + e_2 \).
4. Similar to above.
5. Then \(e = e_0 \) and \(e = \text{int} \) and \(e_0 : \text{string} \).
 By induction, \(e_0 \) val or there exists \(e_0' \), s.t. \(e_0 \Rightarrow e_0' \).
 - \(e_0 \) val. By CF, \(e_0 = \text{"s"} \) for some \(s \).
 By \(V-1 \), \(e_0 \) val.
 - \(e_0 \Rightarrow e_0' \). By \(V-2 \), \(e_0 \) val.

\(Q.E.D. \)