Type Safety
Last time: type system to prevent programs like $(1+2)_{+}$"Hello" How do we know we got it right i.e., well-typed programs don't have type errors at runtime?
"Type Safety"! "Well-typed programs cant go wrong"

- Robin Miler

2 components (theorems well prove):

- Progress: If eis well-typed, it's a value or can take a step
- Preservation: If a well-typed exp takes a step, it's still
well-tiped (wi th the same type)

Preservation: If $e^{: \tau}$ and erse' then $e^{\prime}: \tau$ Pf: By induction on the derivation of $e \mapsto e e^{\prime}$
s-1 Then $e=\overline{n_{1}}+\overline{n_{2}}$ and $e^{\prime}=\overline{n_{1}+n_{2}}$.
Need to show $e^{\prime}: \tau$.
But how do we know what τ is?
Inversion : Use inferace rules "upside down" How do we know $e=\overline{n_{1}}+\overline{n_{2}}: \bar{c}$? Must be the typing rules.
We now have a case for every rule whose conclusion can match $\overline{n_{1}}+\overline{n_{2}}: \bar{\tau}$.
There's on ly one: T-3
$\frac{e_{1}: \operatorname{int} e_{2}: \operatorname{int}}{e_{1}+e_{2}: \operatorname{int}}(T-3)$
So $e: \tau$ is only possible if $\tau=$ int!
(we also get that \bar{n}_{1} int and \bar{n}_{2} int but we knew that already and also don't really need it'

Now for the proof:
S-1 Then $e=\overline{n_{1}}+\overline{n_{2}}$ and $e^{\prime}=\overline{n_{1}+n_{2}}$.
By inversion on $T-3, \tau=$ int. By $T-1, e^{\prime}$: int,
$s-2$. Then $e=$ " s_{1} " n " s_{2} " and e " " " $s_{1} s_{2}$ ".
By inversion on $T-4$, $\tau=$ string. By $T-2, e^{\prime}$: String.
$5-3$. Then $e=\mid " s$ "'| and $e^{\prime}=\frac{c}{|s|}$. By inversion on $T-S, \tau=$ int. By $T-1, \overline{s \mid}$: int.
4-4. By inversion on $T-3: \tau=$ int, e_{1} : int, e_{2} :int By induction, e_{1}^{\prime} :int. By $T-3, e_{1}^{\prime}+e_{2}$:int.
$s-s$. The $e=\bar{n}_{1}+e_{2}$ and $e^{\prime}=\bar{n}_{1}+e_{2}^{\prime}$ and $e_{2} \mapsto e_{2}^{\prime}$. By inversion on $T-3: \tau=$ int, $\overline{r_{1}}:$ int, e_{2} int. - By in auction, e_{2} 'int. By $T-3, e^{\prime}$: int.
$s-6$. Then $e=e_{1}^{n} e_{2}$ and $e^{\prime}=e_{1}^{\prime n} e_{2}$ and $e_{1} \mapsto e_{1}^{\prime}$. By inversion on $T-4: \tau=$ string, e_{1} : string, and e_{2} : string. By induction, $e_{1}^{\prime \prime}$ string. $B_{y} T-4, e^{\prime}$ istring.
s-7. Then $e=3_{3}, " n e_{2}$ and $e^{\prime}=" s_{1} " n e_{2}$ ' and $e_{2} \mapsto e_{2}$! $B y$ inversion on $T-4: \tau=$ string, e_{2} : string.
By induction, e_{2}^{\prime} :string, By $T-4$, e'string.
S-8. Then $e=\left|c_{0}\right|$ and $e^{\prime}=\mid e_{0}^{\prime \prime}$ and $e_{0} \mapsto e_{0}^{\prime}$. By inversion on $T-5, \tau=$ int and eostring. $B y$ induction, e_{0}^{\prime} 'string. By $T-S, e^{\prime}$:int.

Lemma: Canonical Forms

1. If e val and e int, then $e=\bar{n}$. for some n-
2. If e val and eistring, then $e=$ "s" for some.

PF:1. By "induction" on the derivation of e val.
$V-1$: Then $e=\bar{n}$.
$V-2$: Does 4 apply because then e:string.o
2. Similar

Progress: If es, then e val or there exists e^{\prime} sit. e \rightarrow,'. Pf: By induction on the derivation of $e: \tau$.
$T-1$. Then $e=\bar{n}$. By $V-1$, e val.
$T-2$. Then $e=$ "s". By $v-2$, e val.
$T-3$. Then $e=e_{1}+e_{2}$ and $\tau=$ int and e_{1} int and e_{2} :int.
By induction, $e_{1} r_{a}$ or $e_{1} \rightarrow e_{1}$, for some e_{1}.'

- e_{1} val. By canonical forms, $e_{1}=\bar{n}_{1}$ for some n_{1}. By induction, e_{2} val or $e_{2} \mapsto e_{2}^{\prime}$ for some e_{2} '.
$-e_{2}$ val. By canonica! forms, $e_{2}=\overline{n_{2}}$ for some n_{2} By $S-1, \quad e=\overline{n_{1}}+\overline{n_{2}} \mapsto \overline{n_{1}+n_{2}}$
$\left.-e_{2} \mapsto e_{2}, ~ B y ~ S-'\right\}, e=\bar{n}_{1}+e_{2} \mapsto \pi_{1}+e_{2}^{\prime}$
$-e_{1} \rightarrow e_{1}^{\prime \prime}: B_{y} \quad s-4, e=e_{1}+e_{2} \mapsto e_{1}^{\prime}+e_{2}$.
T-4. Similar to above.
$T-s$. Then $e=\left|e_{0}\right|$ and $\tau=$ int and e_{0} istring.
By induction, e_{0} val or there exists e_{0}^{\prime} sit. $e_{0} \mapsto e_{0}$ '.
- e val. By CF $e_{0}=$ "s" for some.

By $S-3,|" s "| \mapsto \overline{S T}$

$$
-e_{0} \mapsto e_{0}!B_{y} \quad S_{-8}^{\prime},\left|e_{0}\right| \mapsto\left|e_{0}^{\prime}\right|
$$

