# IIT CS534: Types and Programming Languages 

Rule Induction, Syntax, and Small-step Semantics
Lecture given by Farzaneh Derakhshan, Notes by Stefan Muller
Out: Tuesday, Jan. 16

## 1 Rule Induction

Below are the proofs done in class, written out formally as you would write them on a homework.
First, here are the rules for our "is XML" judgment.


Let OpenAngle $(X)$ be the number of open angle brackets in a string $X$ and CloseAngle $(X)$ be the number of close angle brackets in $X$.

Theorem 1. If $X$ is XML , then OpenAngle $(X)=$ CloseAngle $(X)$.
Proof. By induction on the derivation of $X$ is XML.

- Case X-1. Then $X=$ "" and OpenAngle $(X)=\operatorname{CloseAngle}(X)=0$.
- Case X-2. Then $X=\langle\mathrm{T}\rangle$ and $\operatorname{OpenAngle}(X)=\operatorname{CloseAngle}(X)=1$.
- Case X-3. Then $X=\langle\mathrm{T}\rangle Y</ \mathrm{T}\rangle$ and $Y$ is XML . We have $\operatorname{OpenAngle}(X)=2+\operatorname{OpenAngle}(Y)$ and CloseAngle $(X)=2+$ CloseAngle $(Y)$. By induction, OpenAngle $(Y)=\operatorname{CloseAngle}(Y)$, so $2+$ OpenAngle $(Y)=2+$ CloseAngle $(Y)$.
- Case X-4. Then $X=Y Z$ and $Y$ is XML and $Z$ is XML. We have $\operatorname{OpenAngle}(X)=\operatorname{OpenAngle}(Y)+$ OpenAngle $(Z)$ and CloseAngle $(X)=$ CloseAngle $(Y)+C l o s e A n g l e(Z)$. By induction, OpenAngle $(Y)=$ CloseAngle $(Y)$ and OpenAngle $(Z)=$ CloseAngle $(Z)$, so OpenAngle $(X)=$ CloseAngle $(X)$.

Now here are the rules for natural numbers (both constructing a natural number and the greater-than judgment)

$$
\overline{0 \text { is a natural number }} \text { (ZERO) } \quad \frac{n \text { is a natural number }}{n+1 \text { is a natural number }} \text { (SUCC) } \quad \frac{n \text { is a natural number }}{n \geq n} \text { (GE-NAT) }
$$

$$
\frac{m \text { is a natural number } \quad m \geq n}{m+1 \geq n}(\text { GE-SUCC })
$$

Theorem 2. If $n$ is a natural number then $n \geq 0$.
Proof. By induction on the derivation of $n$ is a natural number.

- Rule zero. Then $n=0$. By Ge-nat, we have $n \geq 0$.
- Rule succ. Then $n=m+1$ and $m$ is a natural number. By induction, $m \geq 0$. By ge-SUCC, we have $m+1 \geq 0$.


## 2 E Language

### 2.1 Syntax

We will be working with a small language called E consisting of integer and string expressions. The grammar below is in BNF (Backus-Naur Form). We use $e::=A|B| \ldots$ to mean that an expression (with metavariable $e)$ can look like form $A$ or $B$, and so on.

| ::= | $\bar{n}$ | Numbers |
| :---: | :---: | :---: |
|  | "s" | Strings |
|  | $e+e$ | Addition |
|  | $e^{\wedge} e$ | Concatenation |
|  | $\|e\|$ | String Length |

### 2.2 Small-step semantics

We also studied the small-step semantics of E . There are two judgments, $e$ val meaning that $e$ is a value and can't step anymore, and $e \mapsto e^{\prime}$ meaning that $e$ steps to $e^{\prime}$. The rules for these judgments are below. Note that in rules S-1 and S-3, when we do $n_{1}+n_{2}$ or $|s|$ (as opposed to $\overline{n_{1}}+\overline{n_{2}}$ and |" $s$ " $\mid$ ), these are actually taking the mathematical addition of two integers and the actual number of characters in a string literal. We just use the same symbols for the actual underlying operation and for the syntax of the programming language. Rules S-4 through S-8 are "search" rules that allow us to step subexpressions.

$$
\begin{align*}
& \overline{\bar{n} \text { val }}(\mathrm{V}-1) \\
\overline{s^{\prime \prime} \mathrm{val}}(\mathrm{~V}-2) & \overline{\overline{n_{1}}+\overline{n_{2}} \mapsto \overline{n_{1}+n_{2}}}(\mathrm{~S}-1) \quad \overline{" s_{1} "{ }^{\wedge} " s_{2} " \mapsto " s_{1} s_{2} "}(\mathrm{~S}-2) \\
& \frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1}+e_{2} \mapsto e_{1}^{\prime}+e_{2}}(\mathrm{~S}-4) \quad \frac{e_{2} \mapsto e_{2}^{\prime}}{\overline{n_{1}}+e_{2} \mapsto \overline{n_{1}}+e_{2}^{\prime}}(\mathrm{S}-5) \quad \frac{e_{1} \mapsto e_{1}^{\prime}}{e_{1}{ }^{\wedge} e_{2} \mapsto e_{1}^{\prime}{ }^{\wedge} e_{2}}(\mathrm{~S}-6)  \tag{S-7}\\
& \frac{e_{2} \mapsto e_{2}^{\prime}}{" s_{1} "{ }^{\wedge} e_{2} \mapsto " s_{1} "{ }^{\wedge} e_{2}^{\prime}}(\mathrm{S}-7)
\end{align*}
$$

