
IIT CS534: Types and Programming Languages

Rule Induction, Syntax, and Small-step Semantics

Lecture given by Farzaneh Derakhshan, Notes by Stefan Muller

Out: Tuesday, Jan. 16

1 Rule Induction

Below are the proofs done in class, written out formally as you would write them on a homework.
First, here are the rules for our “is XML” judgment.

“” is XML
(X-1)

<T> is XML
(X-2)

X is XML

<T>X</T> is XML
(X-3)

X is XML Y is XML

X Y is XML
(X-4)

Let OpenAngle(X) be the number of open angle brackets in a string X and CloseAngle(X) be the number
of close angle brackets in X.

Theorem 1. If X is XML, then OpenAngle(X) = CloseAngle(X).

Proof. By induction on the derivation of X is XML.

� Case X-1. Then X = “” and OpenAngle(X) = CloseAngle(X) = 0.

� Case X-2. Then X = <T> and OpenAngle(X) = CloseAngle(X) = 1.

� Case X-3. Then X = <T>Y </T> and Y is XML. We have OpenAngle(X) = 2 + OpenAngle(Y)
and CloseAngle(X) = 2 + CloseAngle(Y). By induction, OpenAngle(Y) = CloseAngle(Y), so 2 +
OpenAngle(Y) = 2 + CloseAngle(Y).

� Case X-4. Then X = Y Z and Y is XML and Z is XML. We have OpenAngle(X) = OpenAngle(Y) +
OpenAngle(Z) and CloseAngle(X) = CloseAngle(Y)+CloseAngle(Z). By induction, OpenAngle(Y) =
CloseAngle(Y) and OpenAngle(Z) = CloseAngle(Z), so OpenAngle(X) = CloseAngle(X).

Now here are the rules for natural numbers (both constructing a natural number and the greater-than
judgment)

0 is a natural number
(zero)

n is a natural number

n+ 1 is a natural number
(succ)

n is a natural number

n ≥ n
(ge-nat)

m is a natural number m ≥ n

m+ 1 ≥ n
(ge-succ)

Theorem 2. If n is a natural number then n ≥ 0.

Proof. By induction on the derivation of n is a natural number.

� Rule zero. Then n = 0. By ge-nat, we have n ≥ 0.

� Rule succ. Then n = m + 1 and m is a natural number. By induction, m ≥ 0. By ge-succ, we
have m+ 1 ≥ 0.

1

2 E Language

2.1 Syntax

We will be working with a small language called E consisting of integer and string expressions. The grammar
below is in BNF (Backus-Naur Form). We use e ::=A |B | ... to mean that an expression (with metavariable
e) can look like form A or B, and so on.

e ::= n Numbers
| “s” Strings
| e+ e Addition
| e ˆ e Concatenation
| |e| String Length

2.2 Small-step semantics

We also studied the small-step semantics of E. There are two judgments, e val meaning that e is a value and
can’t step anymore, and e 7→ e′ meaning that e steps to e′. The rules for these judgments are below. Note
that in rules S-1 and S-3, when we do n1 + n2 or |s| (as opposed to n1 + n2 and |“s”|), these are actually
taking the mathematical addition of two integers and the actual number of characters in a string literal.
We just use the same symbols for the actual underlying operation and for the syntax of the programming
language. Rules S-4 through S-8 are “search” rules that allow us to step subexpressions.

n val
(V-1)

“s” val
(V-2)

n1 + n2 7→ n1 + n2

(S-1)
“s1” ˆ “s2” 7→ “s1s2”

(S-2)

|“s”| 7→ |s|
(S-3)

e1 7→ e′1
e1 + e2 7→ e′1 + e2

(S-4)
e2 7→ e′2

n1 + e2 7→ n1 + e′2
(S-5)

e1 7→ e′1
e1 ˆ e2 7→ e′1 ˆ e2

(S-6)

e2 7→ e′2
“s1” ˆ e2 7→ “s1” ˆ e

′
2

(S-7)
e 7→ e′

|e| 7→ |e′|
(S-8)

2

