[I'T CSH34: Types and Programming Languages

Rule Induction, Syntax, and Small-step Semantics

Lecture given by Farzaneh Derakhshan, Notes by Stefan Muller
Out: Tuesday, Jan. 16

1 Rule Induction

Below are the proofs done in class, written out formally as you would write them on a homework.
First, here are the rules for our “is XML” judgment.

X is XML X is XML Y is XML

(X-2) (X-3) (X-4)

X-1 —
(X-1) <T> is XML <T>X</T>is XML XY is XML

“” is XML

Let OpenAngle(X) be the number of open angle brackets in a string X and CloseAngle(X) be the number
of close angle brackets in X.

Theorem 1. If X is XML, then OpenAngle(X) = CloseAngle(X).

Proof. By induction on the derivation of X is XML.
e Case X-1. Then X = “” and OpendAngle(X) = CloseAngle(X) = 0.
e Case X-2. Then X = <T> and OpenAngle(X) = CloseAngle(X) = 1.

e Case X-3. Then X = <T>Y</T> and Y is XML. We have OpenAngle(X) = 2 + OpenAngle(Y)
and CloseAngle(X) = 2 + CloseAngle(Y'). By induction, OpenAngle(Y') = CloseAngle(Y), so 2 +
OpenAngle(Y') = 2 + CloseAngle(Y).

e Case X-4. Then X =Y Z and Y is XML and Z is XML. We have OpenAngle(X) = OpenAngle(Y) +
OpenAngle(Z) and CloseAngle(X) = CloseAngle(Y')+ CloseAngle(Z). By induction, OpenAngle(Y) =
CloseAngle(Y') and OpenAngle(Z) = CloseAngle(Z), so OpenAngle(X) = CloseAngle(X).

O

Now here are the rules for natural numbers (both constructing a natural number and the greater-than
judgment)

n is a natural number n is a natural number
- (ZERO) - (succ) (GE-NAT)
0 is a natural number n + 1 is a natural number n>n
m is a natural number m>n
(GE-succ)
m+1>n

Theorem 2. If n is a natural number then n > 0.
Proof. By induction on the derivation of n is a natural number.

e Rule ZERO. Then n = 0. By GE-NAT, we have n > 0.

e Rule succ. Then n = m + 1 and m is a natural number. By induction, m > 0. By GE-succ, we
have m+1 > 0.

O

2 E Language

2.1 Syntax

We will be working with a small language called E consisting of integer and string expressions. The grammar
below is in BNF (Backus-Naur Form). We use e::= A| B | ... to mean that an expression (with metavariable

e) can look like form A or B, and so on.

e

|: WL
| e+e
| e’e
|

2.2 Small-step semantics

Numbers
Strings
Addition
Concatenation
String Length

We also studied the small-step semantics of E. There are two judgments, e val meaning that e is a value and
can’t step anymore, and e — ¢’ meaning that e steps to €’. The rules for these judgments are below. Note
that in rules S-1 and S-3, when we do ny + ng or |s| (as opposed to iy + iz and |“s”|), these are actually
taking the mathematical addition of two integers and the actual number of characters in a string literal.
We just use the same symbols for the actual underlying operation and for the syntax of the programming
language. Rules S-4 through S-8 are “search” rules that allow us to step subexpressions.

V-1 V-2 — (S-1 S-2
7 val () “g” val () i1 + Tig — 1y + 1y () “81” ~ 448277 — “8152” ()
! A /
e1 — e €9 > € e1 — e
o (5-3) 7 (5-4) — —— (5-5) ————— (5-6)
|“s”] — |s] e1t+ex el +ey 1 + eo — Ty + € e1 "ea el "eg
ey > €y 5.7) e e (5-8)
448177 ~ e — “51” ~ 6/2 |€| — |€/|

