
we
I
"When are
Equational Reasoning
two expressions equal? Whereve
tell then aport!" -Harper, PPPL
Syntactic Equality
2=2
Ax. x+T = λx.x+T
Xy. y +T #XX.X+T
dx.x+] #dx. T+x...
a
Equivalence
Kleene Equality
3
xx.x=dy.y
(for "observable types", e.g. int, bool)
1+5 = 3 ~ 2+1
e e' if
3 v.
ens vana etav
e. g.
What about
λ.x. λy. Xty and dx. dy. y+x?

Observational Equivalence =
Can't do an experiment" that can tell then aport
program
Only looking at results! e.g.
1+2+3+4+5=15
Quicks Bubble joit
Expression context C::= •| Ax. C/Cele () (Ge)/(2C)
Like evaluation
Contexts but the
1st C) and cl in clinc
I case of Ex. e; x. e}
hule can be anywhere: I
case @ of Ex. C; yes
case e of [x.e; x.e)
11. lele)

Progra
20
Context: Exp. context that has type int and
free vors at into level.
a type
int w/ one hule
.e., closed ev
need to be able
to tell the result of the experiment!
Types for contexts: (27)
has
exp to fill hole
type
unde- PD
inter exp has type
t' unde "D"
IF CB
ардме
context (PDC)~ (iD int)
If Are:c, then it ((e): int.
Observational equivalence
Kaitez and sirelit, the C≤e' if for all progian.
contexts C:
~(int), ([e) = ([e).
So is dx.dy. x+y = λ.x.ny.y+x??
Reasoning about all program contents is hard!
Logical Equivalence me -derived inductively on the type?
e-unit é
it
e=e'
erint e
if
e=e'
if
te,, e, st. ere, we have e
ee~2
c'e
it
top and admissible R:?xp' → Bool;
R
e [p] ~^ e^ [p]
use
R
Compare at type o
Cache' if
Re,e')

Definition. A relation Ripp Buel is admissible it
eq. If Ree" and dee
1. It respects observational'
the R(d,
2 "Closure under cavese evaluation": If Rle, e); then:
a. li due, this Bloge").
b. If d'ize; the R(e,d')
R "can't tell aport things it shouldn't be able to."
Theoren!. If "+e: and •;·te': then ence' e=e
(Con also generalize loy. eq. to na-empty contexts)
Theorem 2. (Parametricity) If •; •re:t, then e-ct.
3. Let •re: Vax-x and let id = ^α. λx:α.x.
evaid (and by Thm 1, e = id)
The Tive
Proof. Let P, p' be types and R:Pxp' Bool admissible. Suppose Rle.).
WTS (by def of - R(e[p) Co, id [p] (eo'),
Because id [p') eo' *eo', suffices to show R(elp)eo, ei)
by Def 1.2
Because Rleo, e) and e' = eo', by Def 1.1,
suffices to show e[p]eo = co.
By Thn 2, e-vaasa e. So, for any admissible Sipxp=Boole
if Sleo, eol, then sle[p] Co, e (p) e.).
Let Sld, d' iff d=eo=d!
Clearly Sleo, ed), so sle[p]eo, e[p]eo) => e[p]eo = eo.0

