Einationai Pensimin?
"When ore two expressions equal? Whatever we lan.. tell then apout!"-Harper, peril
syntactic Equality

$$
\begin{gathered}
\overline{2}=\overline{2} \\
\lambda x \cdot<+T=\lambda x \cdot x+T \\
\lambda y \cdot y+T \neq \lambda x \cdot x+T \\
\lambda x \cdot x+T \neq \lambda x \cdot T+x \ldots
\end{gathered}
$$

\sim Equiv alence

$$
\lambda x \cdot x \equiv \lambda y \cdot y
$$

Kleene Equality \sim
(for "observable topes", e.g. int, biol) $e \approx e^{\prime}$ if $\exists r . \quad e \mapsto^{*} v$ and $e^{\prime} \mapsto v$
egg. $\overline{+}+\overline{2} \simeq \overline{3} \simeq \overline{2}+T$
What about $\lambda x . \lambda y \cdot x+y$ and $\lambda x . \lambda y \cdot y+x$?
Observational Equivalence \cong
can't do an "experiment" that can tell then apart
program
Only looking at result y! e.g. $\bar{T}+\overline{2}+\bar{j}+\overline{4}+\overline{5} \cong \overline{5}$
Quicksort \cong Bubble port
Expression context $C: \because=0 / \lambda x . C|C e| e C)(C, e) /(e, C)$
list $C \mid$ sid $C \mid$ in l $C \mid$ in C
Like evaluation
case C of $\{x . e ; y . e\}$
contexts but the I case E of $\{x . C ; y . y$
hole com be conywher: (cove e of $(x . e ; y . e)$

$$
|\Delta \alpha \cdot e| e(e)
$$

Program Content: Exp. Contert shat has tope int w! w ie ions wit onto level.
ire., closed en a ty e int w/ ane hale
reed to be able totell the result of the experiment!

exp to fill hole has outer exp has tope tope τ under P, $\quad \tau^{\prime}$ under $P!, i$
1% CB ap gq context $\left(l_{i}^{\prime} \triangleright \square\right) \rightarrow(\because \operatorname{Din} t)$ $1 \div 4 ; 7 \perp e: \tau$, then $\because \circ(C e)$: int.
 contexts C : (0, $\cap \square \tau i \rightarrow(s \circ D i n t),(C e) \simeq C\left(e^{\prime}\right)$.

So is $\lambda x \cdot \lambda y \cdot x+y \cong \lambda x \cdot \lambda y \cdot y+x^{?}$
Reasoning about all program (contents is lard!
Logical Equivalence \sim_{τ}-derined inductively on the tyre.
$\begin{array}{lll}e \sim_{\text {un }} e^{\prime} & \text { if } & e \simeq e^{\prime} \\ e \sim_{\text {int }} e^{\prime} & \text { if } & e \simeq e^{\prime}\end{array}$
$e \underset{\tau_{1} \rightarrow i_{2}}{\sim} e^{\prime}$ if $\forall e_{1}, e_{1}^{\prime}$ st. $e_{1} \tau_{\tau} e_{1}^{\prime}$, whehave $e e_{1} \sim \tau_{2} e^{\prime} e_{1}^{\prime}$.

$e \sim_{\alpha}^{\alpha-G R} e^{\prime}$ ii $R^{\prime}\left(e, e^{\prime}\right) \quad$ use R to compare at type o

Deviation. A relation $R: p \times p^{\prime} \rightarrow B_{q}$ is admissible it

1. It respects observational eq. "If $R\left(e, e^{\prime}\right)$ and $d \subseteq e$ in $d^{\prime}=e^{\prime}$ Then $R(d, d$).
2 "Close under converse evaluation": If $R(e, e$ "), then,
a. If $d \mapsto e$, then $R\left(d, e^{\prime}\right)$
b. If $d^{\prime} \rightarrow e^{\prime}$, then $R\left(e, d^{\prime}\right)$
R "cant tell aport things it shouldn't be able to."
Theorenl. IT $\because \cdot+e: \tau$ and $\because \cdot-e^{\prime}: \tau$ then $e \tau e^{\prime} \Leftrightarrow e \cong e^{\prime}$. (con also generalize log. eq. to non-enpty contacts)
Theorem 2. (Paiametricity) if $\because:-e: \tau$, then $e \sim \tau t$.
Thec-en 3 . Let $\cdot: 1-$ e: $\forall \alpha-\alpha \rightarrow \alpha$ and let id $\triangleq \Lambda \alpha . \lambda x: \alpha . x$.
Then $e^{-\forall \alpha-\alpha-\alpha i d . ~(a n d ~ b y ~ T h m l, ~} e \cong i d$)
Proof. Let $p_{1} p^{\prime}$ be types and $\left.R: \rho \times p^{\prime} \rightarrow B_{00}\right)$ admissible. Suppose Re,,$\left.c^{\prime}\right)$. WTS (by def of -$) R\left(e[\rho) e_{0}\right.$, id $\left[p^{\prime}\right]\left(e_{0}^{\prime}\right)$
Because id $\left[\rho^{\prime}\right] e_{0}^{\prime} \mapsto \mapsto^{*} e_{0}^{\prime}$, suffices to show $R\left(e(\rho) e_{0}, e_{0}^{\prime}\right)$
by Def 1.2
Because $R\left(e_{0}, e_{0}^{\prime}\right)$ and $e_{0}^{\prime} \cong e_{0}^{\prime}$, by $\operatorname{Def} 1.1$, suffices to show $e[\rho] e_{0} \cong e_{0}$.

By Thun 2, $e \sim_{\forall \alpha, a \rightarrow \alpha} e$. So, for any $a=$ nisi te S: $\rho \times \rho \rightarrow B_{j o l}$, if $S\left(e_{0}, e_{0}\right)$, then $S\left(e[\rho] e_{0}, e(\rho) e_{0}\right)$.
Let $S(d, d ')$ if $d \cong e_{0} \cong d^{\prime}$.
(early $S\left(e_{0}, e_{0}\right)$, so $S\left(e[\rho] e_{0}, e[\rho] e_{0}\right) \Rightarrow e[\rho] e_{0} \cong e_{0} \cdot 0$

