Equational Reasoning

“When are two expressions equal?” - Harper, PPPL

Syntactic Equality

\[\lambda x. x + T = \lambda x. x + T \]

\[\lambda y. y + T \neq \lambda x. x + T \]

\[\lambda x. x + T \neq \lambda x. x + T \]

Equivalence

\[\lambda x. x \equiv \lambda y. y \]

Kleene Equality

(for “observable types”, e.g. int, bool)

\[e \equiv e' \text{ if } \exists v. e \rightarrow^* v \text{ and } e' \rightarrow^* v \]

e.g.

\[1 + 3 \approx 3 \approx 2 + 1 \]

What about \(\lambda x. \lambda y. x + y \) and \(\lambda x. \lambda y. y + x \)?

Observational Equivalence

Can’t do an “experiment” that can tell them apart

Only looking at results! e.g.

\[1 + 2 + 3 + 4 + 5 \approx 15 \]

\(\text{Quicksort} \approx \text{Bubble sort} \)

Expression context

\[C ::= 0 | \lambda x. C | C \mid e \mid e \mid C | (C) | (e) | (e, C) \]

| \[| C + C | \text{and} | C \mid \text{in} | C \mid \text{in} | C \]

Like evaluation

\[\text{case } C \text{ of } \lambda x. e; y. e' \]

Case contexts but the hole can be anywhere!

\[\text{case } e \text{ of } \lambda x. C; y. e' \]

\[\lambda x. e \mid e(C) \]
Program Context: Exp. context that has type int and no free vars at outer level.

i.e., closed exp. of type int w/one hole

need to be able
to tell the result of the experiment!

Types for contexts: \((\alpha \triangleright P \triangleright D)\)

exp to fill hole has outer exp has type
type \(\tau\) under \(P, D\) \(\tau'\) under \(P, D\).

If \(\xi\) is a program context, \(C \cdot (\xi \triangleright P \triangleright D) \sim (\xi \triangleright \text{PD})\)

\[\vdash \xi \vdash e : \tau \quad \text{then} \quad \xi \vdash C(e) : \text{int}.\]

Observational equivalence

If \(\xi \vdash e : \tau\) and \(\xi \vdash e' : \tau\), then \(e \equiv e'\) if for all program contexts \(C : (\alpha \triangleright P \triangleright D) \sim (\alpha \triangleright \text{PD})\), \(C(e) \equiv C(e')\).

So is \(\lambda x. \lambda y. x + y \equiv \lambda x. \lambda y. y + x\)?

Reasoning about all program contexts is hard!

Logical Equivalence

\(\sim\text{-derived inductively on the type}\)

\[\begin{align*}
e \sim \text{int e' } & \quad \text{if} \quad e = e' \\
e \sim \text{int e' } & \quad \text{if} \quad e = e' \\
e \sim \tau, \tau' e' & \quad \text{if} \quad \forall \xi, \xi' \text{ s.t. } e \equiv e', \text{we have } e \sim e', e' \sim_{\tau} \tau, \tau' e'. \\
e \sim \text{var, e' } & \quad \text{if} \quad \forall
\text{ and admissible } R : \exists x \Rightarrow \text{bool}; \\
& \quad \text{use } R \text{ to compare at type } \alpha \\
e \sim \alpha \text{ e' } & \quad \text{if} \quad R(e, e').
\end{align*}\]
Definition. A relation \(R : \text{p} \times \text{p} \rightarrow \text{Bool} \) is admissible if

1. It respects observational eq. If \(R(e, e') \) and \(d \equiv e \) and \(d' \equiv e' \) then \(R(d, d') \).
2. "Closure under converse evaluation": If \(R(e, e') \), then:
 a. If \(d \rightarrow e \), then \(R(d, e') \)
 b. If \(d' \rightarrow e' \), then \(R(e, d') \)

\(R \) "can't tell apart things it shouldn't be able to."

Theorem 1. If \(\bullet \). \(e : \text{c} \) and \(\bullet \). \(e' : \text{c} \) then \(e \equiv e' \Leftrightarrow e = e' \).

(Oct also generalize loyal eq. to non-empty contexts)

Theorem 2. (Parametricity) If \(\bullet \). \(e : \text{c} \), then \(e \equiv e. \)

Theorem 3. Let \(\bullet \). \(e : \text{a} \rightarrow \text{a} \) and let \(\text{id} \equiv \lambda x. x \).

Then \(e \equiv \text{id} \) and by Thm 1, \(e = \text{id} \).

Proof. Let \(p, p' \) be types and \(R : \text{p} \times \text{p} \rightarrow \text{Bool} \) admissible. Suppose \(R(e, e') \).

WTS (by def of -) \(R(e[p], e_0, \text{id}[p])(e_0') \).

Because \(\text{id}[p']e_0' \rightarrow e_0' \), suffices to show \(R(e[p]e_0, e_0') \)

by Def 1.2

Because \(R(e_0, e_0') \) and \(e_0 \equiv e_0' \), by Def 1.1,

suffices to show \(e[p]e_0 = e_0. \)

By Thm 2, \(e \equiv \text{a} \rightarrow \text{a} \rightarrow e \). So, for any admissible \(S : \text{p} \times \text{p} \rightarrow \text{Bool} \),

if \(S(e_0, e_0) \), then \(S(e[p]e_0, e[p]e_0) \).

Let \(S(d, d') \) if \(d \equiv e_0 \equiv d' \).

Clearly \(S(e_0, e_0) \), so \(S(e[p]e_0, e[p]e_0) \Rightarrow e[p]e_0 = e_0. \)