Evaluation Contexts
(Yet another wat to aroid search rules)

$$
\begin{aligned}
& e:=x|()| \lambda \times . e|e e|(e, e) \mid \text { fit } e \mid \text { side } \quad v::=()|d x . e|(v, v) \\
& \tau:!=\text { mit }|\tau \rightarrow \tau| \tau \times \tau \\
& \varepsilon::=0|\varepsilon e| v \varepsilon|(\varepsilon, e)|(r, \varepsilon) \mid \text { Fist } \varepsilon \mid \text { ind } \varepsilon \text { 亿 }
\end{aligned}
$$

Evaluation Contexts

- expos whore "hole"
$\varepsilon\left[f_{s t}(7,8)\right]$
$\varepsilon[e]$ - fill the hole w/e

$$
\begin{aligned}
& o[e]=e \\
& (\varepsilon e)\left[e^{\prime}\right]=\left(\varepsilon\left[e^{\prime}\right]\right) e \\
& (v \varepsilon)(e]=v \varepsilon[e] \\
& \left(S_{1}(6,(\lambda<-x) \cdot)\right)\left[f_{s}+(7,8)\right] \\
& (\varepsilon, e)[e]=(\varepsilon[e], e) \\
& =(S,(b,(\lambda x, C)(G, t), 8)) 1) \\
& (v, \varepsilon)\left[e^{\prime}\right]=\left(v, \varepsilon\left[e^{\prime}\right]\right) \\
& \text { (hist } \varepsilon)(e)=\text { fit }(\varepsilon[e]) \\
& \text { (} \operatorname{s} \text {, } d \varepsilon)[e]=\text { and }(\varepsilon[e])
\end{aligned}
$$

$$
\frac{e() e^{\prime}}{\varepsilon(e) H \varepsilon(e)} \text {-One big rule! }
$$

still reed to define this judgment)

$$
\overline{(\lambda x-e) v \rightarrow C v(x) e}
$$

$$
f_{2} t\left(v_{1}, v_{2}\right) \rightarrow v_{1}
$$

$$
\text { sid }\left(v_{1}, v_{2}\right) \rightarrow v_{2}
$$

Need "type) for contexts"
'i $\tau \leadsto \tau^{\prime} \quad$ Takes a τ (to fill the hole), acts as a τ^{\prime} No need for a context - Es always represent closed exp

$$
\begin{aligned}
& \frac{1}{0: \tau \leadsto \tau} \text { (1) } \frac{\varepsilon: \tau \leadsto \tau_{1} \rightarrow \tau_{2}:+e: \tau_{1}}{\varepsilon e: \tau \leadsto \tau_{2}}(2) \frac{\text { ort: } \tau_{1} \rightarrow \tau_{2} \quad\left\{: \tau \rightarrow \tau_{1}\right.}{v \varepsilon: \tau \rightarrow \tau_{\tau}}(3) \\
& \frac{\varepsilon: \tau \rightarrow \tau_{1} \cdot+e: \tau_{2}}{(\varepsilon, e): \tau \leadsto \tau_{1} \times \tau_{2}}(y) \quad \frac{1+v_{1} \tau_{1} \quad \varepsilon: \tau \leadsto \tau_{2}}{\left(\nu_{1} \varepsilon\right): \tau \leadsto \tau_{1} \times \tau_{2}}(s) \quad \frac{\varepsilon: \tau \leadsto \tau_{1} \times \tau_{2}}{f_{1}+\varepsilon: \tau \rightarrow \tau_{1}}(1)
\end{aligned}
$$

Lemma l: If $\varepsilon: \tau \leadsto \tau^{\prime}$ and ore: τ then of $\varepsilon(e): \tau$ ' Pf. By ind. on the derivation of $\varepsilon: \tau \mapsto \tau^{\prime}$
(1) Then $\varepsilon=0$ and $\varepsilon(e)=e$ and $r=r^{\prime}$
(2) Then $\varepsilon=\varepsilon_{0} e_{0}$ and $\varepsilon_{0}: \tau \leadsto \tau_{1} \rightarrow \tau^{\prime}$ and $\in e_{0}: \tau_{1}$ ind $\varepsilon\left(e_{e}\right)=\varepsilon_{0}[e] e_{0}, B_{y}$ induction, $r \varepsilon_{0}(e]: \tau_{1} \rightarrow i$:
Apply $(\rightarrow E)^{\prime}$
(3) The $\varepsilon=v \varepsilon_{0}$ and $1+v: \tau_{1} \rightarrow \tau_{2}$ and. $\varepsilon_{0}: \tau \leadsto \tau_{1}$ and $\left.\varepsilon \varepsilon_{e}\right)=v\left(c_{0}(e)\right.$. By induction, $1+\varepsilon_{0}(e): \tau_{1}$. Arp /y $(\rightarrow E)$
(4) The $\varepsilon=\left(\varepsilon_{0}, e_{0}\right)$ and $\varepsilon_{0}: \tau \rightarrow \tau_{1}$ and $\cdot+e_{0}: \tau_{2}$, and $\left.\varepsilon \varepsilon_{e}\right)=\left(\varepsilon_{0}(e), e_{0}\right)$ and $t=\tau_{1} \times \tau_{2}, B_{x}$ ind, $\bullet+\varepsilon_{0}[e]: \tau_{1}$. Apply (xI)
(6.) Then $\varepsilon=f_{s} t \varepsilon_{0}$ and $\varepsilon_{0}: \tau \rightarrow \tau \times \tau_{2}$ and $\varepsilon(e)=f_{s}+\varepsilon_{0}(e)$. By induction, $+\varepsilon_{0}[e]: \tau_{1} \times \tau_{2}$. Apply $\left(x E_{1}\right){ }_{D}$

Lemma. If $\cdot 1-\mathcal{E}(e): \tau$ then there exists τ^{\prime} such that of $e^{i} \tau^{\prime}$ and $\varepsilon: \tau^{\prime} \rightarrow \tau$.
Proof. By induction on the structure of ε -

1. $\varepsilon=0$. Then $\varepsilon(e)=e$. Let $\tau^{\prime}=r$. Apply (1)
2. $\varepsilon=\varepsilon_{0} e_{0}$. Then $\left.\varepsilon[e]=\varepsilon_{0} l e\right] e_{0}$. Byvinversion, on $\rightarrow E_{,} \cdot r\left\{_{0}(e): \tau_{1} \rightarrow \tau\right.$ and of $\rho_{0}: \tau_{1}$. By induction, ot $e: \tau^{\prime}$ and $\varepsilon_{0}: \tau^{\prime} \rightarrow \tau_{1} \rightarrow \tau$. Apply (2).
3. $E=v \varepsilon_{0}$. Then $\varepsilon[e]=v \varepsilon_{0}(e]$. By inversion on $\rightarrow E_{1}$ or: $\tau_{1} \rightarrow \tau$ and $\circ+\varepsilon_{0}[e]: \tau_{1}$. By induction, "re: τ^{\prime} and $\varepsilon_{0}: \tau^{\prime} \rightarrow \tau_{1}$. Apply (3),
4. $\varepsilon=\left(\varepsilon_{0}, e_{0}\right)$. Then $\varepsilon[e]=\left(\varepsilon_{0}[e], \rho_{0}\right)$. By inversion on $x I_{1} 1+\varepsilon_{0}(e): \tau_{1}$ and $0+e_{0}: \tau_{2}$ and $\tau=\tau_{1} \times \tau_{2}$. By induction, $\cdot 1-e_{i} \tau^{\prime}$ and $\varepsilon_{0}: \tau^{\prime} \leadsto \tau_{1}$. Apply (4)
5. $\varepsilon_{B}^{0}=\dot{f}_{s}+\varepsilon_{0}$. Then $\varepsilon(e)=F F_{s t}\left(\varepsilon_{0}(e)\right.$. By inversion on $\left.x E_{1}\right)+\varepsilon_{0}(e] \cdot \tau \times \tau_{2}$ By in duction, $0+e^{i} \tau^{\prime}$ and $\varepsilon_{0} \cdot \tau^{\prime} \rightarrow \tau x \tau_{2}$. Apply (6).

Preservation: If $+f: \tau$ and $e \rightarrow e^{\prime}$ then $+r e^{\prime}: \tau$.
Case $\frac{e_{0}+\gamma e_{0}^{\prime}}{\left\{[)^{\prime}\right.}$ The $e=\varepsilon\left(e_{e}\right)$. By Lemma 2, there exists τ^{\prime}
s.t. $+e_{0}: \tau^{\prime}$ and $\varepsilon: \tau^{\prime} \rightarrow \tau$.

By induction, $1+e_{0}^{\prime}: \tau^{\prime}$. By Lemma, or $\left[e_{0}{ }^{\prime}\right]: \tau$.
Other cases similar to past preservation proofs.
Lena 3 (Decomposition). If \cdot-e: τ the either e is a value or $e=E\left[e^{\prime}\right]$ and e^{\prime} is $\left(\lambda x \cdot \tau^{\prime} \cdot e^{\prime \prime}\right) v$ or $f_{5} t\left(v_{1}, v_{2}\right)$ or and $\left(r_{1} v_{2}\right)$.
Pf. By induction on the derivation of .reit.
mit $I, \rightarrow I$. The is a value.
$\rightarrow \rightarrow_{E}$ then $e=e_{1} e_{2}$ and $0+e_{1}: \tau^{\prime} \rightarrow \tau$ and $0+e_{2}: \tau^{\prime}$;
By induction, e_{1} is a value or $e_{1}=\varepsilon\left[e_{1}^{\prime}\right]$ and e_{1} has ned the \hat{e} form.
e_{1} value): By induction, e_{2} is a value or $e_{2}=\left\{\left(e_{2}\right) \ldots\right.$
e_{2} is a value. Then by $\left.C F, e=0\left(\lambda x: \tau, e^{\prime \prime}\right) v\right]$
$e_{2}=\varepsilon\left[e_{2}^{\prime}\right)$. Then $e=v \varepsilon\left(e_{2}^{\prime}\right]=(v \varepsilon)\left[e_{2}^{\prime}\right] \ldots$

Progress. If ore: τ then e is a value or erie' for rome e : Proof. By Lemma 3:
e is a value)

$$
\begin{aligned}
& \left.e=\varepsilon\left[e^{\prime}\right] \text { and } e^{\prime}=\left(\lambda x: \tau^{\prime} . e^{\prime \prime}\right) v\right) \text { then } \operatorname{err} \varepsilon\left[(v / x) e^{\prime \prime}\right] \\
& e^{\prime}=f_{s}+\left(v_{1}, v_{2}\right) \text {) Then } e r \varepsilon\left(v_{1}\right] \\
& e^{\prime}=\text { and }\left(v_{1}, r_{2}\right) \text { Then ere } E\left[v_{2}\right] \text {. }
\end{aligned}
$$

Note there can be more than ane way to decompose on exp

$$
\begin{aligned}
& (\lambda x \text { intxint. fit } x) \quad(\text { fit }(T, \pi), \overline{3}) \text { : } \\
& =\left(0\left(f_{3}+(i, \bar{z}), \zeta\right)\right)[(\lambda \times \ldots)] \\
& =\left(\left(\lambda x . f_{3}+x\right)(0, \overline{3})\right)\left[f_{3}+(T, \bar{Z})\right] \text {-the useful one } \\
& =\left(\left(\lambda x . f_{s}+x\right)\left(f_{s}+0, \overline{3}\right)\right)[(T, \overline{2})] \\
& \mapsto(\lambda x \text { int int. fit } x)(T, J) \\
& =((1 x \text {. ff }+x)(0, \overline{3}))[T]-n o l o n g e r ~ t h e ~ m e f u l ~ o n e ~ \\
& =O[(\lambda x . f s t x)(T, \overline{3})] \\
& \mapsto \quad O\left[f_{s}+(T, 3)\right] \\
& \rightarrow O[T]
\end{aligned}
$$

Crime ports of these notes derived for notes by David.Walker@Princetion.

