Subtyping

Stefan Muller

CS 534: Types and Programming Languages, Spring 2024 Lecture 19

1 Subsumption

Consider the types **nat** and **int**. We want to be able to consider anything of **nat** to be of type **int**. We'll say **nat** is a "subtype" of **int**:

 $\mathsf{nat} <: \mathsf{int}$

In general, we'll use $\tau <: \tau'$ to say that τ is a subtype of τ' . There are a few ways of interpreting this:

- Any τ can behave like a τ' .
- Anything that expects a τ' can accept a τ .
- Anything of type τ can have type τ' .

The last point is explicitly allowed by the "subsumption rule":

$$\frac{\Gamma \vdash e : \tau \qquad \tau <: \tau'}{\Gamma \vdash e : \tau'}$$
(T-SUB)

2 Example: Products

Consider n-ary products $\tau_1 \times \cdots \times \tau_n$:

$$\frac{\forall i, \Gamma \vdash e_i : \tau_i}{(e_1, \dots, e_n) : \tau_1 \times \dots \times \tau_n} (\times -I) \frac{\Gamma \vdash e : \tau_1 \times \dots \times \tau_n \qquad 1 \le i \le n}{\Gamma \vdash \pi_i \ e : \tau_i} (\times -E)$$

Let:

$$\begin{array}{rcl} \mathsf{fst2} & \triangleq & \lambda x: \mathsf{int} \times \mathsf{int}.\pi_1 \ x \\ \mathsf{fst3} & \triangleq & \lambda x: \mathsf{int} \times \mathsf{int} \times \mathsf{int}.\pi_1 \ x \end{array}$$

The expression fst2 (1, 2, 3) is perfectly safe but not well-typed. In general, $\pi_i e$ is safe for $e : \tau_1 \times \cdots \times \tau_n$ as long as $i \leq n$. Since projection is the only thing that can "expect" (eliminate) something of product type, that should mean that

$$int \times int \times int <: int \times int$$

and in general

$$\frac{1}{\tau_1 \times \cdots \times \tau_n \times \cdots \times \tau_{n+k} <: \tau_1 \times \cdots \times \tau_n}$$
(Sub-Width)

We call this "width subtyping".

With this and the subsumption rule, we can type fst2(1,2,3):

$$\underbrace{ \underbrace{ \cdots}_{\bullet \vdash \text{fst2}:(\text{int} \times \text{int}) \to \text{int}}_{\bullet \vdash (1, 2, 3): \text{int} \times \text{int} \times \text{int}} \underbrace{ (\times -I) }_{\bullet \vdash (1, 2, 3): \text{int} \times \text{int} \times \text{int} \times \text{int} \times \text{int}} \underbrace{ (\text{SUB-WIDTH}) }_{\bullet \vdash (1, 2, 3): \text{int} \times \text{int}} (\text{T-SUB}) }_{\bullet \vdash \text{fst2} (1, 2, 3): \text{int}} (\to -E)$$

Note that it would **not** be safe to say

 $\mathsf{int} \times \mathsf{int} <: \mathsf{int} \times \mathsf{int} \times \mathsf{int}$

because we cannot allow something like π_3 (1,2).

What about

- $(int \times int \times int) \times int <: (int \times int) \times int$
- $int \times nat <: int \times int$

These should be fine, but we don't have the rules to show them. Enter "depth subtyping":

$$\frac{\forall i, \tau_i <: \tau'_i}{\tau_1 \times \cdots \times \tau_n <: \tau'_1 \times \cdots \times \tau'_n}$$
(SUB-DEPTH)

3 Properties of Subtyping

Note that to derive both of the subtyping relations above, we still need int <: int. In general, we require that subtyping is **reflexive and transitive**. There are two ways to do this:

3.1 Set up the rules carefully so we can prove it.

We need a rule for products that combines width and depth subtyping.

$$\frac{\forall i \in [1, n].\tau_i <: \tau'_i}{\text{unit} <: \text{unit}} (\text{Sub-Unit}) \qquad \frac{\forall i \in [1, n].\tau_i <: \tau'_i}{\tau_1 \times \dots \times \tau_n \times \dots \times \tau_{n+k} <: \tau'_1 \times \dots \times \tau'_n} (\text{Sub-Prod})$$

Lemma 1. For all $\tau, \tau \lt: \tau$.

Proof. By induction on the structure of τ .

- unit, int. By SUB-UNIT, SUB-INT.
- $\tau_1 \times \cdots \times \tau_n$. By induction, $\tau_i <: \tau_i$. Apply SUB-PROD.

Lemma 2. If $\tau_1 \ll \tau_2$ and $\tau_2 \ll \tau_3$, then $\tau_1 \ll \tau_3$.

Proof. By induction on the derivation of $\tau_1 <: \tau_2$ and $\tau_2 <: \tau_3$

- If the first derivation is by SUB-UNIT or SUB-INT, then $\tau_1 = \tau_2$, so we have $\tau_1 <: \tau_3$ by assumption.
- If the second derivation is by SUB-UNIT or SUB-INT, then $\tau_2 = \tau_3$, so we have $\tau_1 <: \tau_3$ by assumption.
- SUB-PROD, SUB-PROD. We have

$$\tau_1 \times \cdots \times \tau_{n+k+l} <: \tau'_1 \times \cdots \times \tau'_{n+k} <: \tau''_1 \times \cdots \times \tau''_n$$

where $\tau_i <: \tau'_i <: \tau''_i$. Apply SUB-PROD

This gets a lot harder as we add more rules.

3.2 Add explicit rules for reflexivity and transitivity

$$\frac{\tau_1 <: \tau_2 \quad \tau_2 <: \tau_3}{\tau_1 <: \tau_3}$$
(SUB-REFL)
$$\frac{\tau_1 <: \tau_2 \quad \tau_2 <: \tau_3}{\tau_1 <: \tau_3}$$
(SUB-TRANS)

This generally makes the theory cleaner and easier, but is a huge pain to actually implement in a type checker.

4 Other Subtyping Rules

What about n-ary sums?

$$\frac{\tau_i <: \tau'_i}{\tau_1 + \dots + \tau_n <: \tau_1 + \dots + \tau_n + \dots + \tau_{n+k}}$$
(SUB-WIDTH-SUM)
$$\frac{\tau_i <: \tau'_i}{\tau_1 + \dots + \tau_n <: \tau'_1 + \dots + \tau'_n}$$
(SUB-DEPTH-SUM)

How about functions?

$$\frac{\tau_1' <: \tau_1 \qquad \tau_2 <: \tau_2'}{\tau_1 \to \tau_2 <: \tau_1' \to \tau_2'} \text{ (Sub-Fun)}$$

Covariance and Contravariance Note that the argument types don't go the way you expect! Rules SUB-DEPTH and SUB-DEPTH-SUM are *covariant:* the subtyping relations of the types go in the same direction as their components. Function subtyping is covariant in the result types but *contravariant* in the argument types!

Consider whether we should allow

 $\mathsf{int} \times \mathsf{int} \times \mathsf{int} \to \mathsf{int} <: \mathsf{int} \times \mathsf{int} \to \mathsf{int}$

Take the function

thd
$$\triangleq \lambda x$$
 : int \times int \times int. $\pi_3 x$

This would allow us to type $\bullet \vdash \mathsf{thd} : \mathsf{int} \times \mathsf{int} \to \mathsf{int}$ and therefore type $\mathsf{thd} (1,2)$, but this is clearly unsafe!

When can we use something of type $\tau_1 \rightarrow \tau_2$ when we expect a $\tau'_1 \rightarrow \tau'_2$? If we expect a int \rightarrow int, we might give it an int, like -1, but this would be a problem if we got a nat \rightarrow nat! (On the other hand, if we got an int \rightarrow nat, this would be fine: we'll never know it's only giving us nats back).

5 Examples

:∢	int o nat
<:	$nat\toint$
≮:	nat imes int
<:	int + int
<:	int + int + int
<:	$int \to int \times int$
	¥ ∵ ¥ ∵ ∵ ∵

6 Progress and Preservation

Lemma 3. If $\tau <: \tau_1 \times \cdots \times \tau_n$ then $\tau = \tau'_1 \times \cdots \times \tau'_m$ for some $m \ge n$ where for all $i \in [1, n]$, we have $\tau'_i <: \tau_i$.

Proof. By induction on the derivation of $\tau <: \tau_1 \times \cdots \times \tau_n$.

- SUB-REFL. The result is clear.
- SUB-WIDTH. Then $\tau = \tau_1 \times \cdots \times \tau_m$ for $m \ge n$. We have $\tau_i \lt: \tau_i$ by SUB-REFL.
- SUB-DEPTH. Then $\tau = \tau'_1 \times \cdots \times \tau'_n$ where $\tau'_i <: \tau_i$.

• SUB-TRANS. Then $\tau <: \tau'$ and $\tau' <: \tau_1 \times \cdots \times \tau_n$. By induction, $\tau' = \tau'_1 \times \cdots \times \tau'_m$ for some $m \ge n$ where for all $i \in [1, n]$, we have $\tau'_i <: \tau_i$. By another induction, $\tau = \tau''_1 \times \cdots \times \tau''_k$ for some $k \ge m$ where for all $i \in [1, m]$, we have $\tau''_i <: \tau'_i$. Apply transitivity of \ge and <:.

Lemma 4 (Canonical Forms (Old)). If $\bullet \vdash e : \tau_1 \times \cdots \times \tau_n$ and e val, then $e = (v_1, \ldots, v_n)$ where $v_i \text{ val}$.

This is no longer true!

Lemma 5 (Canonical Forms (New)). If $\bullet \vdash e : \tau_1 \times \cdots \times \tau_n$ and e val, then $e = (v_1, \ldots, v_m)$ where v_i val and $m \geq n$.

Proof. By induction on the derivation of $\bullet \vdash e : \tau_1 \times \cdots \times \tau_n$.

- ×-I. Then $e = (v_1, \ldots, v_n)$. By inversion on the value rules, we have v_i val.
- SUB. Then $\vdash e : \tau$ and $\tau <: \tau_1 \times \cdots \times \tau_n$. By Lemma ??, $\tau = \tau'_1 \times \cdots \times \tau'_m$ for some $m \ge n$ where for all $i \in [1, n]$, we have $\tau'_i <: \tau_i$. By induction, $e = (v_1, \ldots, v_k)$ where v_i val and $k \ge m$. We have $k \ge n$.

This used to be obvious just by doing inversion on the typing rules; it's not anymore!

Lemma 6 (Inversion on Typing).

- 1. If $\bullet \vdash (e_1, \ldots, e_n) : \tau$ then $\tau_1 \times \cdots \times \tau_n <: \tau$ and for all $i, \bullet \vdash e_i : \tau_i$.
- 2. If $\bullet \vdash \pi_i \ e : \tau \ then \ \bullet \vdash e : \tau_1 \times \cdots \times \tau_n \ and \ 1 \leq i \leq n \ and \ \tau_i <: \tau$.

Lemma 7 (Preservation). If $\bullet \vdash e : \tau$ and $e \mapsto e'$ then $\bullet \vdash e' : \tau$.

Proof. Consider the case for π_i $(e_1, \ldots, e_n) \mapsto e_i$. Then by Lemma ??, $\bullet \vdash (e_1, \ldots, e_n) : \tau_1 \times \cdots \times \tau_n$ and $1 \leq i \leq n$ and $\tau_i <: \tau$. By another application of Lemma ??, we have $\tau'_1 \times \cdots \times \tau'_n <: \tau_1 \times \cdots \times \tau_n$ and $\bullet \vdash e_i : \tau'_i$. By Lemma ??, we have $\tau'_i <: \tau_i$. By T-SUB, we have $\bullet \vdash e_i : \tau_i$ and $\bullet \vdash e_i : \tau$.

Lemma 8 (Progress). If $\bullet \vdash e : \tau$ then either e val $or e \mapsto e'$.

Proof. By induction on the derivation of $\bullet \vdash e : \tau$.

- ×-E. Then $e = \pi_i \ e_0$ and $\bullet \vdash e_0 : \tau_1 \times \cdots \times \tau_n$ and $1 \le i \le n$. By induction, either e_0 val or $e_0 \mapsto e'_0$. Consider the case where e_0 val. Then, by Canonical Forms, $e_0 = (v_1, \ldots, v_m)$ where v_i val and $m \ge n$. We have $e \mapsto v_i$.
- T-SUB. Then $\vdash e : \tau'$ and $\tau' <: \tau$. By induction.