
Subtyping

Stefan Muller

CS 534: Types and Programming Languages, Spring 2024
Lecture 19

1 Subsumption

Consider the types nat and int. We want to be able to consider anything of nat to be of type int. We’ll
say nat is a “subtype” of int:

nat<: int

In general, we’ll use τ <: τ ′ to say that τ is a subtype of τ ′. There are a few ways of interpreting this:

• Any τ can behave like a τ ′.

• Anything that expects a τ ′ can accept a τ .

• Anything of type τ can have type τ ′.

The last point is explicitly allowed by the “subsumption rule”:

Γ ⊢ e : τ τ <: τ ′

Γ ⊢ e : τ ′
(T-Sub)

2 Example: Products

Consider n-ary products τ1 × · · · × τn:

∀i,Γ ⊢ ei : τi

(e1, . . . , en) : τ1 × · · · × τn
(×-I)

Γ ⊢ e : τ1 × · · · × τn 1 ≤ i ≤ n

Γ ⊢ πi e : τi
(×-E)

Let:
fst2 ≜ λx : int× int.π1 x

fst3 ≜ λx : int× int× int.π1 x

The expression fst2 (1, 2, 3) is perfectly safe but not well-typed. In general, πi e is safe for e : τ1×· · ·× τn
as long as i ≤ n. Since projection is the only thing that can “expect” (eliminate) something of product type,
that should mean that

int× int× int<: int× int

and in general

τ1 × · · · × τn × · · · × τn+k <: τ1 × · · · × τn
(Sub-Width)

We call this “width subtyping”.
With this and the subsumption rule, we can type fst2 (1, 2, 3):

1



. . .

• ⊢ fst2 : (int × int) → int

. . .

• ⊢ (1, 2, 3) : int × int × int
(×-I)

int × int × int <: int × int
(Sub-Width)

• ⊢ (1, 2, 3) : int × int
(T-Sub)

• ⊢ fst2 (1, 2, 3) : int
(→-E)

Note that it would not be safe to say

int× int<: int× int× int

because we cannot allow something like π3 (1, 2).
What about

• (int× int× int)× int<: (int× int)× int

• int× nat<: int× int

These should be fine, but we don’t have the rules to show them. Enter “depth subtyping”:

∀i, τi <: τ ′i
τ1 × · · · × τn <: τ ′1 × · · · × τ ′n

(Sub-Depth)

3 Properties of Subtyping

Note that to derive both of the subtyping relations above, we still need int<: int. In general, we require that
subtyping is reflexive and transitive. There are two ways to do this:

3.1 Set up the rules carefully so we can prove it.

We need a rule for products that combines width and depth subtyping.

unit<: unit
(Sub-Unit)

int<: int
(Sub-Int)

∀i ∈ [1, n].τi <: τ ′i
τ1 × · · · × τn × · · · × τn+k <: τ ′1 × · · · × τ ′n

(Sub-Prod)

Lemma 1. For all τ , τ <: τ .

Proof. By induction on the structure of τ .

• unit, int. By Sub-Unit, Sub-Int.

• τ1 × · · · × τn. By induction, τi <: τi. Apply Sub-Prod.

Lemma 2. If τ1 <: τ2 and τ2 <: τ3, then τ1 <: τ3.

Proof. By induction on the derivation of τ1 <: τ2 and τ2 <: τ3

• If the first derivation is by Sub-Unit or Sub-Int, then τ1 = τ2, so we have τ1 <: τ3 by assumption.

• If the second derivation is by Sub-Unit or Sub-Int, then τ2 = τ3, so we have τ1 <: τ3 by assumption.

• Sub-Prod, Sub-Prod. We have

τ1 × · · · × τn+k+l <: τ ′1 × · · · × τ ′n+k <: τ ′′1 × · · · × τ ′′n

where τi <: τ ′i <: τ ′′i . Apply Sub-Prod

This gets a lot harder as we add more rules.

2



3.2 Add explicit rules for reflexivity and transitivity

τ <: τ
(Sub-Refl)

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3
(Sub-Trans)

This generally makes the theory cleaner and easier, but is a huge pain to actually implement in a type
checker.

4 Other Subtyping Rules

What about n-ary sums?

τ1 + · · ·+ τn <: τ1 + · · ·+ τn + · · ·+ τn+k

(Sub-Width-Sum)
τi <: τ ′i

τ1 + · · ·+ τn <: τ ′1 + · · ·+ τ ′n
(Sub-Depth-Sum)

How about functions?
τ ′1 <: τ1 τ2 <: τ ′2
τ1 → τ2 <: τ ′1 → τ ′2

(Sub-Fun)

Covariance and Contravariance Note that the argument types don’t go the way you expect! Rules Sub-
Depth and Sub-Depth-Sum are covariant: the subtyping relations of the types go in the same direction
as their components. Function subtyping is covariant in the result types but contravariant in the argument
types!

Consider whether we should allow

int× int× int → int<: int× int → int

Take the function
thd ≜ λx : int× int× int.π3 x

This would allow us to type • ⊢ thd : int× int → int and therefore type thd (1, 2), but this is clearly unsafe!
When can we use something of type τ1 → τ2 when we expect a τ ′1 → τ ′2? If we expect a int → int, we

might give it an int, like −1, but this would be a problem if we got a nat → nat! (On the other hand, if we
got an int → nat, this would be fine: we’ll never know it’s only giving us nats back).

5 Examples

nat → int ≮: int → nat
int → nat <: nat → int
int× nat ≮: nat× int
nat+ nat <: int+ int
nat+ nat <: int+ int+ int
int → int× int× int <: int → int× int

6 Progress and Preservation

Lemma 3. If τ <:τ1×· · ·×τn then τ = τ ′1×· · ·×τ ′m for some m ≥ n where for all i ∈ [1, n], we have τ ′i<:τi.

Proof. By induction on the derivation of τ <: τ1 × · · · × τn.

• Sub-Refl. The result is clear.

• Sub-Width. Then τ = τ1 × · · · × τm for m ≥ n. We have τi <: τi by Sub-Refl.

• Sub-Depth. Then τ = τ ′1 × · · · × τ ′n where τ ′i <: τi.

3



• Sub-Trans. Then τ <: τ ′ and τ ′ <: τ1 × · · · × τn. By induction, τ ′ = τ ′1 × · · · × τ ′m for some m ≥ n
where for all i ∈ [1, n], we have τ ′i <: τi. By another induction, τ = τ ′′1 ×· · ·× τ ′′k for some k ≥ m where
for all i ∈ [1,m], we have τ ′′i <: τ ′i . Apply transitivity of ≥ and <:.

Lemma 4 (Canonical Forms (Old)). If • ⊢ e : τ1 × · · · × τn and e val, then e = (v1, . . . , vn) where vi val.

This is no longer true!

Lemma 5 (Canonical Forms (New)). If • ⊢ e : τ1 × · · · × τn and e val, then e = (v1, . . . , vm) where vi val
and m ≥ n.

Proof. By induction on the derivation of • ⊢ e : τ1 × · · · × τn.

• ×-I. Then e = (v1, . . . , vn). By inversion on the value rules, we have vi val.

• Sub. Then • ⊢ e : τ and τ <: τ1 × · · · × τn. By Lemma ??, τ = τ ′1 × · · · × τ ′m for some m ≥ n where for
all i ∈ [1, n], we have τ ′i <: τi. By induction, e = (v1, . . . , vk) where vi val and k ≥ m. We have k ≥ n.

This used to be obvious just by doing inversion on the typing rules; it’s not anymore!

Lemma 6 (Inversion on Typing).

1. If • ⊢ (e1, . . . , en) : τ then τ1 × · · · × τn <: τ and for all i, • ⊢ ei : τi.

2. If • ⊢ πi e : τ then • ⊢ e : τ1 × · · · × τn and 1 ≤ i ≤ n and τi <: τ .

Lemma 7 (Preservation). If • ⊢ e : τ and e 7→ e′ then • ⊢ e′ : τ .

Proof. Consider the case for πi (e1, . . . , en) 7→ ei. Then by Lemma ??, • ⊢ (e1, . . . , en) : τ1 × · · · × τn
and 1 ≤ i ≤ n and τi <: τ . By another application of Lemma ??, we have τ ′1 × · · · × τ ′n <: τ1 × · · · × τn
and • ⊢ ei : τ

′
i . By Lemma ??, we have τ ′i <: τi. By T-Sub, we have • ⊢ ei : τi and • ⊢ ei : τ .

Lemma 8 (Progress). If • ⊢ e : τ then either e val or e 7→ e′.

Proof. By induction on the derivation of • ⊢ e : τ .

• ×-E. Then e = πi e0 and • ⊢ e0 : τ1 × · · · × τn and 1 ≤ i ≤ n. By induction, either e0 val or e0 7→ e′0.
Consider the case where e0 val. Then, by Canonical Forms, e0 = (v1, . . . , vm) where vi val and m ≥ n.
We have e 7→ vi.

• T-Sub. Then • ⊢ e : τ ′ and τ ′ <: τ . By induction.

4


