Subtyping

Stefan Muller

CS 534: Types and Programming Languages, Spring 2024
Lecture 19

1 Subsumption

Consider the types nat and int. We want to be able to consider anything of nat to be of type int. We'll say nat is a "subtype" of int:

$$
\text { nat }<\text { : int }
$$

In general, we'll use $\tau<: \tau^{\prime}$ to say that τ is a subtype of τ^{\prime}. There are a few ways of interpreting this:

- Any τ can behave like a τ^{\prime}.
- Anything that expects a τ^{\prime} can accept a τ.
- Anything of type τ can have type τ^{\prime}.

The last point is explicitly allowed by the "subsumption rule":

$$
\frac{\Gamma \vdash e: \tau \quad \tau<: \tau^{\prime}}{\Gamma \vdash e: \tau^{\prime}}(\mathrm{T}-\mathrm{SUB})
$$

2 Example: Products

Consider n-ary products $\tau_{1} \times \cdots \times \tau_{n}$:

$$
\frac{\forall i, \Gamma \vdash e_{i}: \tau_{i}}{\left(e_{1}, \ldots, e_{n}\right): \tau_{1} \times \cdots \times \tau_{n}}(\times-\mathrm{I}) \frac{\Gamma \vdash e: \tau_{1} \times \cdots \times \tau_{n} \quad 1 \leq i \leq n}{\Gamma \vdash \pi_{i} e: \tau_{i}}(\times-\mathrm{E})
$$

Let:

$$
\begin{aligned}
& \mathrm{fst} 2 \triangleq \lambda x: \text { int } \times \text { int. } \pi_{1} x \\
& \mathrm{fst} 3 \triangleq \lambda x: \text { int } \times \text { int } \times \text { int. } \pi_{1} x
\end{aligned}
$$

The expression fst2 $(1,2,3)$ is perfectly safe but not well-typed. In general, $\pi_{i} e$ is safe for $e: \tau_{1} \times \cdots \times \tau_{n}$ as long as $i \leq n$. Since projection is the only thing that can "expect" (eliminate) something of product type, that should mean that

$$
\text { int } \times \text { int } \times \text { int }<: \text { int } \times \text { int }
$$

and in general

$$
\overline{\tau_{1} \times \cdots \times \tau_{n} \times \cdots \times \tau_{n+k}<: \tau_{1} \times \cdots \times \tau_{n}}(\text { SUB-WIDTH })
$$

We call this "width subtyping".
With this and the subsumption rule, we can type fst2 $(1,2,3)$:

Note that it would not be safe to say

$$
\text { int } \times \text { int }<\text { int } \times \text { int } \times \text { int }
$$

because we cannot allow something like $\pi_{3}(1,2)$.
What about

- $($ int \times int \times int $) \times$ int $<:($ int \times int $) \times$ int
- int \times nat $<$ int \times int

These should be fine, but we don't have the rules to show them. Enter "depth subtyping":

$$
\frac{\forall i, \tau_{i}<: \tau_{i}^{\prime}}{\tau_{1} \times \cdots \times \tau_{n}<: \tau_{1}^{\prime} \times \cdots \times \tau_{n}^{\prime}}(\text { SUB-DEPTH })
$$

3 Properties of Subtyping

Note that to derive both of the subtyping relations above, we still need int $<$: int. In general, we require that subtyping is reflexive and transitive. There are two ways to do this:

3.1 Set up the rules carefully so we can prove it.

We need a rule for products that combines width and depth subtyping.

$$
\overline{\text { unit }<: \text { unit }}(\text { SUb-Unit }) \quad \overline{\operatorname{int}<: \text { int }}(\text { Sub-InT }) \quad \frac{\forall i \in[1, n] . \tau_{i}<: \tau_{i}^{\prime}}{\tau_{1} \times \cdots \times \tau_{n} \times \cdots \times \tau_{n+k}<: \tau_{1}^{\prime} \times \cdots \times \tau_{n}^{\prime}} \text { (SUB-Prod) }
$$

Lemma 1. For all $\tau, \tau<: \tau$.
Proof. By induction on the structure of τ.

- unit, int. By Sub-Unit, Sub-Int.
- $\tau_{1} \times \cdots \times \tau_{n}$. By induction, $\tau_{i}<: \tau_{i}$. Apply Sub-Prod.

Lemma 2. If $\tau_{1}<: \tau_{2}$ and $\tau_{2}<: \tau_{3}$, then $\tau_{1}<: \tau_{3}$.
Proof. By induction on the derivation of $\tau_{1}<: \tau_{2}$ and $\tau_{2}<: \tau_{3}$

- If the first derivation is by Sub-Unit or Sub-Int, then $\tau_{1}=\tau_{2}$, so we have $\tau_{1}<: \tau_{3}$ by assumption.
- If the second derivation is by Sub-Unit or Sub-Int, then $\tau_{2}=\tau_{3}$, so we have $\tau_{1}<: \tau_{3}$ by assumption.
- Sub-Prod, Sub-Prod. We have

$$
\tau_{1} \times \cdots \times \tau_{n+k+l}<: \tau_{1}^{\prime} \times \cdots \times \tau_{n+k}^{\prime}<: \tau_{1}^{\prime \prime} \times \cdots \times \tau_{n}^{\prime \prime}
$$

where $\tau_{i}<: \tau_{i}^{\prime}<: \tau_{i}^{\prime \prime}$. Apply Sub-Prod

This gets a lot harder as we add more rules.

3.2 Add explicit rules for reflexivity and transitivity

$$
\overline{\tau<: \tau}(\text { Sub-Refl }) \quad \frac{\tau_{1}<: \tau_{2} \tau_{2}<: \tau_{3}}{\tau_{1}<: \tau_{3}} \text { (Sub-TRANS) }
$$

This generally makes the theory cleaner and easier, but is a huge pain to actually implement in a type checker.

4 Other Subtyping Rules

What about n-ary sums?
$\frac{\tau_{i}<: \tau_{i}^{\prime}}{\tau_{1}+\cdots+\tau_{n}<: \tau_{1}+\cdots+\tau_{n}+\cdots+\tau_{n+k}}$ (SUB-WIDTH-SUM) $\frac{\tau_{n}<: \tau_{1}^{\prime}+\cdots+\tau_{n}^{\prime}}{\tau_{1}+\cdots+\tau_{n}}$ (SUB-DEPTH-SUM)
How about functions?

$$
\frac{\tau_{1}^{\prime}<: \tau_{1} \quad \tau_{2}<: \tau_{2}^{\prime}}{\tau_{1} \rightarrow \tau_{2}<: \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}} \text { (SUB-FUN) }
$$

Covariance and Contravariance Note that the argument types don't go the way you expect! Rules SuBDepth and Sub-Depth-Sum are covariant: the subtyping relations of the types go in the same direction as their components. Function subtyping is covariant in the result types but contravariant in the argument types!

Consider whether we should allow

$$
\text { int } \times \text { int } \times \text { int } \rightarrow \text { int }<: \text { int } \times \text { int } \rightarrow \text { int }
$$

Take the function

$$
\text { thd } \triangleq \lambda x: \text { int } \times \text { int } \times \text { int. } \pi_{3} x
$$

This would allow us to type $\bullet \vdash$ thd : int \times int \rightarrow int and therefore type thd (1,2), but this is clearly unsafe!
When can we use something of type $\tau_{1} \rightarrow \tau_{2}$ when we expect a $\tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}$? If we expect a int \rightarrow int, we might give it an int, like -1 , but this would be a problem if we got a nat \rightarrow nat! (On the other hand, if we got an int \rightarrow nat, this would be fine: we'll never know it's only giving us nats back).

5 Examples

$$
\begin{array}{lll}
\text { nat } \rightarrow \text { int } & \nless: & \text { int } \rightarrow \text { nat } \\
\text { int } \rightarrow \text { nat } & <: & \text { nat } \rightarrow \text { int } \\
\text { int } \times \text { nat } & \nless & \text { nat } \times \text { int } \\
\text { nat }+ \text { nat } & <: & \text { int }+ \text { int } \\
\text { nat }+ \text { nat } & <: & \text { int }+ \text { int }+ \text { int } \\
\text { int } \rightarrow \text { int } \times \text { int } \times \text { int } & <: & \text { int } \rightarrow \text { int } \times \text { int }
\end{array}
$$

6 Progress and Preservation

Lemma 3. If $\tau<: \tau_{1} \times \cdots \times \tau_{n}$ then $\tau=\tau_{1}^{\prime} \times \cdots \times \tau_{m}^{\prime}$ for some $m \geq n$ where for all $i \in[1, n]$, we have $\tau_{i}^{\prime}<: \tau_{i}$.
Proof. By induction on the derivation of $\tau<: \tau_{1} \times \cdots \times \tau_{n}$.

- Sub-Refl. The result is clear.
- Sub-Width. Then $\tau=\tau_{1} \times \cdots \times \tau_{m}$ for $m \geq n$. We have $\tau_{i}<: \tau_{i}$ by Sub-Refl.
- Sub-Depth. Then $\tau=\tau_{1}^{\prime} \times \cdots \times \tau_{n}^{\prime}$ where $\tau_{i}^{\prime}<: \tau_{i}$.
- Sub-Trans. Then $\tau<: \tau^{\prime}$ and $\tau^{\prime}<: \tau_{1} \times \cdots \times \tau_{n}$. By induction, $\tau^{\prime}=\tau_{1}^{\prime} \times \cdots \times \tau_{m}^{\prime}$ for some $m \geq n$ where for all $i \in[1, n]$, we have $\tau_{i}^{\prime}<: \tau_{i}$. By another induction, $\tau=\tau_{1}^{\prime \prime} \times \cdots \times \tau_{k}^{\prime \prime}$ for some $k \geq m$ where for all $i \in[1, m]$, we have $\tau_{i}^{\prime \prime}<: \tau_{i}^{\prime}$. Apply transitivity of \geq and $<$..

Lemma 4 (Canonical Forms (Old)). If $\bullet \vdash e: \tau_{1} \times \cdots \times \tau_{n}$ and e val, then $e=\left(v_{1}, \ldots, v_{n}\right)$ where v_{i} val.
This is no longer true!
Lemma 5 (Canonical Forms (New)). If $\bullet \vdash e: \tau_{1} \times \cdots \times \tau_{n}$ and e val, then $e=\left(v_{1}, \ldots, v_{m}\right)$ where v_{i} val and $m \geq n$.

Proof. By induction on the derivation of $\bullet \vdash e: \tau_{1} \times \cdots \times \tau_{n}$.

- \times-I. Then $e=\left(v_{1}, \ldots, v_{n}\right)$. By inversion on the value rules, we have v_{i} val.
- Sub. Then $\bullet \vdash e: \tau$ and $\tau<: \tau_{1} \times \cdots \times \tau_{n}$. By Lemma ??, $\tau=\tau_{1}^{\prime} \times \cdots \times \tau_{m}^{\prime}$ for some $m \geq n$ where for all $i \in[1, n]$, we have $\tau_{i}^{\prime}<: \tau_{i}$. By induction, $e=\left(v_{1}, \ldots, v_{k}\right)$ where v_{i} val and $k \geq m$. We have $k \geq n$.

This used to be obvious just by doing inversion on the typing rules; it's not anymore!
Lemma 6 (Inversion on Typing).

1. If $\bullet \vdash\left(e_{1}, \ldots, e_{n}\right): \tau$ then $\tau_{1} \times \cdots \times \tau_{n}<: \tau$ and for all $i, \bullet \vdash e_{i}: \tau_{i}$.
2. If $\bullet \vdash \pi_{i} e: \tau$ then $\bullet \vdash e: \tau_{1} \times \cdots \times \tau_{n}$ and $1 \leq i \leq n$ and $\tau_{i}<: \tau$.

Lemma 7 (Preservation). If $\bullet \vdash e: \tau$ and $e \mapsto e^{\prime}$ then $\bullet \vdash e^{\prime}: \tau$.
Proof. Consider the case for $\pi_{i}\left(e_{1}, \ldots, e_{n}\right) \mapsto e_{i}$. Then by Lemma ??, $\bullet \vdash\left(e_{1}, \ldots, e_{n}\right): \tau_{1} \times \cdots \times \tau_{n}$ and $1 \leq i \leq n$ and $\tau_{i}<: \tau$. By another application of Lemma ??, we have $\tau_{1}^{\prime} \times \cdots \times \tau_{n}^{\prime}<: \tau_{1} \times \cdots \times \tau_{n}$ and $\bullet \vdash e_{i}: \tau_{i}^{\prime}$. By Lemma ??, we have $\tau_{i}^{\prime}<: \tau_{i}$. By T-SuB, we have $\bullet \vdash e_{i}: \tau_{i}$ and $\bullet \vdash e_{i}: \tau$.

Lemma 8 (Progress). If $\bullet \vdash e: \tau$ then either e val or $e \mapsto e^{\prime}$.
Proof. By induction on the derivation of $\bullet \vdash e: \tau$.

- ×-E. Then $e=\pi_{i} e_{0}$ and $\bullet \vdash e_{0}: \tau_{1} \times \cdots \times \tau_{n}$ and $1 \leq i \leq n$. By induction, either e_{0} val or $e_{0} \mapsto e_{0}^{\prime}$. Consider the case where e_{0} val. Then, by Canonical Forms, $e_{0}=\left(v_{1}, \ldots, v_{m}\right)$ where v_{i} val and $m \geq n$. We have $e \mapsto v_{i}$.
- T-Sub. Then $\bullet \vdash e: \tau^{\prime}$ and $\tau^{\prime}<: \tau$. By induction.

