
Polymorphism

Stefan Muller

CS 534: Types and Programming Languages, Spring 2024
Lecture 17

1 Why?

Consider the following functions:

λx : unit.x
λx : unit→ unit.x

λx : int.x
λx : int× int.x

They all, of course, do the same thing: simply return their argument. In other words, they are all the
identity function, but they don’t have the same type. If we don’t need type annotations, e.g., in the untyped
lambda calculus, we can capture this behavior with the function λx.x. But what is the type of this function?

2 Adding Polymorphism to STLC

τ ::= · · · | α | ∀α.τ
e ::= · · · | Λα.e | e[τ]

We will be using type variables α like we did for recursive types, but now there’s a new way to bind
them: ∀α.τ . This represents the type of something that can have the type τ with α replaced by any type. We
can also now use types in expressions! The expression Λα.e is a function that takes a type as an argument,
but it’s an expression! We apply it to a type with e[τ].

Example: Polymorphic identity function. The identity function we want has the type

∀α.α→ α

It has the type α→ α for any α. The identity function itself is:

id , Λα.λx : α.x : ∀α.α→ α

If we want to use it, we first need to give it a type:

id[unit] : unit→ unit
id[int] : int→ int

id[int× int] : (int× int)→ (int× int)

In fact, doing so gives us the same specific identity functions we had before:

id[unit] 7→ λx : unit.x
id[int] 7→ λx : int.x

id[int× int] 7→ λx : int× int.x

1

We again need to say when a type is well-formed:

α ∈ ∆

∆ ` α ok

∆, α ` τ ok

∆ ` ∀α.τ ok

And, of course, the new expressions need statics and dynamics. The typing judgment now also needs the
type variable context ∆ because type variables can appear in expressions.

∆, α; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ
(∀-I)

∆; Γ ` e : ∀α.τ ∆ ` τ ′ ok
∆; Γ ` e[τ ′] : [τ ′/α]τ

(∀-E)

The dynamics are relatively easy:

Λα.e val

e 7→ e′

e[τ] 7→ e′[τ] (Λα.e)[τ] 7→ [τ/α]e

The last step rule justifies the steps we have above for the identity functions.

Example. The function Λα.∀β.λx : α× β.(fst x, snd x) has type ∀α.∀β.(α× β)→ (β × α).

(Λα.Λβ.λx : α× β.(fst x, snd x))[unit][int] ((), 2)
7→ (Λβ.λx : unit× β.(fst x, snd x))[int] ((), 2)
7→ (λx : unit× int.(fst x, snd x)) ((), 2)
7→ (fst ((), 2), snd ((), 2))
7→ ((), snd ((), 2))
7→ ((), 2)

3 Metatheory

Lemma 1 (Substitution for types). If ∆, α ` τ ok and ∆ ` τ ′ ok then ∆ ` [τ ′/α]τ ok.

Proof. By induction on the derivation of ∆, α ` τ ok.

� If τ = α then [τ ′/α]τ = τ ′. By assumption.

� If τ = β and β 6= α then [τ ′/α]τ = β. We have ∆ ` β ok.

� If τ = ∀β.τ ′′ and (by alpha conversion) β 6= α and β is not free in τ ′, then [τ ′/α]τ = ∀β.[τ ′/α]τ ′′

and ∆, α, β ` τ ′′ ok. By weakening, ∆, β ` τ ′ ok. By induction, ∆, β ` [τ ′/α]τ ′′ ok. We have Γ `
∀β.[τ ′/α]τ ′′ ok.

In the below, we use [τ/α]Γ to mean Γ with τ substituted for α in all of its types.

Lemma 2 (Substitution of types in expressions). If ∆, α; Γ ` e : τ and ∆ ` τ ′ ok then ∆; [τ ′/α]Γ ` [τ ′/α]e :
[τ ′/α]τ .

Proof. By induction on the derivation of ∆, α; Γ ` e : τ .

� →-I. Then e = λx : τ0.e0 and τ = τ0 → τ1 and ∆, α; Γ, x : τ0 ` e0 : τ1. We have [τ ′/α]e =
λx : [τ ′/α]τ0.[τ

′/α]e0 and [τ ′/α]τ = ([τ ′/α]τ0) → ([τ ′/α]τ1). By induction, ∆; [τ ′/α]Γ, x : [τ ′/α]τ0 `
[τ ′/α]e0 : [τ ′/α]τ1. Apply rule →-I.

� ∀-E. Then e = e0[τ ′′] and ∆; Γ ` e0 : ∀β.τ0 (where we can assume β 6= α) and ∆ ` τ ′′ ok
and τ = [τ ′′/β]τ0. We have [τ ′/α]e = ([τ ′/α]e0)[[τ ′/α]τ ′′] and [τ ′/α]τ = [[τ ′/α]τ ′′/β][τ ′/α]τ0. By
induction, ∆; [τ ′/α]Γ ` [τ ′/α]e0 : ∀β.[τ ′/α]τ0. By Lemma 1, ∆ ` [τ ′/α]τ ′′ ok. Apply rule ∀-E.

2

Below, ∆ ` Γ ok is defined to mean that ∆ ` τ ok for every τ such that x : τ ∈ Γ.

Lemma 3. If ∆; Γ ` e : τ and ∆ ` Γ ok then ∆ ` τ ok.

Proof. By induction on the derivation of ∆; Γ ` e : τ .

� var. Then e = x and Γ(x) = τ . Because ∆ ` Γ ok, we have ∆ ` τ ok.

� ∀-I. Then τ = ∀α.τ ′ and e = Λα.e′ and ∆, α; Γ ` e : τ ′. By induction, ∆, α ` τ ′ ok. We then
have ∆ ` τ ok.

� ∀-E. Then e = e′[τ ′] and ∆; Γ ` e′ : ∀α.τ ′′ and τ = [τ ′/α]τ ′′ and ∆ ` τ ′ ok. By induction, ∆ ` ∀α.τ ′′ ok.
By inversion, ∆, α ` τ ′′ ok. By Lemma 1, ∆ ` τ ok.

Lemma 4 (Progress). If •; • ` e : τ then either e val or there exists e′ such that e 7→ e′.

Proof. By induction on the derivation of ∆; Γ ` e : τ .

� ∀-I. Then e = Λα.e′ and we have e val.

� ∀-E. Then e = e0[τ ′] and ∆; Γ ` e0 : ∀α.τ ′′ and τ = [τ ′/α]τ ′′ and ∆ ` τ ′ ok. By induction, e0 val
or e0 7→ e′0.

– e0 val. Then by canonical forms, e0 = Λα.e′0 and e 7→ [τ ′/α]e′0.

– e0 7→ e′0. Then e 7→ e′0[τ ′].

Lemma 5 (Preservation). If •; • ` e : τ and e 7→ e′ then •; • ` e′ : τ .

Proof. By induction on the derivation of e 7→ e′.

� (Λα.e0)[τ ′] 7→ [τ ′/α]e0 By inversion on ∀-E, we have •; • ` Λα.e0 : ∀α.τ ′′ and • ` τ ′ ok and τ =
[τ ′/α]τ ′′. By inversion on ∀-I, we have α; • ` e0 : τ ′′. By Lemma 2, we have •; • ` [τ ′/α]e0 : [τ ′/α]τ ′′.

3

