
Announcements

• Project 6 Due Tomorrow, 11:59pm
• As usual, can use <= 2 late days

• If you hand it in on time, I’ll try to grade it and send solutions

• Final review session, Monday 11-12 on Zoom
• Come with questions about lectures, projects, practice final

• Final Exam: Tuesday, 12/6; 10:30am-12:30pm; SB 113
• I will try to have a practice exam up today or tomorrow

CS 443 - Fall 2022 - Lecture 27 1

Final Exam

• (All percentages are approximate and subject to change)

• Cumulative: covers all lectures (including post-Proj6), all projects
• But heavily (~60-75%) post-midterm material

• 10-20% multiple choice

• ~5 longer questions with multiple parts
• Some parts are MC/short answer

CS 443 - Fall 2022 - Lecture 27 2

Final Exam

• I will provide some reference material
• Mostly the same as the midterm + RISC-V Green Sheet

• Open book/Open notes
• Can bring any amount of printed/written reference material

• Please don’t murder too many trees

• No other aids/electronics

CS 443 - Fall 2022 - Lecture 27 3

CS443: Compiler
Construction

Lecture 27: Compiling Object-Oriented Programs

Stefan Muller

CS 443 - Fall 2022 - Lecture 27 4

🤮

CS 443 - Fall 2022 - Lecture 27 5

Mini-Java

public class F {
int x // Field
public int F(int x) { // Constructor
this.x = x; // “this” bound in every method

}
public int foo(int n) { // Method
return this.x + n;

}
}

F a = new F(5); // Instantiate constructor
F b = new F(10);
return a.foo(15) + b.foo(20); // Method calls

CS 443 - Fall 2022 - Lecture 27 6

Nothing magic so far

module F =

struct

type t = { x: int }

let new (x: int): t = { x = x }

let foo (this: t) (n: int) = this.x + n

end

CS 443 - Fall 2022 - Lecture 27 7

Classes can inherit from other classes

public class F {
public int x;

}
public class G extends F {
public int y; // also has field x

}

G a = new G();
a.x = 1;
a.y = 2;

CS 443 - Fall 2022 - Lecture 27 8

We can compile this like we compiled structs

a.x = 1;

a.y = 2;

CS 443 - Fall 2022 - Lecture 27 9

In compiler

G

x

y

At runtime

Var Type

a G

1 2

a

Put the inherited fields at the beginning so
they overlap*
F a = new F();

G b = new G();

a.x = 1;

b.x = 2;

b.y = 3;

CS 443 - Fall 2022 - Lecture 27 10

In compiler

F

x

G

x

y

At runtime

Var Type

a F

b G

F 1 G 1 2

a

Why do we need
this tag?

b

*This works because Java only has
single inheritance

instanceof is evil, but we compile the
language we have, not the one we want
int add_x_and_maybe_y (F a) {

int s = a.x;

if (a instanceof G) {

s += ((G)a).y;

}

return s;

}

CS 443 - Fall 2022 - Lecture 27 11

Classes can inherit methods too

class F {
public void say_hi() { System.out.println("Hi from F!"); }

}
class G extends F {

public void say_hi() { System.out.println("Hi from G!"); }
}
class Test {

public void say_with(F a) {
a.say_hi();

}
}
F a = new G();
test.say_with(a);

CS 443 - Fall 2022 - Lecture 27 12

Java puzzle: What
does this print?

Answer: “Hi from G!”

Imagine compiling to Mini-C: Hoist all
functions to top level

public void F_say_hi(F this) {

System.out.println("Hi from F!");

}

public void G_say_hi(G this) {

System.out.println("Hi from G!");

}

public void Test_say_with(Test this, F a) {

a.say_hi();

}

CS 443 - Fall 2022 - Lecture 27 13

Which say_hi do we call?

At runtime

1 1 2

Each class has a method table (at runtime);
each object has a pointer to its class’s table

CS 443 - Fall 2022 - Lecture 27 14

F a = new F();
G b = new G();

a b

Don’t need an explicit tag anymore: can use the location of the class descriptor

F_say_hi G_say_hi G_other_m

Implementing instanceof: Option 1: Store the
inheritance tree in memory

CS 443 - Fall 2022 - Lecture 27 15

Object

F Main

G H

J

J j = new J();
if (j instanceof F) { …

Implementing instanceof: Option 2: Have a
“display” of superclasses

CS 443 - Fall 2022 - Lecture 27 16

Object

F Main

G H

J

Object

Object MainObject F

Object F G Object F H

Object F H J

Class descriptor = method table + display

J j = new J();
if (j instanceof F) { …

Some languages allow multiple inheritance

CS 443 - Fall 2022 - Lecture 27 17

Thing

Computer Animal

Crab

The prefix trick for field/method layout
doesn’t work anymore

CS 443 - Fall 2022 - Lecture 27 18

Thing

Mass

Computer

Mass

Cycle time

Animal

Mass

Name

Species

Crab

???

Need a global mapping from fields to offsets

Mass

Cycle time

Name

Species

CS 443 - Fall 2022 - Lecture 27 19

If two fields are never used in the same
object, can reuse that offset

Mass

Cycle time/Job

Name

Species

CS 443 - Fall 2022 - Lecture 27 20

Thing

Computer Animal

Crab Human

Mass

Cycle time Name

Species

Job

To minimize wasted space in objects, we’ll have
the class descriptor tell us where each field is

CS 443 - Fall 2022 - Lecture 27 21

Thing

Mass 0

Computer

Mass 0

Cycle time 1

Animal

Mass 0

Cycle time

Name 1

Species 2

Crab

Mass 0

Cycle time 1

Name 2

Species 3

My_laptop

5lbs

0.4ns

My_dog

96lbs

Hugo

Dog

Or, just have a hash table from field names to
offsets in the class descriptor

CS 443 - Fall 2022 - Lecture 27 22

Mass ↦ 0 Mass ↦ 0,
Cycle Time ↦ 1,

Name ↦ 2,
Species ↦ 3

Mass ↦ 0,
Name ↦ 1,

Species ↦ 2

Mass ↦ 0,
Cycle Time ↦ 1

Thing

Computer

Crab

Animal

Compilers translate code in phases

CS 443 - Fall 2022 - Lecture 0 23

Source
Code

Lexical
Analyzer Tokens Parser

Abstract
Syntax

Lowering
Intermed.

Rep.
Code
Gen.

Target
Code

Analysis Optimization

a = b + c - 1 VAR a
EQUAL
VAR b
OP +
VAR C
OP -
CONST 1

Assign

a +

b -

c 1

temp = c – 1
a = b + temp

subl %rax, 1
addl %rax, %rbx

“Front End” “Back End”

A Small ML Compiler

Source
Code

M
in

iC
am

l
A

ST

M
in

i-
C

LL
V

M

R
is

c-
V

Optimization

LL
V

M

Lexing/Parsing Closure Conv./Lifting IR Generation Register Allocation Instruction Selection

Higher-order
Typed
Structured Data
Nested Expressions
Unlimited Variables

First-order
Typed
Structured Data
Nested Expressions
Unlimited Variables

First-order
Typed
Structured Data
Flat Expressions
Unlimited Variables

First-order
Untyped
No Structured Data
Flat Expressions
32 Hardware Registers

CS 443 - Fall 2022 - Lecture 0 24

Course Projects

Source
Code

M
in

iC
am

l
A

ST

M
in

i-
C

LL
V

M

R
is

c-
V

Optimization

LL
V

M

Lexing/Parsing Closure Conv./Lifting IR Generation Register Allocation Instruction Selection

(Project 4) (Project 3) (Project 6)

(Project 5)

Project 1

Project 2

First-order
Typed
No Structured Data
Nested Expressions
Unlimited Variables

CS 443 - Fall 2022 - Lecture 0 25

Parallel
SML

X10

Go off and make languages

• (You don’t even need to write a full compiler)

CS 443 - Fall 2022 - Lecture 27 26

Java
bytecode

Java

C

SML

MLton

PriML

(Want to help with
this? Email me!)

MaPLe

