
Announcements

• Project 6 Due Tomorrow, 11:59pm
• As usual, can use <= 2 late days

• If you hand it in on time, I’ll try to grade it and send solutions

• Final review session, Monday 11-12 on Zoom
• Come with questions about lectures, projects, practice final

• Final Exam: Tuesday, 12/6; 10:30am-12:30pm; SB 113
• I will try to have a practice exam up today or tomorrow
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Final Exam

• (All percentages are approximate and subject to change)

• Cumulative: covers all lectures (including post-Proj6), all projects
• But heavily (~60-75%) post-midterm material

• 10-20% multiple choice

• ~5 longer questions with multiple parts
• Some parts are MC/short answer
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Final Exam

• I will provide some reference material
• Mostly the same as the midterm + RISC-V Green Sheet

• Open book/Open notes
• Can bring any amount of printed/written reference material

• Please don’t murder too many trees

• No other aids/electronics
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CS443: Compiler 
Construction

Lecture 27: Compiling Object-Oriented Programs

Stefan Muller
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Mini-Java

public class F {
int x    // Field
public int F(int x) {  // Constructor
this.x = x; // “this” bound in every method

}
public int foo(int n) {   // Method
return this.x + n;

}
}

F a = new F(5);   // Instantiate constructor
F b = new F(10);
return a.foo(15) + b.foo(20);    // Method calls
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Nothing magic so far

module F =

struct

type t = { x: int }

let new (x: int): t = { x = x }

let foo (this: t) (n: int) = this.x + n

end
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Classes can inherit from other classes

public class F {
public int x;

}
public class G extends F { 
public int y;  // also has field x

}

G a = new G();
a.x = 1;
a.y = 2;
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We can compile this like we compiled structs

a.x = 1;

a.y = 2;

CS 443 - Fall 2022 - Lecture 27 9

In compiler

G

x

y

At runtime

Var Type

a G

1 2

a



Put the inherited fields at the beginning so 
they overlap*
F a = new F();

G b = new G();

a.x = 1;

b.x = 2;

b.y = 3;
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In compiler

F

x

G

x

y

At runtime

Var Type

a F

b G

F 1 G 1 2

a

Why do we need 
this tag?

b

*This works because Java only has 
single inheritance



instanceof is evil, but we compile the 
language we have, not the one we want
int add_x_and_maybe_y (F a) {

int s = a.x;

if (a instanceof G) {

s += ((G)a).y;

}

return s;

}
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Classes can inherit methods too

class F {
public void say_hi() { System.out.println("Hi from F!"); }

}
class G extends F {

public void say_hi() { System.out.println("Hi from G!"); }
}
class Test {

public void say_with(F a) {
a.say_hi();

}
}
F a = new G();
test.say_with(a);
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Java puzzle: What 
does this print?

Answer: “Hi from G!”



Imagine compiling to Mini-C: Hoist all 
functions to top level

public void F_say_hi(F this) {

System.out.println("Hi from F!");

}

public void G_say_hi(G this) {

System.out.println("Hi from G!");

}

public void Test_say_with(Test this, F a) {

a.say_hi();

}
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Which say_hi do we call?



At runtime

1 1 2

Each class has a method table (at runtime); 
each object has a pointer to its class’s table
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F a = new F();
G b = new G();

a b

Don’t need an explicit tag anymore: can use the location of the class descriptor

F_say_hi G_say_hi G_other_m



Implementing instanceof: Option 1: Store the 
inheritance tree in memory
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Object

F Main

G H

J

J j = new J();
if (j instanceof F) { …



Implementing instanceof: Option 2: Have a 
“display” of superclasses
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Object

F Main

G H

J

Object

Object MainObject F

Object F G Object F H

Object F H J

Class descriptor = method table + display

J j = new J();
if (j instanceof F) { …



Some languages allow multiple inheritance
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Thing

Computer Animal

Crab



The prefix trick for field/method layout 
doesn’t work anymore
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Thing

Mass

Computer

Mass

Cycle time

Animal

Mass

Name

Species

Crab

???



Need a global mapping from fields to offsets

Mass

Cycle time

Name

Species
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If two fields are never used in the same 
object, can reuse that offset

Mass

Cycle time/Job

Name

Species
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Thing

Computer Animal

Crab Human

Mass

Cycle time Name

Species

Job



To minimize wasted space in objects, we’ll have 
the class descriptor tell us where each field is
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Thing

Mass 0

Computer

Mass 0

Cycle time 1

Animal

Mass 0

Cycle time

Name 1

Species 2

Crab

Mass 0

Cycle time 1

Name 2

Species 3

My_laptop

5lbs

0.4ns

My_dog

96lbs

Hugo

Dog



Or, just have a hash table from field names to 
offsets in the class descriptor
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Mass ↦ 0 Mass ↦ 0,
Cycle Time ↦ 1,

Name ↦ 2,
Species ↦ 3

Mass ↦ 0,
Name ↦ 1,

Species ↦ 2

Mass ↦ 0,
Cycle Time ↦ 1

Thing

Computer

Crab

Animal



Compilers translate code in phases
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Source
Code

Lexical
Analyzer Tokens Parser

Abstract
Syntax

Lowering
Intermed.

Rep.
Code 
Gen.

Target
Code

Analysis Optimization

a = b + c - 1 VAR a
EQUAL
VAR b
OP +
VAR C
OP -
CONST 1

Assign

a +

b -

c 1

temp = c – 1
a = b + temp

subl %rax, 1
addl %rax, %rbx

“Front End” “Back End”



A Small ML Compiler

Source
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Course Projects

Source
Code
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(Project 5)

Project 1

Project 2

First-order
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Unlimited Variables
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Parallel 
SML

X10

Go off and make languages

• (You don’t even need to write a full compiler)
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Java 
bytecode

Java

C

SML

MLton

PriML

(Want to help with 
this? Email me!)

MaPLe


