
CS443: Compiler
Construction

Lecture 21: Risc-V ISA

Stefan Muller

Based on material by Yan Garcia and Rujia Wang

CS 443 - Fall 2022 - Lecture 21 1

You are here

CS 443 - Fall 2022 - Lecture 21 2

Source
Code

M
in

iC
am

l
A

ST

M
in

i-
C

LL
V

M

R
is

c-
V

Optimization

LL
V

M

Lexing/Parsing Closure Conv./Lifting IR Generation Register Allocation Instruction Selection

Higher-order
Typed
Structured Data
Nested Expressions
Unlimited Variables

First-order
Typed
Structured Data
Nested Expressions
Unlimited Variables

First-order
Typed
Structured Data
Flat Expressions
Unlimited Variables

First-order
Untyped
No Structured Data
Flat Expressions
32 Hardware Registers

An ISA is the set of instructions a computer
can execute
• The job of a CPU

• Fetch an instruction from memory

• Decode

• Execute

• Write results to memory

• Repeat (basically) forever

CS 443 - Fall 2022 - Lecture 21 3

01110001110110

add x3, x2, x0

Assembler

There are many different ISAs with rich
histories

CS 443 - Fall 2022 - Lecture 21 4

By Mike Deerkoski - https://www.flickr.com/photos/deerkoski/7178643521/in/photostream

https://www.flickr.com/people/mylerdude/

Intel x86

Apple 1991

We can
make our

own chips!

We can
make our

own chips!

2020 – M1/M2 (ARM)

PowerPC

There are many different ISAs with rich
histories

CS 443 - Fall 2022 - Lecture 21 5

Intel

AMD

x86

x86

Hey, no stealing
our architecture!

AMD64

x86-64

…

1990 2000

RISC (Reduced Instruction Set Computer)
idea: simpler, faster hardware
• Earlier philosophy (“CISC”):

Want to do something new? Add an instruction!

• RISC: Cocke, Hennessy, Patterson (1980s)

CS 443 - Fall 2022 - Lecture 21 6

RISC-V: A simple RISC Architecture,
good for teaching
• Originally developed in 2010 at UC Berkeley for teaching

• Open-source

CS 443 - Fall 2022 - Lecture 21 7

Assembly Language: Human-readable
machine code
• Assembly language is tied to ISA

• (Roughly) 1-to-1 correspondence with ISA instructions
• (Some assembly languages offer convenient mnemonics that expand to

multiple instructions)

CS 443 - Fall 2022 - Lecture 21 8

An instruction is an opcode and operands
(registers)

• Operands can only be registers and sometimes constants
(“immediates”)

• Registers: Limited number of single-word storage locations in
hardware

CS 443 - Fall 2022 - Lecture 21 9

add x3, x2, x0

opcode dest operands

add rd, rs1, rs2

Registers in RISC-V

• (Also some floating point registers
we won’t talk about)

CS 443 - Fall 2022 - Lecture 21 10

Before we dive into RISC-V: A quick recap on
data representation
• Bit (binary digit): 0 or 1

• “Nibble”: 4 bits (1 hex digit 0x0-0xF)

• Byte: 8 bits
• 2 hex digits: 0x00-0xFF

• Word: “Natural” size of data operated on by a computer
• 32-bit ISA: 32 bits (4 bytes)

• Width of registers

CS 443 - Fall 2022 - Lecture 21 11

Integers in binary/hex

2 2 10

10 a 1010

16 10 10000

32 20 100000

CS 443 - Fall 2022 - Lecture 21 12

“Most significant” “Least significant”

1 0 1 0

x 23 + x 22 + x 21 + x 20

Review: Endianness

• Store data one byte at a time
• Order of bits in a byte doesn’t change!

• So do we store the most significant byte at the lowest memory
address (the way we’d write it left-to-right) or the highest?
• Lowest: “Big-endian” (e.g., IBM System/360)

• Highest: “Little-endian” (e.g., x86, RISC-V)

CS 443 - Fall 2022 - Lecture 21 13

Little-endian

• 0xdeadbeef

CS 443 - Fall 2022 - Lecture 21 14

ef be ad de

Two’s complement signed integers

• A 1 in MSB (Most significant bit) subtracts 231 (instead of adding it)

• 100000…. = -231

• 011111…. = 231-1 (highest positive # representable)

• 111111…. = -1

• Can just add two’s complement #s without casing on sign!

CS 443 - Fall 2022 - Lecture 21 15

Two’s complement means two ways to extend
integers to the left

1010101

CS 443 - Fall 2022 - Lecture 21 16

• If signed int: want to sign-extend (extend with MSB)
• LLVM: sext
• 101 as 3-bit int = -3 = 11101 as 5-bit int

• If unsigned: want to zero-extend (extend with 0s)

Assembly operands, registers are untyped

• Value is whatever we interpret it as – (signed/unsigned)
int/char/bool, etc.

add x3, x2, x1

Overflow:

char: Yes. unsigned int: No. signed int: Yes.

CS 443 - Fall 2022 - Lecture 21 17

x1 0 1 1 0

x2 0 0 1 0

x3 1 0

Still want types? Never fear

CS 443 - Fall 2022 - Lecture 21 18

1999

Registers are inside the processor

CS 443 - Fall 2022 - Lecture 21 19

Memory
Input

Output

Bytes

Processor

Control
Enable?

Read/Write

Datapath

PC Address

Write

Data

Read

Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Registers

Arithmetic & Logic Unit
(ALU)

Q: Why not make a bigger processor with more registers?

RISC-V Instructions are 32 bits

• 6 types of instructions:

CS 443 - Fall 2022 - Lecture 21 20

R-type instruction: Destination, two register
operands
Risc-V LLVM C

add x1, x2, x3 %x1 = add i32 %x2 %x3 x1 = x2 + x3

sub x3, x4, x5 %x3 = sub i32 %x4 %x5 x3 = x4 – x5

Also: xor, or, and, mul, div
divu (div unsigned)
sll (shift left logical)
srl (shift right logical) – fill left with 0s
sra (shift right arithmetic) – fill left with sign bit
slt (set rd to 1 iff rs1 < rs2)

CS 443 - Fall 2022 - Lecture 21 21

x0 is always 0, writes are ignored

• Why would you want to read from x0?
• mv rd, rs = add rd rs x0

• Why would you want to write to x0?
• nop = add x0 x0 x0

• (There are other ways to write a no-op instruction, but this is the
conventional one)

CS 443 - Fall 2022 - Lecture 21 22

I-type instructions: Destination, register,
immediate

CS 443 - Fall 2022 - Lecture 21 23

Risc-V LLVM C

addi x1, x2, n %x1 = add i32 %x2 n x1 = x2 + n

sub x3, x4, n %x3 = sub i32 %x4 n x3 = x4 – n

Also: xori, ori, andi, (NO muli, divi)
slti
slli (shift left logical)
srli (shift right logical) – fill left with 0s
srai (shift right arithmetic) – fill left with sign bit

Example

%x = mul i32 %y 2

• add x1, x2, x2

• slli x1, x2, 2

• addi x1, x0, 2
mul x1, x2, x1

CS 443 - Fall 2022 - Lecture 21 24

x1 <- x x2 <- y

Remember: You only get 12 bits for
immediate (not very big)

• In RISC-V immediates are "sign extended"

• So the upper bits are the same as the largest bit

• Remember sign extended 2’s complement..

• So for a 12b immediate...

• Bits 31:12 get the same value as Bit 11

CS 443 - Fall 2022 - Lecture 21 25

If you need big immediates, need 2 insts

%x = add i32 %y, 5000

4096 = 1 0011 1000 1000

lui x1, 1

addi x1, x1, 904

add x1, x1, x2
CS 443 - Fall 2022 - Lecture 21 26

Risc-V C
lui x1, n x1 = n << 12 (x1 = n * 4096)

x1 <- x x2 <- y

Control flow in LLVM: similar to LLVM, but less
structured
Assembly:

loopforever:

add x0, x0, x0

j loopforever

CS 443 - Fall 2022 - Lecture 21 27

After assembling/linkning:

add x0, x0, x0

j -4 Offset: Position
independent

j isn’t actually an instruction

• It’s a “pseudoinstruction” that gets expanded into other instructions
by the assembler (like mv, nop)

• We’ll see more about this next week

CS 443 - Fall 2022 - Lecture 21 28

B-type instructions (Conditional branches):
2 registers and a label/offset

CS 443 - Fall 2022 - Lecture 21 29

Risc-V LLVM C

beq x1, x2, addr %x3 = icmp eq i32 %x1 %x2 if (x1 == x2) goto addr
br i1 %x3, label addr, ???

Also: bne, blt, bge, (bltu, bgeu)

NO ble, bgt

Example

%x1 = icmp lt i32 %x2, %x3

br i1 %x1, label ltrue, label lfalse

blt x2, x3, ltrue

j lfalse

slt x1, x2, x3

bne x1, x0, ltrue

j lfalse

CS 443 - Fall 2022 - Lecture 21 30

Unlike LLVM, control “falls
through” to next instruction

Example

%x1 = icmp le i32 %x2, %x3

br i1 %x1, label ltrue, label lfalse

bge x3, x2, ltrue

j lfalse

CS 443 - Fall 2022 - Lecture 21 31

Announcements

• Project 5 Deadline Extended to Monday (11/14)

• OH tomorrow, 2-3, NOT today
• May be on Zoom, I’ll let you know in the morning

• Schedule for rest of semester:
• Mon, 11/14: Project 5 Due, Project 6 Out
• 11/17, 11/22: Memory Management
• Thur, 11/24: Thanksgiving, no class
• 11/29, 12/1: TBA Lectures – suggest topics!
• Fri, 12/2: Project 6 Due
• Tue 12/6, 10:30am, SB 113 – Final exam

CS 443 - Fall 2022 - Lecture 21 32

Example

CS 443 - Fall 2022 - Lecture 21 33

Assuming assignments below, compile if block

f→ x10

i→ x13

g → x11 h→ x12

j→ x14

if (i == j)

f = g + h;

bne x13,x14,done

add x10,x11,x12

done:

Unconditional jump instructions: jal, jalr

• jal rd, imm
• Jump to label (or by offset)

• Set rd = PC + 4 (next instruction after jal)

• jalr rd, rs, imm
• Jump to address in rs + imm

• Set rd = PC + 4 (next instruction after jal)

• j imm = jal x0, imm

CS 443 - Fall 2022 - Lecture 21 34

Loading from and storing to memory

CS 443 - Fall 2022 - Lecture 21 35

Kolb and Weaver

Processor

Control

Datapath
PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?

Read/Write

Address

Write Data =

Store to memory

Read Data =

Load from

memory

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Much larger place
To hold values, but
slower than registers!

Fast but limited place

To hold values

3
1

Memory is addressed in bytes

• (But access memory a word at a time, so in practice, will only access
memory at multiples of 4 bytes)

• Generally: data >= 1 word must be aligned to addresses that are
multiples of 4

CS 443 - Fall 2022 - Lecture 21 36

lw loads from memory to register

lw rd, imm(rs)

Load word at rs + imm into rd

CS 443 - Fall 2022 - Lecture 21 37

lw loads from memory to register

C code
int A[100];
g = h + A[3];

Using Load Word (lw) in RISC-V:

• lw x10,12(x13) # Reg x10 gets A[3]
• add x11,x12,x10 # g = h + A[3]

• Assume: x13– base register (pointer to A[0]) Note: 12– offset
in bytes

• Offset must be a constant known at assembly time

CS 443 - Fall 2022 - Lecture 21 38

Register, register,
immediate: lw is an
I-type instruction

sw transfers from register to memory

CS 443 - Fall 2022 - Lecture 21 39

C RISC-V

int A[100]
A[10] = h + A[3]

lw x10, 12(x13)
add x10, x12, x10
sw x10, 40(x13)

Note:
• x13 – base register (pointer)
• 12, 40 – offsets in bytes
• x13 + 12 and x13 + 40 must be multiples of 4 to maintain alignment

Example

CS 443 - Fall 2022 - Lecture 21 40

Computer Science 61C Spring 2021

addi x11,x0,0xfeed

addi x12,x0,0xbeef

addi x6,x5,4

sw x11,0(x5)

sw x12,4(x5)

lw x12,0(x6)

• What’s the value in x12? Answer: 0xbeef

Example

CS 443 - Fall 2022 - Lecture 21 41

Computer Science 61C Spring 2021

addi x11,x0,0xfeed

addi x12,x0,0xbeef

addi x6,x5,1

sw x11,0(x5)

sw x12,4(x5)

lw x12,0(x6)

• What’s the value in x12? Answer: Undefined

Memory layout in RISC-V

CS 443 - Fall 2022 - Lecture 21 42

(heap)

Stack Frame

sp (x2)
“Stack pointer”

A stack frame is where we store spilled locals,
plus anything alloca’d

CS 443 - Fall 2022 - Lecture 21 43

Spilled var 1
Spilled var 2

…

Spilled var N
Dynamically allocated space

fp (x8)
“Frame pointer”

Q: Do we need the frame pointer
if there’s no dynamic stack

allocation?

