Feel free to take candy! (Subject to the following restrictions)

- For every pair of people, if your first or last names start with the same letter, you can't take the same kind of candy.
- Stefan has already taken a Milky Way
(Don't worry, if this only leaves you with candy you don't like/are allergic to/etc., you can get more)

CS443: Compiler Construction

Lecture 19: Register Allocation Stefan Muller
Based on material by Steve Zdancewic

Register allocation: going from unlimited temporaries to fixed number of registers

Register	ABI Name		
x 0	zero	7	
x1	ra		
$x 2$	sp		Special purpose
x3	gp		
x4	tp		
x5-7	t0-2		
x8	s0/fp		General purpose
x9	s1		
x10-11	a0-1		Sometimes special purpose
x12-17	a2-7		(by convention)
818-27	s2-11		
x28-31	t3-t6		General purpos

Find: mapping from program variables to registers

- What if there aren't enough registers?

```
int annoying(int[] a) {
    int v0 = a[0];
    int v1 = a[1];
    int v2 = a[2];
    int v3 = a[3];
    int v4 = a[4];
    int v5 = a[5];
    int v6 = a[6];
    int v7 = a[7];
    int v8 = a[8];
    int v9 = a[9];
    return v0 + v1 + v2 + v3 + v4 + ..
}
```

Find: mapping from program variables to (registers U stack locations)

```
type alloc_res = InReg of R.reg
    "spill"
    | OnStack of int (* stack slot, 0-N *)
    | InMem of R.symbol (* globals on heap *)
```


Many quality metrics for allocation

- Program semantics is preserved (i.e. the behavior is the same)
- Register usage is maximized
- Moves between registers are minimized
- Calling conventions / architecture requirements are obeyed

Recall: A variable is "live" when its value is needed

```
int f(int x) {
    int a = x + 2;
    int b = a * a;
    int c = b + x;
    return c;
}
```


Liveness analysis is based on uses and definitions

- For a node/statement s define:
- use[s] : set of variables used (i.e. read) by s
- def[s] : set of variables defined (i.e. written) by s
- Examples:
- $a=b+c$
use $[s]=\{b, c\}$
$\operatorname{def}[s]=\{a\}$
- $a=a+1$
use[s] = \{a\}
$\operatorname{def}[s]=\{a\}$

Liveness analysis as a dataflow analysis (Steps 1-2)

- Facts: Live variables
- gen[n] = use[n]
- $\operatorname{kill}[\mathrm{n}]=\operatorname{def}[n]$
- Constraints:
- in[n] \supseteq gen[n]
- out[n] \supseteq in[n'] if $n^{\prime} \in \operatorname{succ}[n]$
- in[n] \supseteq out[n] / kill[n]

Liveness analysis as a dataflow analysis (Steps 3-4)

- Equations:
- out[n]:= $U_{n^{\prime} \in s u c c[n]} i n\left[n^{\prime}\right]$
- in[n] := gen[n] \cup (out[n] / kill[n])
- Initial values:
- out[n] := \varnothing
- in[n] := \varnothing

For register allocation: live(x)

- live $(x)=$ set of variables that are live-in to the definition of x
- (assuming SSA)

Linear Scan: a simple, greedy algorithm

1. Compute liveness information: live(x)
2. Let regs be the set of usable registers
3. Maintain "layout" alloc that maps uids to alloc_reg
4. Scan through the program. For each instruction that defines a var x

- used $=\left\{r \mid\right.$ reg $r=u i d _l o c(y)$ s.t. $\left.y \in \operatorname{live(x)}\right\}$
- available = regs - used
- If available is empty:
// no registers available, spill
alloc(x) $:=$ OnStack $n ; n:=$! $n+1$
- Otherwise, pick rin available: // choose an available register alloc(x) := InReg r

Linear Scan Example

int $f($ int $x)$ \{
int $a=x+2 ;$
int $b=a{ }^{*} a ;$
int $c=b+a ;$
return c;
\}

Available
r0, r1, r2
a -> ro
r1, r2
b $->$ r1
r2
c-> r2

Linear scan is OK, but we can do better

Who had "reduce it to a graph problem" on their CS Bingo card?

- Nodes of the graph are variables
- Edges connect variables that interfere with each other
- Two variables interfere if their live ranges intersect (i.e. there is an edge in the control-flow graph across which they are both live).
- Register assignment is a graph coloring.
- A graph coloring assigns each node in the graph a color (register)
- Any two nodes connected by an edge must have different colors.
- Example:

```
%b1 = add i32 %a, 2
%c = mult i32 %b1, %b1
%b2 = add i32 %c, 1
%ans = add i32 %b2, %a
return %ans;
```


Heuristics for graph coloring come down to order in which you color nodes

- Linear Scan: Order of definitions in program
- Simplification: (Roughly) color high degree nodes first

Coloring by simplification

1. Build Interference Graph
2. Simplify the graph by removing nodes one at a time, putting them on a stack
3. Select colors for nodes in order of the stack

We don't want to treat move instructions as conflicts/interference

```
%a = inttoptr i32* %aptr to i32
```

\%b = add i32 \%a 8
\%bptr = ptrtoint i32 \%b to i32*
\%c = load i32, i32* \%aptr
\%d = load i32, i32* \%bptr
\%a and \%aptr are live at the same time, but can (and should) be in the same register

We don't want to treat move instructions as conflicts/interference

```
%a = inttoptr i32* %aptr to i32
```

\%b = add i32 \%a 8
\%bptr = ptrtoint i32 \%b to i32*
\%c = load i32, i32* \%aptr
\%d = load i32, i32* \%bptr
\%a and \%aptr are live at the same time, but can (and should) be in the same register

Build interference graph

- For each instruction:
- If the inst defines a variable a, with b_{1}, \ldots, b_{n} live-out:
- If the instruction is not a move, add edges $\left(a, b_{1}\right), \ldots,\left(a, b_{n}\right)$
- If the instruction is a move $a=c$, add edges $\left\{\left(a, b_{i}\right) \mid b_{i} \neq c\right\}$

Coloring by simplification: Simplify

- Let $\mathrm{K}=$ number of registers
- Let $\mathrm{S}=$ empty stack
- While graph not empty:
- If there exists a node m with fewer than K neighbors:
- Remove m from the graph, push it on S
- Guaranteed that we will be able to find a color for m
- Otherwise:
- Pick a node m, remove it from the graph, push it on S (we may end up spilling it)

Coloring by simplification: Select

- While S not empty:
- Pop m from S
- If there is a color (register) available for m :
- Choose an available color (register) for m and add it back to the graph
- Otherwise:
- Spill m - put it in the next stack slot

Graph Coloring Example (Appel)

$$
\begin{aligned}
g & =\operatorname{mem}[j+12] \\
h & =k-1 \\
f & =g * h \\
e & =\operatorname{mem}[j+8] \\
m & =\operatorname{mem}[j+16] \\
b & =\operatorname{mem}[f] \\
c & =e+8 \\
d & =c \\
k & =m+4 \\
j & =b
\end{aligned}
$$

Graph Coloring Example (Appel) g

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)
d
k
h
g

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)
e
j
d
k
h

g

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)
c
b
f
e
j
d
k
h
g ■■■■

Graph Coloring Example (Appel)
d
k
h

Graph Coloring Example (Appel)
e
j
d
k
h
g

Graph Coloring Example (Appel)

```
e
j
d
k
h
g
```


Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

Graph Coloring Example (Appel) g

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

```
r4 = mem[r3 + 12]
r2 = r1 - 1
r2 = r4 * r2
r4 = mem[r3 + 8]
r1 = mem[r3 + 16]
r2 = mem[r2]
r3 = e + 8
r4 = r3
r1 = r1
r3 = r2
```



```
+4
```

Next time:
Avoid these

Graph Coloring Example (Appel)
c
h

Graph Coloring Example (Appel)

```
g
c
h
```


Graph Coloring Example (Appel)
j
g
c
h

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)
g
c
h

Graph Coloring Example (Appel)

Say we had an actual spill

We need to load j from memory... into what?

```
r2 = mem[j + 12]
r1 = r1 - 1
r2 = r2 * r1
r3 = mem[j + 8]
r1 = mem[j + 16]
r2 = mem[r2]
r3 = r3 + 8
r3 = r3
r1 = r1 + 4
j = r2
```

\square

Option 1: Move to a temp, do reg alloc again

```
temp1 = stack[0]
r2 = mem[temp1 + 12]
r1 = r1 - 1
r2 = r2 * r1
temp1 = stack[0]
r3 = mem[temp1 + 8]
temp1 = stack[0]
r1 = mem[temp1 + 16]
r2 = mem[r2]
r3 = r3 + 8
r3 = r3
r1 = r1 + 4
temp1 = r2
stack[0] = temp1
```


Option 2: Reserve a register or two for this

```
r4 = stack[0]
r2 = mem[r4 + 12]
r1 = r1 - 1
r2 = r2 * r1
r4 = stack[0]
r3 = mem[r4 + 8]
r4 = stack[0]
r1 = mem[r4 + 16]
r2 = mem[r2]
r3 = r3 + 8
r3 = r3
r1 = r1 + 4
r4 = r2
stack[0] = r4
```


Graph Coloring Example (Appel)

```
r4 = mem[r3 + 12]
r2 = r1 - 1
r2 = r4 * r2
r4 = mem[r3 + 8]
r1 = mem[r3 + 16]
r2 = mem[r2]
r3 = e + 8
r4 = r3
r1 = r1
r3 = r2
\(r 2=r 1-1\)
\(r 2=r 4 * r 2\)
\(r 4=\operatorname{mem}[r 3+8]\)
\(r 1=\operatorname{mem}[r 3+16]\)
\(r 2=\operatorname{mem}[r 2]\)
\(r 3=e+8\)
\(r 4=r 3\)
```



```
\(r 1=r 1\)
\(r 3=r 2\)
```

This

Next time:
Avoid these

Coalescing: Combining nodes to eliminate moves
$g=\operatorname{mem}[j+12]$
$h=k-1$
$f=g * h$
$\mathrm{e}=\operatorname{mem}[j+8]$
$m=\operatorname{mem}[j+16]$
$b=\operatorname{mem}[f]$
$c=e+8$
$\mathrm{d}=\mathrm{c}$
$\mathrm{k}=\mathrm{m}+4$
j $=\mathrm{b}$

Coalescing unsafely can make a graph uncolorable

```
g = mem[j + 12]
h = k - 1
f = g * h
e = mem[j + 8]
m = mem[j + 16]
b = mem[f]
c = e + 8
d = c
k = m + 4
j}=
```


Conservative coalescing strategies will always keep a graph colorable

- Briggs: a and b can be coalesced if the resulting node $a b$ will have fewer than K neighbors of degree $>=K$
- (Recall: K = number registers/colors)

Conservative coalescing strategies will always keep a graph colorable

- Briggs: a and b can be coalesced if the resulting node $a b$ will have fewer than K neighbors of degree $>=K$
- (Recall: K = number registers/colors)

Conservative coalescing strategies will always keep a graph colorable

- Briggs: a and b can be coalesced if the resulting node $a b$ will have fewer than K neighbors of degree $>=K$
- (Recall: K = number registers/colors)

Conservative coalescing strategies will always keep a graph colorable

- Briggs is conservative:
- Coalescing nodes following Briggs is guaranteed not to make a graph uncolorable
- Briggs might miss nodes that could still be safely coalesced

Conservative coalescing strategies will always keep a graph colorable

- Briggs is conservative:
- Coalescing nodes following Briggs is guaranteed not to make a graph uncolorable
- Briggs might miss nodes that could still be safely coalesced

Conservative coalescing strategies will always keep a graph colorable

- George: Nodes a and b can be coalesced if, for every neighbor t of a, either:
- t already interferes with b or
- t has degree < K
j and b can be
coalesced for
$K=4$, not $K=3$

Conservative coalescing strategies will always keep a graph colorable

- George: Nodes a and b can be coalesced if, for every neighbor t of a, either:
- t already interferes with b or
- t has degree < K
j and b can be
coalesced for
$K=4$, not $K=3$
(and the graph is not 3 -colorable!)

Graph coloring with coalescing

1. Build interference graph and classify nodes as move-related or non-move-related
2. Simplify, only removing non-related nodes of degree < K
3. Coalesce move-related nodes using a conservative heuristic
4. Freeze move-related nodes (give up trying to coalesce them) if can't simplify or coalesce
5. Spill (potentially) a node $w /$ degree $>=K$, removing it from the graph and pushing it on the stack
6. Select colors for nodes in stack order
w/o coalescing:

Coalescing Example (Appel)

Coalescing Example (Appel)

Coalescing Example (Appel)

Coalescing Example (Appel)
k
h
g
\square

Coalescing Example (Appel)

```
cd
k
h
g
```

\square

Coalescing Example (Appel)
jb
cd
k
h
g

Coalescing Example (Appel)

e
m
f
jb
cd
k
h
g

Coalescing Example (Appel)
jb
cd
k
h
g

Coalescing Example (Appel)

Coalescing Example (Appel)

Coalescing Example (Appel)

```
r4 = mem[r1 + 12]
r2 = r2 - 1
r3 = r4 * r2
r4 = mem[r1 + 8]
r2 = mem[r1 + 16]
r1 = mem[r3]
r4 = r4 + 8
r4 = r4
r2 = m + 4
r1 = r1
```


Coalescing Example (Appel)

$$
\begin{aligned}
r 4 & =\operatorname{mem}[r 1+12] \\
r 2 & =r 2-1 \\
r 3 & =r 4 * r 2 \\
r 4 & =\operatorname{mem}[r 1+8] \\
r 2 & =\operatorname{mem}[r 1+16] \\
r 1 & =\operatorname{mem}[r 3] \\
r 4 & =r 4+8 \\
r 2 & =m+4
\end{aligned}
$$

Another example

$$
\square \square \square \square
$$

