
Feel free to take candy!
(Subject to the following restrictions)

CS 443 - Fall 2022 - Lecture 19 1

• For every pair of people, if your first or last names start with the same
letter, you can’t take the same kind of candy.

• Stefan has already taken a Milky Way

(Don’t worry, if this only leaves you with candy you don’t like/are allergic
to/etc., you can get more)

CS443: Compiler
Construction
Lecture 19: Register Allocation

Stefan Muller

Based on material by Steve Zdancewic

CS 443 - Fall 2022 - Lecture 19 2

Register allocation: going from unlimited
temporaries to fixed number of registers

CS 443 - Fall 2022 - Lecture 19 3

Special purpose

General purpose

Sometimes special purpose
(by convention)

General purpose

Find: mapping from program variables to
registers
• What if there aren’t enough registers?

CS 443 - Fall 2022 - Lecture 19 4

int annoying(int[] a) {
int v0 = a[0];
int v1 = a[1];
int v2 = a[2];
int v3 = a[3];
int v4 = a[4];
int v5 = a[5];
int v6 = a[6];
int v7 = a[7];
int v8 = a[8];
int v9 = a[9];
…
return v0 + v1 + v2 + v3 + v4 + …

}

Find: mapping from program variables to
(registers ∪ stack locations)
type alloc_res = InReg of R.reg

| OnStack of int (* stack slot, 0-N *)

| InMem of R.symbol (* globals on heap *)

CS 443 - Fall 2022 - Lecture 19 5

“spill”

Many quality metrics for allocation

• Program semantics is preserved (i.e. the behavior is the same)

• Register usage is maximized

• Moves between registers are minimized

• Calling conventions / architecture requirements are obeyed

CS 443 - Fall 2022 - Lecture 19 6

Recall: A variable is “live” when its value is
needed
int f(int x) {

int a = x + 2;

int b = a * a;

int c = b + x;

return c;

}

x is live

a and x are live

b and x are live

c is live

CS 443 - Fall 2022 - Lecture 19 7

Liveness analysis is based on uses and
definitions

• For a node/statement s define:
• use[s] : set of variables used (i.e. read) by s

• def[s] : set of variables defined (i.e. written) by s

• Examples:
• a = b + c use[s] = {b,c} def[s] = {a}

• a = a + 1 use[s] = {a} def[s] = {a}

CS 443 - Fall 2022 - Lecture 19 8

Liveness analysis as a dataflow analysis (Steps 1-2)

• Facts: Live variables

• gen[n] = use[n]

• kill[n] = def[n]

• Constraints:
• in[n] ⊇ gen[n]

• out[n] ⊇ in[n’] if n’ ∈ succ[n]

• in[n] ⊇ out[n] / kill[n]

CS 443 - Fall 2022 - Lecture 19 9

Liveness analysis as a dataflow analysis (Steps 3-4)

• Equations:

• out[n] := ∪n’∈succ[n]in[n’]

• in[n] := gen[n] ∪ (out[n] / kill[n])

• Initial values:
• out[n] := Ø

• in[n] := Ø

CS 443 - Fall 2022 - Lecture 19 10

For register allocation: live(x)

• live(x) = set of variables that are live-in to the definition of x
• (assuming SSA)

CS 443 - Fall 2022 - Lecture 19 11

Linear Scan: a simple, greedy algorithm

1. Compute liveness information: live(x)

2. Let regs be the set of usable registers

3. Maintain "layout" alloc that maps uids to alloc_reg

4. Scan through the program. For each instruction that defines a var x
• used = {r | reg r = uid_loc(y) s.t. y ∈ live(x)}

• available = regs - used

• If available is empty: // no registers available, spill
alloc(x) := OnStack n; n := !n + 1

• Otherwise, pick r in available: // choose an available register
alloc(x) := InReg r

CS 443 - Fall 2022 - Lecture 19 12

Linear Scan Example

int f(int x) {

int a = x + 2;

int b = a * a;

int c = b + a;

return c;

}

CS 443 - Fall 2022 - Lecture 19 13

r0, r1, r2 a -> r0

r1, r2 b -> r1

r2 c -> r2

Available

Linear scan is OK, but we can do better

CS 443 - Fall 2022 - Lecture 19 14

Who had “reduce it to a graph problem” on
their CS Bingo card?

CS 443 - Fall 2022 - Lecture 19 15

• Nodes of the graph are variables

• Edges connect variables that interfere with each other

– Two variables interfere if their live ranges intersect (i.e. there is an edge in the control-flow graph
across which they are both live).

• Register assignment is a graph coloring.

– A graph coloring assigns each node in the graph a color (register)

– Any two nodes connected by an edge must have different colors.

• Example:

%b1 = add i32 %a, 2
%c = mult i32 %b1, %b1
%b2 = add i32 %c, 1
%ans = add i32 %b2, %a
return %ans;

Interference Graph

%a

%b1 %b2 %c

%ans

2-Coloring of the graph
red = r8
yellow = r9

%a

%b1 %b2 %c

%ans

Heuristics for graph coloring come down to
order in which you color nodes
• Linear Scan: Order of definitions in program

• Simplification: (Roughly) color high degree nodes first

CS 443 - Fall 2022 - Lecture 19 16

Coloring by simplification

1. Build Interference Graph

2. Simplify the graph by removing nodes one at a time, putting them
on a stack

3. Select colors for nodes in order of the stack

CS 443 - Fall 2022 - Lecture 19 17

We don’t want to treat move instructions as
conflicts/interference
%a = inttoptr i32* %aptr to i32

%b = add i32 %a 8

%bptr = ptrtoint i32 %b to i32*

%c = load i32, i32* %aptr

%d = load i32, i32* %bptr

CS 443 - Fall 2022 - Lecture 19 18

%a and %aptr are live
at the same time, but
can (and should) be in

the same register

We don’t want to treat move instructions as
conflicts/interference
%a = inttoptr i32* %aptr to i32

%b = add i32 %a 8

%bptr = ptrtoint i32 %b to i32*

%c = load i32, i32* %aptr

%d = load i32, i32* %bptr

CS 443 - Fall 2022 - Lecture 19 19

%a and %aptr are live
at the same time, but
can (and should) be in

the same register

Build interference graph

• For each instruction:
• If the inst defines a variable a, with b1, …, bn live-out:

• If the instruction is not a move, add edges (a, b1), …, (a, bn)

• If the instruction is a move a = c, add edges {(a, bi) | bi ≠ c}

CS 443 - Fall 2022 - Lecture 19 20

Coloring by simplification: Simplify

• Let K = number of registers

• Let S = empty stack

• While graph not empty:
• If there exists a node m with fewer than K neighbors:

• Remove m from the graph, push it on S

• Guaranteed that we will be able to find a color for m

• Otherwise:
• Pick a node m, remove it from the graph, push it on S (we may end up spilling it)

CS 443 - Fall 2022 - Lecture 19 21

Coloring by simplification: Select

• While S not empty:
• Pop m from S

• If there is a color (register) available for m:
• Choose an available color (register) for m and add it back to the graph

• Otherwise:
• Spill m – put it in the next stack slot

CS 443 - Fall 2022 - Lecture 19 22

Graph Coloring Example (Appel)

g = mem[j + 12]
h = k – 1
f = g * h
e = mem[j + 8]
m = mem[j + 16]
b = mem[f]
c = e + 8
d = c
k = m + 4
j = b

CS 443 - Fall 2022 - Lecture 19 23

f

e

mb

c

d

kj

h

g

Graph Coloring Example (Appel)

g

CS 443 - Fall 2022 - Lecture 19 24

f

e

mb

c

d

kj

h

Graph Coloring Example (Appel)

h

g

CS 443 - Fall 2022 - Lecture 19 25

f

e

mb

c

d

kj

Graph Coloring Example (Appel)

k

h

g

CS 443 - Fall 2022 - Lecture 19 26

f

e

mb

c

d

j

Graph Coloring Example (Appel)

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 27

f

e

mb

c

j

Graph Coloring Example (Appel)

j

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 28

f

e

mb

c

Graph Coloring Example (Appel)

e

j

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 29

f

mb

c

Graph Coloring Example (Appel)

f

e

j

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 30

mb

c

Graph Coloring Example (Appel)

b

f

e

j

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 31

m

c

Graph Coloring Example (Appel)

c

b

f

e

j

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 32

m

Graph Coloring Example (Appel)

m
c
b
f
e
j
d
k
h
g

CS 443 - Fall 2022 - Lecture 19 33

Graph Coloring Example (Appel)

c

b

f

e

j

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 34

m

Graph Coloring Example (Appel)

b

f

e

j

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 35

m

c

Graph Coloring Example (Appel)

f

e

j

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 36

mb

c

Graph Coloring Example (Appel)

e

j

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 37

f

mb

c

Graph Coloring Example (Appel)

j

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 38

f

e

mb

c

Graph Coloring Example (Appel)

d

k

h

g

CS 443 - Fall 2022 - Lecture 19 39

f

e

mb

c

j

Graph Coloring Example (Appel)

k

h

g

CS 443 - Fall 2022 - Lecture 19 40

f

e

mb

c

d

j

Graph Coloring Example (Appel)

h

g

CS 443 - Fall 2022 - Lecture 19 41

k

f

e

mb

c

d

j

Graph Coloring Example (Appel)

g

CS 443 - Fall 2022 - Lecture 19 42

h

k

f

e

mb

c

d

j

Graph Coloring Example (Appel)

CS 443 - Fall 2022 - Lecture 19 43

g

h

k

f

e

mb

c

d

j

Graph Coloring Example (Appel)

r4 = mem[r3 + 12]
r2 = r1 – 1
r2 = r4 * r2
r4 = mem[r3 + 8]
r1 = mem[r3 + 16]
r2 = mem[r2]
r3 = e + 8
r4 = r3
r1 = r1 + 4
r3 = r2

CS 443 - Fall 2022 - Lecture 19 44

g

h

k

f

e

mb

c

d

j

Next time:
Avoid these

Graph Coloring Example (Appel)

c

h

CS 443 - Fall 2022 - Lecture 19 45

f

e

mb

d

kj

g

Graph Coloring Example (Appel)

g

c

h

CS 443 - Fall 2022 - Lecture 19 46

f

e

mb

d

kj

Graph Coloring Example (Appel)

j

g

c

h

CS 443 - Fall 2022 - Lecture 19 47

f

e

mb

d

k

Graph Coloring Example (Appel)

f

k

j

g

c

h

CS 443 - Fall 2022 - Lecture 19 48

e

mb

d

Graph Coloring Example (Appel)

e

d

f

k

j

g

c

h

CS 443 - Fall 2022 - Lecture 19 49

mb

Graph Coloring Example (Appel)

b
m
e
d
f
k
j
g
c
h

CS 443 - Fall 2022 - Lecture 19 50

j

g

c

h

Graph Coloring Example (Appel)

CS 443 - Fall 2022 - Lecture 19 51

g

h

k

f

e

mb

c

d

jLucky us! We can
color it!

g

c

h

Graph Coloring Example (Appel)

CS 443 - Fall 2022 - Lecture 19 52

g

h

k

f

e

mb

c

d

j

Graph Coloring Example (Appel)

CS 443 - Fall 2022 - Lecture 19 53

g

h

k

f

e

mb

c

d

j

j

g

c

h

Say we had an actual spill

CS 443 - Fall 2022 - Lecture 19 54

g

h

k

f

e

mb

c

d

j

r2 = mem[j + 12]
r1 = r1 – 1
r2 = r2 * r1
r3 = mem[j + 8]
r1 = mem[j + 16]
r2 = mem[r2]
r3 = r3 + 8
r3 = r3
r1 = r1 + 4
j = r2

We need to load j from memory… into what?

CS 443 - Fall 2022 - Lecture 19 55

g

h

k

f

e

mb

c

d

j

temp1 = stack[0]
r2 = mem[temp1 + 12]
r1 = r1 – 1
r2 = r2 * r1
temp1 = stack[0]
r3 = mem[temp1 + 8]
temp1 = stack[0]
r1 = mem[temp1 + 16]
r2 = mem[r2]
r3 = r3 + 8
r3 = r3
r1 = r1 + 4
temp1 = r2
stack[0] = temp1

Option 1: Move to a temp, do reg alloc again

CS 443 - Fall 2022 - Lecture 19 56

g

h

k

f

e

mb

c

d

j

r4 = stack[0]
r2 = mem[r4 + 12]
r1 = r1 – 1
r2 = r2 * r1
r4 = stack[0]
r3 = mem[r4 + 8]
r4 = stack[0]
r1 = mem[r4 + 16]
r2 = mem[r2]
r3 = r3 + 8
r3 = r3
r1 = r1 + 4
r4 = r2
stack[0] = r4

Option 2: Reserve a register or two for this

CS 443 - Fall 2022 - Lecture 19 57

g

h

k

f

e

mb

c

d

j

Graph Coloring Example (Appel)

r4 = mem[r3 + 12]
r2 = r1 – 1
r2 = r4 * r2
r4 = mem[r3 + 8]
r1 = mem[r3 + 16]
r2 = mem[r2]
r3 = e + 8
r4 = r3
r1 = r1 + 4
r3 = r2

CS 443 - Fall 2022 - Lecture 19 58

g

h

k

f

e

mb

c

d

j

Next time:
Avoid these

This

Coalescing: Combining nodes to eliminate
moves

CS 443 - Fall 2022 - Lecture 19 59

g = mem[j + 12]
h = k – 1
f = g * h
e = mem[j + 8]
m = mem[j + 16]
b = mem[f]
c = e + 8
d = c
k = m + 4
j = b

f

e

mb

c

d

kj

h

g

Blue edge + no black
edge: would like to

coalesce

Coalescing unsafely can make a graph
uncolorable

CS 443 - Fall 2022 - Lecture 19 60

g = mem[j + 12]
h = k – 1
f = g * h
e = mem[j + 8]
m = mem[j + 16]
b = mem[f]
c = e + 8
d = c
k = m + 4
j = b

f

e

m

c

d

k

h

g

We’d rather move
than spill

Conservative coalescing strategies will always
keep a graph colorable
• Briggs: a and b can be coalesced if the resulting node ab will have

fewer than K neighbors of degree >= K
• (Recall: K = number registers/colors)

CS 443 - Fall 2022 - Lecture 19 61

a

cd

ef

ji

hg

b

Conservative coalescing strategies will always
keep a graph colorable
• Briggs: a and b can be coalesced if the resulting node ab will have

fewer than K neighbors of degree >= K
• (Recall: K = number registers/colors)

CS 443 - Fall 2022 - Lecture 19 62

a

cd

ef

ji

hg

b

Conservative coalescing strategies will always
keep a graph colorable
• Briggs: a and b can be coalesced if the resulting node ab will have

fewer than K neighbors of degree >= K
• (Recall: K = number registers/colors)

CS 443 - Fall 2022 - Lecture 19 63

cd

ef

ji

hg

ab

Conservative coalescing strategies will always
keep a graph colorable
• Briggs is conservative:

• Coalescing nodes following Briggs is guaranteed not to make a graph
uncolorable

• Briggs might miss nodes that could still be safely coalesced

CS 443 - Fall 2022 - Lecture 19 64

cd

ef

ji

hg

ab

Conservative coalescing strategies will always
keep a graph colorable
• Briggs is conservative:

• Coalescing nodes following Briggs is guaranteed not to make a graph
uncolorable

• Briggs might miss nodes that could still be safely coalesced

CS 443 - Fall 2022 - Lecture 19 65

cd

ef

ji

hg

ab

Conservative coalescing strategies will always
keep a graph colorable
• George: Nodes a and b can be coalesced if, for every neighbor t of a,

either:
• t already interferes with b or

• t has degree < K

CS 443 - Fall 2022 - Lecture 19 66

t0

t1

mb

c

t3

t2j

t5

t4

j and b can be
coalesced for
K=4, not K=3

Conservative coalescing strategies will always
keep a graph colorable
• George: Nodes a and b can be coalesced if, for every neighbor t of a,

either:
• t already interferes with b or

• t has degree < K

CS 443 - Fall 2022 - Lecture 19 67

j and b can be
coalesced for
K=4, not K=3

f

e

m

c

d

k

h

g

jb

(and the graph is not 3-colorable!)

Graph coloring with coalescing

1. Build interference graph and classify nodes as move-related or non-
move-related

2. Simplify, only removing non-related nodes of degree < K

3. Coalesce move-related nodes using a conservative heuristic

4. Freeze move-related nodes (give up trying to coalesce them) if can’t
simplify or coalesce

5. Spill (potentially) a node w/ degree >= K, removing it from the
graph and pushing it on the stack

6. Select colors for nodes in stack order

CS 443 - Fall 2022 - Lecture 19 68

CS 443 - Fall 2022 - Lecture 19 69

Build Simplify Spill Select

Until graph is empty

(If not reserving registers for load/store)

Build Simplify Freeze Select

Until all nodes are high-degree
or move-related

(If not reserving registers for load/store)

Coalesce

Until all nodes are high-degree

(Potential)
Spill

w/o coalescing:

w/ coalescing:
Until graph is empty

Coalescing Example (Appel)

CS 443 - Fall 2022 - Lecture 19 70

f

e

mb

c

d

kj

h

g

Coalescing Example (Appel)

k

h

g

CS 443 - Fall 2022 - Lecture 19 71

f

e

mb

c

d

j

Coalescing Example (Appel)

k

h

g

CS 443 - Fall 2022 - Lecture 19 72

f

e

mb
j

Coalescing Example (Appel)

k

h

g

CS 443 - Fall 2022 - Lecture 19 73

f

e

m

Coalescing Example (Appel)

cd

k

h

g

CS 443 - Fall 2022 - Lecture 19 74

f

e

m

Coalescing Example (Appel)

jb

cd

k

h

g

CS 443 - Fall 2022 - Lecture 19 75

f

e

m

Coalescing Example (Appel)

e

m

f

jb

cd

k

h

g

CS 443 - Fall 2022 - Lecture 19 76

Coalescing Example (Appel)

jb

cd

k

h

g

CS 443 - Fall 2022 - Lecture 19 77

f

e

m

Coalescing Example (Appel)

k

h

g

CS 443 - Fall 2022 - Lecture 19 78

f

e

mb

c

d

j

Coalescing Example (Appel)

CS 443 - Fall 2022 - Lecture 19 79

k

h

g

f

e

mb

c

d

j

Coalescing Example (Appel)

r4 = mem[r1 + 12]
r2 = r2 – 1
r3 = r4 * r2
r4 = mem[r1 + 8]
r2 = mem[r1 + 16]
r1 = mem[r3]
r4 = r4 + 8
r4 = r4
r2 = m + 4
r1 = r1

CS 443 - Fall 2022 - Lecture 19 80

k

h

g

f

e

mb

c

d

j

Coalescing Example (Appel)

r4 = mem[r1 + 12]

r2 = r2 – 1

r3 = r4 * r2

r4 = mem[r1 + 8]

r2 = mem[r1 + 16]

r1 = mem[r3]

r4 = r4 + 8

r2 = m + 4

CS 443 - Fall 2022 - Lecture 19 81

k

h

g

f

e

mb

c

d

j

Another example

CS 443 - Fall 2022 - Lecture 19 82

a

cd

ef

ji

hg

b

m k

